用户名: 密码: 验证码:
南海无机碳代谢及其在碳循环中的作用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机碳代谢(钙化/溶解作用)和有机碳代谢(光合/呼吸作用)是调节海洋碳循环的两个主要生物过程。其中,光合/呼吸作用的净效应将表层海洋中的二氧化碳(CO_2)以有机碳形式固定至深层海洋,而净碳酸钙(CaCO_3)生产却驱使海洋CO_2增加。本论文首次从无机碳代谢出发,调查了南海多个区域的颗粒无机碳(PIC,主要为CaCO_3)和溶解钙离子(Ca~(2+)),旨在描绘南海CaCO_3和Ca~(2+)分布,比较不同区域间两者行为的差异;初步探讨控制CaCO_3和Ca~(2+)行为的过程,评估无机碳代谢活动在南海的重要性,并与有机碳代谢进行比较。
     本论文的研究区域包括以南海北部海盆为代表的深水区域,以南海北部陆架为代表的近岸河口区域,及以西沙永兴岛周边礁盘为代表的珊瑚礁生态系统。测定参数除PIC和Ca~(2+)外,还包括颗粒有机碳(POC)和碳酸盐系统,如CO_2分压(pCO_2)、总碱度(TAlk)、总溶解无机碳(DIC)等相关支持数据,所有参数都采用国际标准方法测定。
     我们的实验结果表明,秋季南海北部海盆这一半封闭寡营养盐海区的表层PIC浓度范围为0.14-0.24μmol CL~(-1),低于POC近一个量级。而冬季由于南海水体混合增强,浮游植物初级生产力相应提高,各调查区域PIC和POC均有不同程度的增加。2006年12月,吕宋深海区真光层内的PIC浓度约为1μmol C L~(-1),高出秋季北部海盆一个量级,PIC/POC浓度比值可达1:2;而南海西部上层水体的PIC浓度更高,可达2μmol C L~(-1),PIC/POC浓度比值也一般大于1:2,暗示了这些区域应有较强的钙化作用;在南海北部陆架至陆坡区域,由于同时受珠江冲淡水陆源输入的影响,PIC最高可达0.8μmol C L~(-1),整体水平高出北部海盆3-4倍。PIC最高值发生在西沙珊瑚礁这一钙化生态系统中,冬季表层水体的PIC浓度一般大于1μmol C L~(-1),最高可达3μmol C L~(-1),PIC/POC浓度比值接近1。
     根据碳酸盐系统等相关数据,我们估算出南海北部海盆真光层内和西沙珊瑚礁生态系统的钙化/光合比值分别为~1:14和1:4-1:3,指示了有机碳生产在海盆区占绝对主导地位,而珊瑚礁系统的钙化作用不可忽视。另外,南海北部海盆100m水深处的CaCO_3和有机碳输出通量比仅为0.12,与该区域真光层内的PIC/POC浓度比值吻合,也证明了该区域无机碳生产力较低。
     南海Ca~(2+)分布显示,北部海盆区水深500 m之下的实测Ca~(2+)显著高出基于保守行为假设下的计算值(两者之差即所谓的超额钙,Excess Ca),超额钙的形成可能是热力学因素和质子通量共同控制下的CaCO_3溶解导致。吕宋深海区500m以深水体中也存在超额钙,但南海西部深水区域的超额钙并不明显,这可能与该区域具有较高的PIC浓度相关。而在南海北部陆架至陆坡表层水体中,Ca~(2+)分布受到河海水混合的影响,近岸浓度低(最低约为9.80 mmol kg~(-1)),远岸浓度高(最高接近10.00 mmol kg~(-1)),但在陆坡深水海区也存在超额钙,其量级与北部海盆区接近。西沙珊瑚礁生态系统的Ca~(2+)部分呈现亏损状态(Depletion),指示了该珊瑚礁系统具有较强的钙化作用。
     总之,南海北部海盆区域的无机碳代谢并不显著,表现出一般大洋的特征。但是,垂直混合、陆源输入、生物活动等因素又会造成南海其它区域的CaCO_3和Ca~(2+)行为产生差别。其中,珊瑚礁生态系统的信号最为强烈,生物钙化导致高PIC和低Ca~(2+)浓度的同时,对群落代谢和系统碳循环也具有潜在的影响。
Both inorganic carbon metabolism (calcification/dissolution) and the organic carbon metabolism (photosynthesis/respiration) are two primary biological processes modulating the ocean carbon cycle. While the photosynthesis/respiration drives a net flux of fixed organic carbon from the surface to the deep ocean, the net CaCO_3 production counteracts the organic carbon export by shifting the carbonate system toward a higher CO_2 concentration. This research is attempting to for the first time, examine the relative importance of these two processes in the world's largest tropic-subtropical marginal sea - the South China Sea (SCS), based on our measurements of particulate inorganic and organic carbon (PIC and POC), dissolved calcium ion (Ca~(2+)) and carbonate system parameters including partial pressure of CO_2 (pCO_2), total alkalinity (TAlk) and dissolved inorganic carbon (DIC).
     