用户名: 密码: 验证码:
松辽盆地北部泥岩超压的形成与演化史研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对松辽盆地北部泥岩超压分布特征的研究,得到松辽盆地北部青山口组泥岩现今超压高值区主要分布在齐家——古龙凹陷,最大可达15MPa,平均约为8.8MPa;其次为三肇凹陷,超压值最高可达11MPa,平均约为8.3MPa;由两个高值区向盆地边部逐渐减小,直至超压消失,嫩一段泥岩目前超压值最高可达9MPa以上,主要分布在齐家~古龙凹陷,由高值区向凹陷四周嫩一段泥岩超压值逐渐减小,在凹陷边部嫩一段泥岩超压值减小至零。松辽盆地北部青一段泥岩超压最早开始形成于青二、三段沉积时期,大部分开始形成于嫩四段沉积时期;嫩一段泥岩超压最早开始形成于嫩二段沉积时期,大部分开始形成于明二段沉积时期。松辽盆地北部青一段、嫩一段泥岩超压演化过程研究结果表明,青一段、嫩一段泥岩超压至今尚未达到泥岩破裂极限,不能通过自身发生破裂而释放超压,其内超压的释放应主要是由于断裂活动引起的。青一段泥岩超压曾发生过三次释放,而嫩一段泥岩超压曾发生过两次破裂。通过泥岩超压在油气成藏中的作用研究得到,明水组沉积末期松辽盆地北部青一段源岩、嫩一段源岩具备了油气向下“倒灌”运移的条件,青一段源岩生成的油气向下“倒灌”运移距离在明水组沉积末期最大可达550m,最大值分布在三肇凹陷的树19井周围;在齐家—古龙凹陷其青一段源岩生成的油气向下“倒灌”运移距离最大也可达到538m,主要分布在古67井周围;嫩一段泥岩生成的油气向下“倒灌”运移距离在古近系沉积末期最大可达150m左右,运移距离较大部位主要在齐家-古龙凹陷的中部偏西、三肇凹陷和龙虎泡阶地小部分地区,最大值分布在英10井周围。青一段源岩在明水组沉积末期油气“倒灌”运移可进入扶杨油层的范围主要分布在三肇凹陷、大庆长垣的南部及北部、齐家—古龙凹陷的南部及其中部地区,嫩一段源岩生成的油气在大庆长垣南部、齐家~古龙凹陷中部、三肇凹陷南部、龙虎泡阶地中部和朝阳沟阶地等部分地区均可向下“倒灌”运移进入萨尔图油层,仅在齐家~古龙凹陷中部偏西等小部分地区可“倒灌”运移进入葡萄花油层。但大庆长垣东西两侧青山口组源岩超压具有明显的差异,造成其生成油气向下“倒灌”运移距离及层位也存在差异。通过泥岩超压形成时期与源岩的大量排烃期对比得到,松辽盆地北部青一段、嫩一段泥岩超压形成时期早于青一段泥岩本身及嫩一段泥岩本身的油气大量排出时期,对于封闭其自身生成排出油气是有效的。
Trough the distribution features of mudstone overpressure in north of Songliao Basin were studies. We conclude that the high value of current overpressure of K1qn mudstone in the north of Songliao Basin mainly distributes in Qijia-Gulong depression. Where the largest value is up to 15MPa and the average is about 8.8MPa.Secondly is Sanzhao depression .Where the overpressure is up to 11MPa. And the average is about 8.3MPa .From the two areas of high value to the edge of the basin. The overpressure gradually decreases and finally disappears. The high value of overpressure of K1n1 mudstone at present .Where the largest value is up to 9MPa.It mainly distributes in Qijia-Gulong depression. From the high value area to the vicinity of basin. The overpressure of K1n1 mudstone at the edge of depression gradually decreases. Until reducing to zero. The overpressure of K1qn mudstone in the northern part of Songliao Basin firstly formed in K1qn2 and K1qn3 deposition periods. Mostly of forming in the periods of K1n4. And the overpressure of K1n1 mudstone in the northern part of Songliao basin firstly formed in K1n2 deposition periods. Mostly forming in the periods of K2m2.Evolutionary process of overpressure of K1qn1 and K1n1 mudstone shows that overpressure they have not yet reached the rupture limited could not release the overpressure through themselves rupture. The overpressure release should be mainly due to faults activities. The overpressure of K1qn1 mudstone has happened three releases. And the overpressure of K1n1 mudstone has happened two breakages. Trough studies of the role of overpressure in hydrocarbon accumulation we can conclude that K1qn1 and K1n1 source rocks in late K2m in north of Songliao basin .Possess the condition of migration downward of oil and gas. The largest distance of migration