Our results showed that, in autumn, surface PIC concentration in the northern SCS (NSCS) basin, which is oligotrophic and permanently stratified, ranged from 0.14 to 0.24μmol C L~(-1), nearly one order of magnitude lower than POC. In the wintertime, however, SCS is characterized by enhanced wind-induced mixing, resulting in the relatively higher primary production as compared to other seasons. For example, in December 2006, we observed that, PIC in the euphotic layer of the deep-sea zone off Luzon was approximately 1μmol C L~(-1), which was one magnitude higher than the NSCS basin, and the PIC/POC concentration ratio was as high as 1:2. PIC in the shallow water of the western SCS off Vietnam was much higher, nearly 2μmol C L~(-1), and the average PIC/POC concentration ratio was higher than 1:2, suggesting strong calcification in this region. In the northern shelf and slope region, affected by the terrestrial inputs, the PIC content was 3 to 4 times more than in the NSCS basin, with the highest PIC concentration close to 0.8μmol C L~(-1). PIC in the surface waters of the Xisha coral reef system was comparable to POC, which was on average >1μmol C L~(-1) and the highest among all the study areas.
     It is also demonstrated that, the ratio of calcification to photosynthesis in the NSCS basin and the Xisha coral reef system was -1:14 and 1:4-1:3, respectively, indicating the organic carbon production was dominant in the basin area but the CaCO_3 production was a much more important component in the reef system. Using an ocean biogeochemical-transport box model, we estimated the CaCO_3 to organic carbon export ratio of the top 100 m water in the basin area to be -0.12, agreed well with the measured PIC/POC concentration ratio of this area.
     Vertical profiles of Ca~(2+) in the NSCS basin showed that excess Ca (defined as the difference between the measured Ca~(2+) concentration and that calculated from salinity) existed in the water below the depth of 500 m. Similar to the scenario in open ocean region, this obvious excess Ca might come from the CaCO_3 dissolution under the control of both thermodynamics and the proton flux. However, unlike excess Ca existing in the mid- and deep water in the deep-sea zone off Luzon, there was no obvious excess Ca in the western SCS. In the northern shelf and slope region, while Ca~(2+) distribution in surface waters was controlled by the mixing process of the Pearl River plume and the SCS water, excess Ca in the slope area was also observable and its magnitude was close to the NSCS basin. Ca~(2+) depletion happened in some time during the time-series observation at the reef flat, which again suggests that calcification was substantial in this typical coral reef system.
     In summary, while the inorganic carbon metabolism in the NSCS basin had a similar function with that in the open ocean, CaCO_3 and Ca~(2+) behaviors in other regions were more or less different, due to among others, the effects of vertical mixing, terrestrial inputs and biological activities. The most dynamic behavior was observed in the coral reef system, in which calcification resulted in the highest PIC and lowest Ca~(2+) concentrations, and had a potential effect on the community metabolism and the carbon cycle system.
引文
[1] Feely, R.A., Sabine, C.L., Lee, K., et al. Impact of anthropogenic CO_2 on the CaCO_3 system in the oceans [J]. Science, 2004,305:362-366.
    
    [2] Millero, F.J. The marine inorganic carbon cycle [J]. Chemical Reviews, 2007, 107:308-341.
    
    [3] Sabine, C.L., Feely, R.A., Gruber, N., et al. The oceanic sink for anthropogenic CO_2 [J]. Science, 2004,305: 367-371.
    [4] Rost, B., Riebesell, U. Coccolithophores and the biological pump: responses to environmental changes [A].In: Thierstein, H.R. (eds.), Coccolithophores: from molecular processes to global impact [M]. Berlin:Springer, 2004, 99-127.
    [5] Milliman, J.D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state [J]. Global Biogeochemical Cycles, 1993, 7: 927-957.
    [6] Longhurst, A., Sathyendranath, S., Platt, T., et al. An estimate of global primary production in the ocean from satellite radiometer data [J]. Journal of Plankton Research, 1995,17: 1245-1271.
    [7] Koeve, W. Upper ocean carbon fluxes in the Atlantic Ocean: The importance of the POC:PIC ratio [J].Global Biogeochemical Cycles, 2002, 16(4): 1056-1072.
    [8] IPCC. Summary for Policymakers [A]. In: Solomon, S. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007, 1-18.
    [9] Kleypas, J.A., Buddemeier, R.W., Archer, D., et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs [J]. Science, 1999, 284: 118-120.
    [10] Caldeira, K., Wickett, M.E. Anthropogenic carbon and ocean pH [J]. Nature, 2003, 425: 365.
    
    [11] Wolf-Gladrow, D.A., Riebesell, U., Burkhardt, S., et al. Direct effects of CO_2 concentrations on growth and isotopic composition of marine plankton [J]. Tellus, 1999, 51 (2): 461-476.
    