downward of oil and gas from K1qn1 source rocks in late K2m .Which is up to 550m. The largest value distributes around well Shu-19 in Sanzhao depression. And in Qijia-Gulong depression. Where the distribution is also up to 538m..Mainly distributes around well Gu-67.The longest distance of migration downward of oil and gas from K1n1 source rocks in the late E sedimentary period in the north of Songliao basin .Where the distance is up to 150m..The following is in the center Qijia-Gulong depression to the west. Sanzhao depression and very few areas of Longhupao terrace. The longest distance distributes around well Ying-10.Oil and gas of K1qn1 source rocks in the late of K2m can migration downward into F,Y oil layers. Which mainly distribute Sanzhao depression. The southern and northern part of Daqing placanticline and the center of Qijia-Gulong depression, the southern part Sanzhao depression, the center part of Longhupao terrace and Chaoyanggou terrace and so on. Which part areas of them can migration downward into Saertu oil layer. Only in small part of the middle Qijia-Gulong depression in the west can migrate downward into Putaohua oil layer. But the overpressure on the east and west sides of Daqing placanticline is obviously different. Which cause the differences of the distance and horizon of migration downward of oil and gas from K1qn source rocks. Trough the contrast of formation periods of overpressure of K1qn1 and K1n1 mudstone in Songliao basin and massive expulsive period of source rocks. We can see their formation periods is earlier than oil and gas massive expulsive period by themselves. It is effective to seal the oil and gas which self-generation and self-bleeding.
引文
[1]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997,104-180.
    [2]陈发景,田世澄.压实与油气运移[M].武汉:中国地质大学出版社.1990
    [3]陈中红,查明,曲江秀.沉积盆地超压体系油气成藏条件及机理[J].天然气地球科学,2003,14(2):97-102.
    [4] [美]史蒂文W.波斯顿,罗伯特R.伯格.异常高压油气藏[M].冉新权,李汝勇,译.北京:石油工业出版社,2003,5-27.
    [5]刘晓峰.评述异常压力研究中的石油地质学新思想[J].地球科学进展,2003,18(2):245-250.
    [6]王震亮,孙明亮,耿鹏等.准南地区异常压力发育特征及形成机理[J].石油勘探与开发,2003,30(1):32-34.
    [7]刘晓峰,谢习农.储层超压流体系统的成因机制评述[J].地质科技情报,2003,22(3):55-60.
    [8]付广,吕延防,杨勉.欠压实泥岩异常孔隙流体压力的定量研究[J].新疆石油地质,2002,23(4):295-298.
    [9]郝芳.超压盆地生烃作用动力学与油气成藏机理[M].北京:科学出版社.2005.
    [10] Mann D M and Mackenzie A S. prediction of pore fluid pressures in sedimentary basin:Marine and petroleum geology,1990,7(1):55-65.
    [11] Dickinson G.Geologecal aspects of abnormal reservoir pressures in Gulf coast Loousiana.AAPG Bulletin,1953,37:410-432.
    [12] Bredehoeft JD,Wesley J B, Fouch T D. Simulations of the origin of fluid pressure fracture generation and the movement of fluids in the Uinta Basin, Utah:AAPG Bulletin,1994,78(11):1729-1747.
    [13] Audit D M and Mcconnell J D C. Establishing resolution limits for tectonic subsidence surves by for ward basin modeling. Marine and Petroleum Geology,1992,11(3):400-411.