    [12] Orr, J.C., Fabry, V.J., Aumont, O., et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms [J]. Nature, 2005,437:681-686.
    [13] Riebesell, U.I., Zondervan, I., Rost, B., et al. Reduced calcification of marine plankton in response to increased atmospheric CO_2 [J]. Nature, 2000, 407: 364-367.
    [14] Zondervan, I., Zeebe, R.E., Rost, B., et al. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO_2 [J]. Global Biogeochemical Cycles, 2001, 15(2): 507-516.
    [15] Zondervan, I., Rost, B., Riebesell, U. Effect of CO_2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths [J].Journal of Experimental Marine Biology and Ecology, 2002,272: 55-70.
    [16] Langdon, C., Broecker, W.S., Hammond, D.E., et al. Effect of elevated CO_2 on the community metabolism of an experimental coral reef [J]. Global Biogeochemical Cycles, 2003, 17(1): 1011-1024.
    [17] Langdon, C., Atkinson, M.J. Effect of elevated pCO_2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment [J]. Journal of Geophysical Research, 2005, 110, C09S07, doi: 10.1029/2004JC002576.
    [18] Delille, B., Harlay, J., Zondervan, I., et al. Response of primary production and calcification to changes of pCO_2 during experimental blooms of the coccolithophorid Emiliania huxleyi [J]. Global Biogeochemical Cycles, 2005, 19, GB2023, doi: 10.1029/2004GB002318.
    [19] Martin, J.H., Knauer, GA., Karland, D.M., et al. VERTEX: Carbon cycling in the northeast Pacific [J].Deep Sea Research, 1987,34: 267-285.
    [20] Louanchi, F., Najjar, R.G. A global monthly climatology of phosphate, nitrate and silicate in the upper ocean: Sping-summer export production and shallow remineralization [J]. Global Biogeochemical Cycles,2000,14: 957-977.
    [21] Robertson, J.E., Robinson, C, Turner, D.R., et al. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991 [J]. Deep Sea Research I, 1994, 41(2):297-314.
    [22] Frankignoulle, M., Canon, C., Gattuso, J.R Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO_2 [J]. Limnology and Oceanography, 1994, 39: 458-462.
    [23] Buitenhuis, E.T.P., van der Wal, P., de Barr, H.J.W. Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation [J]. Global Biogeochemical Cycles, 2001,15(3): 577-588.
    [24] Redfiled, A.C., Ketchum, B.H., Richards, F.A. The influence of organisms on the composition of seawater [A]. In: Hill, M.N. (ed.), The Sea [M]. New York: Interscience, 1963, 26-77.
    [25] Chen, C.T.A., Pytkowicz, R.M., Olson, E.J. Evaluation of the calcium problem in the South Pacific [J].Geochemical Journal, 1982, 16: 1-10.
    [26] Kanamori, S., Ikegami, H. Calcium-alkalinity relationship in the North Pacific [J]. Journal of the Oceanographical Society of Japan, 1982, 38: 57-62.
    [27] Kinsey, D.W. Standards of performance in coral reef primary production and turnover [A]. In: Barnes, D.J.(ed.), Perspectives on coral reefs [M]. Australian Institute of Marine Science: Townsville, 1983, 209-220.
    [28] Crossland, C.J., Hatcher, B.G., Smith, S.V. Role of coral reefs in global ocean production [J]. Coral Reefs,1991, 10: 55-64.
    [29] Ware, J.R., Smiht, S.V., Reaka-Kudla, M.L. Coral reefs: sources or sinks of atmospheric CO_2? [J]. Coral Reefs, 1992, 11: 127-130.
    [30] Gattuso, J.P., Frankignoulle, M., Smiht, S.V., et al. Coral reefs and carbon dioxide [J]. Science, 1996, 271:1298.
    
    [31] Buddemeier, B. Coral reefs and carbon dioxide [J]. Science, 1996, 271:1298-1299.
    [32] Suzuki, A., Kawahata, H., Goto, K. Reef water CO_2 system and carbon cycle in Majuro Atoll, the Marshall Islands in the central Pacific [J]. Proceedings of the 8th International Coral Reef Symposium 1997, 1:971-976.
    [33] Kawahata, H., Suzuki, A., Goto, K. Coral reef ecosystems as a source of atmospheric CO_2: evidence from PCO_2 measurements of surface waters [J]. Coral Reefs, 1997, 16:261-266.
    [34] Kawahata, H., Suzuki, A., Ayukai, T., et al. Distribution of the fugacity of carbon dioxide in the surface seawater of the Great Barrier Reef [J]. Marine Chemistry, 2000, 72: 257-272.
    [35] Suzuki, A., Kawahata, H. Partial pressure of carbon dioxide in coral reef lagoon waters: comparative study of atolls and barrier reefs in the Indo-Pacific Oceans [J]. Journal of Oceanography, 1999, 55: 731-745.
    [36] Gattuso, J.P., Pichon, M., Delesalle, B., et al. Community metabolism and air-sea CO_2 fluxes in a coral reef ecosystem (Moorea, French Polynesia) [J]. Marine Ecology Progress Series, 1993, 96: 259-267.
    [37] Gattuso, J.P., Pichon, M., Delesalle, B., et al. Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO_2 disequilibrium [J]. Marine Ecology Progress Series,1996, 145: 109-121.
    [38] Frankignoulle, M., Gattuso, J..P., Biondo, R., et al. Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges [J]. Marine Ecology Progress Series, 1996, 145: 123-132.
    [39] Kayanne, H., Suzuki, A., Satio, H. Diurnal changes in the partial pressure of carbon dioxide in coral reef water [J]. Science, 1995, 269: 214-216.
    [40] Suzuki, A. Combined effects of photosynthesis and calcification on the partial pressure of carbon dioxide in seawater [J]. Journal of Oceanography, 1998, 54: 1-7.
    