    [14] Ward C D, Coghill K and Broussard M D. The application of petrophysical data to improve pore and fracture determination in North sea central Graben HPHT wells: Society of Petroleum Engineers 69th Annual Technical Conference.SPE paper 28297,1-17.
    [15] Hao F,Li S,T,Dong W L,Hu Z L, et al.Abonrmalorganic-matter maturation in the Yingehai basin,South China:implication for hydracarbon expulsion and fluid migration from overpressured systems,journal of Petroleum Geology.1998,21(4):427-444.
    [16]张启明,董良伟.中国含油气盆地中的超压体系[J].石油学报,2000,21(6):1-11.
    [17] Feisher A T and Zwart G. Relation between permeability and effective stress along a plate-boundary fault, Barbados accretionary complex. Geology,1996,24(3)307-310.
    [18] Sleep N H and M L Blanpied. Creep, compaction and the weak rheology of major faults:Nature,359(5):687-692.
    [19] Law B.E,B,Boles G F , Slavin Y I Aboonrmal pressures in hydrocarbon environments[A].AAPG Memoir.1998,70:1-258.
    [20] Hunt J.M, Whelan J K,Eglinton L B et al. Gas generation-A major cause of deep Gulf Goast overpreasure. Oil and Gas Journal.1994,92:59-62.
    [21] Luo X.R and Vasseur G. Contributions of compaction and aquatheemaal to geopressure and the influ ence od anvironmental conditions.AAPG bulletin.1992,76(11):1550-1559.
    [22]华保钦.构造应力场﹑地震泵和油气运移[J].沉积学报,2000,13(2):77-85.
    [23]付广,薛永超,杨勉.异常孔隙流体压力的成因及其贡献探讨[J].海相油气地质,1999,4(4):46-50.
    [24] Bruce C.H . Smectite dehydratiorrits relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico Basin [J] , Bulletin ,1984 , 68:673-683
    [25] Fertl W.H . Abnormal Formation Pressure [M] .New York :Elsevier Press ,1973 ,123-133
    [26] Jowett E.C , Cathels LM ,Davis BW .Predicting depths of gypsum dehydration in evaporitic Sedimentary Petrology [J] AAPG Bulletin ,1993 ,17: 402-413
    [27] Hunt J.M .Generation and migration of Petroleum for abnormally pressure fluid compartments [J] .AAPG Buletin ,1990 ,74 (1) :1-12
    [28]张义纲.油气运移及其聚集成藏模式[M].南京:河海大学出版社,1997,45-51.
    [29] Weedman SD , Brantley SL , Shiraki R ,et al .Diagenesis ,compaction and fluid chemistry modeling a standstone near a pressure seal : Lower tuscalloosa, formation , Gulf Coast [J] . AAPG Bulletin, 1996, 80 (7) : 1045-1064
    [30] Nordgard Bolas H M, Hermanrud C, and Teige G M G. Origin of overpressures in shales:Constraints from basin modeling. AAPG Bulletion,2004, 88(2):193-211.
    [31] Traugott M. Pore/fracture pressure determinations in deep water oil,1997, 218(8):68-70.
    [32] Yardley G S and Swarbrick R E. Lateral transfer: a source of additional overpressure? Marine and Petroleum Geology,2000, 17(4):523-537.
    [33] Hunt J M. Petroleum geochemistry and geology. San Francisco,1979, Freeman:617.
    [34] Monthioux M, Landais P and Durand B. Comparison between extracts from natural and artificial maturation series of Mahakam deltacoals. Org.Geochem.1986, 10(2):299-311.
    [35] Braun R L and Burnbam A K. 1990. Mathematical model of oil generation, degradation and expulsion. Energy Fuels, 4(1):132-146.
    [36]胡忠良.北部湾盆地涠西南凹陷超压系统与油气运移[J].地学前缘,2000,7(3):73-80.
    [37]Price L C. Thermal stability of hydrocarbons in natuse: limits evidence,characteristics,and possible controls. Geochim. Cosmochim. Acta, 1993.57:3261-3280.