    [41] Jordan, R.W., Kleijne, A. A classification system for living coccolithophores [A]. In: Winter, A. (eds.),Coccolithophores [M]. Cambridge: Cambridge University Press, 1994. 83-106.
    
    [42] Broerse, A.T.C., Ziveri, P., van Hinte, J.E., et al. Coccolithophore export production, seasonal species composition and coccolith-CaCO_3 fluxes in the NE Atlantic (34°N 21°W and 48°N 21°W) [J]. Deep-Sea Research II, 2000, 47:1877-1905.
    [43] Sprengel, C, Baumann, K.H., Henderiks, J., et al. Modern coccolithophore and carbonate sedimentation along a productivity gradient in the Canary Islands region: seasonal export production and surface accumulation rates [J]. Deep-Sea Research II, 2002,49: 3577-3598.
    [44] Robertson, J.E., Watson, A.J., Langdon, C., et al. Diurnal variations in surface pCO_2 and oxygen at 60°N,20°W in the northeast Atlantic [J]. Deep-Sea Research, 1993,40,409-422.
    [45] Buitenhuis, E., Bleijswijk, J., Bakker, D., et al. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea [J]. Marine Ecology Progress Series, 1996, 143:271-282.
    [46] Archer, D., Winguth, A., Lea, D., et al. What caused the glacial/interglacial atmospheric pCO_2 cycles? [J].Reviews of Geophysics. 2000, 38(2): 159-189.
    [47] Archer, D., Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO_2 concentration [J]. Nature, 1994, 367: 260-264.
    [48] Honjo, S. Fluxes of particles to the interior of the open ocean [A]. In: Ittekkot, V. (eds.), Particle Flux in the Ocean[M], 1996,91-154.
    [49] Brown, C., Yoder, J.A. Distribution pattern of coccolithophorid blooms in the Western North Atlantic [J].Continental Shelf Research, 1994, 14: 175-197.
    [50] Tsunogai, S., Noriki, S. Particles fluxes of carbon and organic carbon in the ocean: Is the marine biological activity working as a sink of the atmospheric carbon? [J]. Tellus Series B, 1991, 43(2): 256-266.
    [51] Rodier, M., Le Borgne, R. Export of particles at the equator in the western and central Pacific Ocean [J].Deep Sea Research, Part II, 1997,44: 2085-2113.
    [52] Buessler, K.O. Do upper-ocean sediment traps provide an accurate record of particle flux? [J]. Nature,1991,353:420-423.
    [53] Gust, G, Michaels, A.F., Johnson, R., et al. Particle fluxes and moving fluids: experience from synchronous trap collections in the Sargasso Sea [J]. Deep-Sea Research, 1992, 39: 1071-1083.
    [54] Sarmiento, J.L., Dunne, J., Gnanadesikan, A., et al. A new estimate of the CaCO_3 to organic carbon export ratio [J]. Global Biogeochemical Cycles, 2002, 16(4): 1107-1118.
    [55] Bacon, M.P., Cochran, J.K., Hirschberg, D., et al. Export flux of carbon at the equator during the EqPac time-series cruises estimated from ~(234)Th measurements [J]. Deep-Sea Research II, 1996, 43: 1133-1153.
    [56] Pilson, M.E.Q. An introduction to the chemistry of the sea [M]. Upper Saddle River, New Jersey:Prentice-Hall, Inc, 1998, 58-134.
    [57] Dittmar, W. Report on researches into the composition of ocean water collected by H.M.S. Challenger during the years 1873-1876 [A]. In: Murray J, (ed.), Voyage of H.M.S. Challenger, Vol 2 [C]. London:H.M. Stationery Office, 1884, 51.
    [58] Culkin, F. The major constituents of seawater [A]. In: Riley, J.P. (eds.), Chemical Oceanography, 1st Ed,Vol 1[M]. London: Academic Press, 1965, 121-161.
    [59] Wilson, T.R.S. The major constituents of seawater [A], In: Riley, J.P. (eds.), Chemical Oceanography, 2nd Ed, Vol 1 [M]. London: Academic Press, 1975,365-413.
    [60] Tsunogai, S., Nishimura, M., Nakaya, S., et al. Complexometric titration of calcium in the presence of larger amounts of magnesium [J]. Talanta, 1968,15: 385-390.
    [61] Lebel, J., Poisson, A. Potentiometric determination of calcium and magnesium in seawater [J]. Marine Chemistry, 1976,4:321-332.
    [62] Kanamori, S., Ikegami, H. Computer-processed potentiometric titration for the determination of calcium and magnesium in sea water [J]. Journal of the Oceanographical Society of Japan, 1980, 36: 177-184.
    [63] Olson, E.J., Chen, C.T.A. Interference in the determination of calcium in seawater [J]. Limnology and Oceanography, 1982, 27(2): 375-380.
    [64] Brewer, P.G, George, T.F.W., Bacon, M.P., et al. An oceanic calcium problem? [J]. Earth and Planetary Science Letters, 1975, 26: 81-87.
    [65] Riley, J.P., Tongudai, M. The major cation/chlorinity ratios in seawater [J]. Chemical Geology, 1967, 2:263-269.
    [66] Culkin, F., Cox, R.A. Sodium, potassium, magnesium, calcium and strontium in sea water [J]. Deep-Sea Research, 1966, 13: 789-804.
    [67] Tsunogai, S., Nishimura, M., Nakaya, S. Calcium and magnesium in sea water and the ratio of calcium to chlorinity as a tracer of water masses [J]. Journal of the Oceanographical Society of Japan, 1968, 24:153-159.
    [68] Horibe, Y., Endo, K., Tsubota, H. Calcium in the South Pacific, and its correlation with carbonate alkalinity [J]. Earth and Planetary Science Letters, 1974, 23: 136-140.
    [69] de Villiers, S. Excess dissolved Ca in the deep ocean: a hydrothermal hypothesis [J]. Earth and Planetary Science Letters, 1998, 164: 627-641.
    [70] Shiller, A.M., Gieskes, J.M. Processes affecting the oceanic distributions of dissolved calcium and alkalinity [J]. Journal of Geophysical Research, 1980, 85: 2719-2727.
    [71] von Damme, K.L., Edmond, J.M., Grant, B., et al. Chemistry of hydrothermal solutions at 21 degrees N,East Pacific Rise [J]. Geochimca et Cosmochimica Acta, 1985, 49: 2197-2220.
    [72] Lupton, J.E., Baker, E.T., Massoth, GJ. Variable 3He/heat ratios in submarine hydrothermal systems:evidence from two plumes over the Juan de Fuca Ridge [J]. Nature, 1989, 337: 161-163.
    [73] Archer, D.E. A data-driven model of the global calcite lysocline [J]. Global Biogeochemical Cycles, 1997,10:511-526.
    [74] Milliman, J.D., Troy, P.J., Balch, W.M., et al. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? [J]. Deep-Sea Research I, 1999, 46: 1653-1669.
    [75] Pond, D.W., Harris, R.P., Brownlee, C.A. Microinjection technique using a pH-sensitive dye to determine the gut pH of Calanus helgolandicus [J]. Marine Biology, 1995, 123: 75-79.
    [76] Chen, C.T.A. Shelf- vs. dissolution-generated alkalinity above the chemical lysocline [J]. Deep-Sea Research II, 2002,49: 5365-5375.
    [77] Langmuir, D. Aqueous Environmental Geochemistry [M]. Upper Saddle River, New Jersey: Prentice Hall,Inc, 1997, 1-600.
    