    [38] O’Brien G W, Lisk M, Duddy I R, hamiltion J, Woods P and Cowley R. Plate convergence. In: Durand B(ed.), Kerogen-Insoluble organic matter from sedimentary rocks. Editions Technip, Paris, 1999. France:191-241.
    [39]王兆云,赵文智,何海清.超压与烃类生成相互作用关系及对油气运聚成藏的影响[J].石油勘探与开发.2002,29(4):12-15.
    [40]卢双舫,薛海涛,钟宁宁.石油保存下限的化学动力学研究[J].石油勘探与开发,2002,29(6):1-3.
    [41]李志,窦立荣,艾小兰.异常高压与油气的生成[J].石油勘探与开发,2003,30(5):28-30.
    [42]查明,曲秀江,张卫海.异常高压与油气成藏机理[J].石油勘探与开发,2002,29(1):19-23.
    [43]万志峰,夏斌,何家雄等.沉积盆地超压形成机制及其对油气运聚成藏过程的影响[J].天然气地球科学,2007,18(2):219-222.
    [44] Osborne M J,Swarbrick R E. Mechanisms for generation overpressure in sedimentary basin: A reevaluation[J]. AAPG,1997,81(6)”1023-1041.
    [45] Wilkinson M, Darby D, Haszeldine R S and Couples G D. Secondary porosity generation during deep burial associated with overpressure leak-off, Fulmar formation, U.K. Central Graben. AAPG Bulletion, 1997, 81(6):803-813.
    [46] Capuano R M. Evidence of fluid flow in microfractures in geopressured shales. AAPG Bulletion, 1993,77(9):1303-1314.
    [47]郝芳,董良伟,沉积盆地超压系统演化、流体流动与成藏机理[J].地球科学进展,2001,16(1):79-85.
    [48]杨一鸣.超压对油气成藏的影响及其评价[J].断块油气田,2007,14(1):5-7.
    [49]付广,薛永超,杨勉.利用声波时差资料确定欠压实泥岩盖层封闭能力形成时期及其意义[J].石油地球物理勘探,2000,35(5):634-640.
    [50]付广,吕延防,杨勉等.超压泥岩盖层封闭油气机理的新认识(A).宋岩,魏国齐,洪峰等.天然气地质研究与应用[C].北京:石油工业出版社,2000,219-223.
    [51]付广,薛永超,杨勉.利用声波时差资料确定欠压实泥岩盖层封闭能力形成时期及其意义[J].石油地球物理勘探,2000,35(5):634-640.
    [52]付广,王有功,苏玉平.超压泥岩盖层封闭性演化规律及其研究意义[J].矿物学报,2006,26(4):453-458.
    [53]吕延防,付广,高大岭等.油气藏封盖研究[M].北京:石油工业出版社,1996:4-30
    [54]蔡希源,陈章明,王玉华等.松辽盆地两江地区石油地质分析[M].北京:石油工业出版社,1999,117-141.
    [55]萧德铭,迟元林,蒙启安,付广.松辽盆地北部向斜区岩性油藏勘探认识与实践[M].北京:石油工业出版社,2005:13-55.
    [56]迟元林,云金表,蒙启安.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002,10-80.
    [57] Magara K. Compaction and fluid migration-practical petroleum geology[M]. Amsterdam, Elsevier, 1978.
    [58]付广,王有功,苏玉平.古龙凹陷青山口组超压源岩天然气扩散速度演化史[J].吉林大学学报(地球科学版),2007,37(1):91-96.
    [59]胡望水,吕炳全,张文军等.松辽盆地构造演化及成盆动力学探讨.地质科学,2005,40(1):16-31.
    [60]邹才能,贾承造,赵文智等.松辽盆地南部岩性-地层油气成藏动力和分布规律[J].石油勘探与开发,2005,32(4):125-130.
    [61]胡望水.松辽盆地T2断层系及青山口早期伸展裂陷[J].石油勘探与开发,1995,22(2):8-12.
    [62]付广,王有功.三肇凹陷青山口组源岩超压生成油向下“倒灌”运移层位及其研究意义[J].沉积学报,2008,26(2):355-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700