    [78] Millero, F.J. Chemical Oceanography [M]. New York: CRC Press, Inc, 1996, 76-93.
    [79] Bauer, J.E., Druffel, E.R.M. Ocean margins as a significant source of organic matter to the deep open ocean [J]. Nature, 1998, 392: 482-485.
    [80] Rabouille, C., Mackenzie, F.T., Ver, L.M. Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean [J]. Geochimica et Cosmochimica Acta, 2001.65:3615-3641.
    [81] Zhai, W.D., Dai, M.H., Cai, W.J., et al. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn [J]. Marine Chemistry, 2005, 96: 87-97.
    
    
    [82] 王汉奎等.南沙渚碧礁泻CO_2体系的研究[A].南沙群岛珊瑚礁泻湖化学与生物学研究[C],北京: 海洋出版社,1997,27-32.
    
    [83] 宋金明,赵卫东,李鹏程等.南沙珊瑚礁生态系的碳循环[J].海洋与湖沼,2003,34(6):586-592.
    
    [84] Chen, C.T.A., Wang, S.L., Chou, W.C., et al. Carbonate chemistry and projected future changes in pH and CaCO_3 saturation state of the South China Sea [J]. Marine Chemistry, 2006, 101:277-305.
    
    [85] Yang, T.N., Wei, K.Y., Chen, L.L. Occurrence of coccolithophorids in the northeastern and central South China Sea [J]. Taiwania, 2003,48: 29-45.
    
    [86] 钟权伟.南海北部海域钙板金藻群落的时空变异[D].国立中山大学海洋生物研究所,2005.
    
    [87] 刘青琳.南海与台湾海峡溶解态与颗粒态有机碳、氮、磷之分布[D].国立中山大学海洋生物研究所, 2001.
    
    [88] 陈建芳,郑连福,陈荣华等.南海颗粒物质的通量、组成及其与沉积物积累率的关系初探[J].沉积 学报,1998,16(3):14-19.
    
    [89] 韩舞鹰,王均德.珠江口海区碳酸钙的海洋化学[J].地球化学,1988,2:136-142.
    
    [90] Hu, J.K., Kawamura, H., Hong, H., et al. A review on the currents in the South China Sea: Seasonal circulation, South China Sea warm current and Kuroshio intrusion [J]. Journal of Oceanography, 2000, 56: 607-624.
    
    [91] 阎俊岳,陈乾金,张秀芝等.中国近海气候[M].北京:科学出版社,1993,317-321.
    
    [92] 冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999,434-501.
    
    [93] 韩舞鹰.南海海洋化学[M].北京:科学出版社,1998,289pp.
    
    [94] 李薇,李立,刘秦玉.吕宋海峡及南海北部海域的水团分析[J].台湾海峡,1998,17(2):207-213.
    
    [95] 李立,苏纪兰,许建平.南海的黑潮分离流环[J].热带海洋,1997,16(2):42-57.
    
    [96] Zhang, Q.M. Mangrove and coral reef coastal resources of China and its development [A]. In: Chen, B.F. (eds.), Symposium on Coastal Ocean Resources and Environment '99, Proceedings of SCORE '99, Guangzhou [C]. Center for Coastal and Atmospheric Research, The Hong Kong University of Science and Technology, Hong Kong, 2000, 228-234. (In Chinese with an English abstract)
    
    [97] Zhang, Q.M. The biogeomorphoiogy of Luhuitou fringing reef of Sanya City, Hainan Island of China [J]. Chinese Science Bulletin, 2001, 46 (Suppl.): 97-102.
    
    [98] 赵焕庭,宋景朝,余克服.西沙群岛永兴岛和石岛的自然与开发[J].海洋通报,1996,1(5):55-65.
    
    [99] 陈史坚,钟晋梁.南海诸岛志略[M].海口:海南人民出版社,1989,1-274.
    
    [100]李颖虹,黄小平,岳维忠.西沙永兴岛环境质量状况及管理对策[J].海洋环境科学,2002,23(1): 50-53.
    
    [101]李颖虹,黄小平,岳维忠等.西沙永兴岛珊瑚礁与礁坪生物生态学研究[J].海洋与湖沼,2004,35(2): 176-182.
    
    [102] Hernes, P.J., Peterson, M.L., Murray, J.W., et al. Particulate carbon and nitrogen fluxes and compositionsin the central equatorial Pacific [J]. Deep-Sea Research I, 2001, 48: 1999-2003.
    
    [103] JGOFS. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements [R]. Report #19,Intergovernmental Oceanographic Commission, Bergen, Norway, 1996, 170pp.
    
    [104] Chen, W.F., Cai, P.H., Dai, M.H., et al. On the seasonality of 234Th/238U disequilibria and particulateorganic carbon export in the northern South China Sea [J]. JO Special Issue on Asian GEOTRACES, 2007.(submitted)
    
    [105]翟惟东.南海北部与珠江河口水域CO2通量及其调控因子[D].厦门大学,2003.
    
    [106] Cai, W.J., Dai, M.H., Wang, Y.C., et al. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea [J]. Continental Shelf Research, 2004, 24: 1301-1319.
    
    [107] Dickson, A.G, Goyet, C. Handbook of methods for the analysis of the various parameters of the carbondioxide system in sea water [M]. ORNL/CDIAC-74, 1994.
    
    [108] Weiss, R.F., Price, B.A. Nitrous oxide solubility in water and seawater [J]. Marine Chemistry, 1980, 8:347-359.
    
    [109] Takahashi, T., Olafsson, J., Goddard, J.G, et al. Seasonal variation of CO_2 and nutrients in the high-latitudesurface ocean: a comparative study [J]. Global Biogeochemical Cycles, 1993, 7: 843-878.
    
    [110] Takahashi, T., Sutherland, S.C., Sweeney, C, et al. Global sea-air CO_2 flux based on climatologicallysurface ocean pCO_2, and seasonal biological and temperature effects [J]. Deep-Sea Research II, 2002, 49:1601-1622.
    
    [111] Deffeyes, K.S. Carbonate Equilibria: A graphic and algebraic approach [J]. Limnology and Oceanography,1965,10(3): 412-426.
    
    [112] Sundquist, E.T., Plummer, L.N. Carbon dioxide in the ocean surface: the homogenous buffer factor [J].Science, 1981,204: 1203-1205.
    
    [113] Frankignoulle, M. A complete set of buffer factors for acid/base CO_2 system in seawater [J]. Journal ofMarine Systems, 1994, 5: 111-118.
    
    [114] Ning, X., Chai, F., Xue, H., et al. Physical-biological oceanographic coupling influencing phytoplanktonand primary production in the South China Sea [J]. Journal of Geophysical Research, 2004, 109, doi.101029/2004JC002365-.
    
    [115] Barber, R.T., Sanderson, M.P., Lindley, S.T., et al. Primary productivity and its regulation in the equatorialPacific during and following the 1991-1992 El Nino [J]. Deep-Sea Research II, 1996, 43: 933-969.
    
    [116] Balch, W.M., Drapeau, D.T., Fritz, J.J., et al. Optical backscattering in the Arabian Sea - continuousunderway measurements of particulate inorganic and organic carbon [J]. Deep-Sea Research I, 2001, 48:2423-2452.
    
    [117]袁梁英.南海北部营养盐结构特征[D].厦门大学,2005.
    
    [118] Kleypas, J.A., Feely, R.A., Fabry, V.J., et al. Impacts of Ocean Acidification on Coral Reefs and OtherMarine Calcifiers: A Guide for Future Research [R]. Report of a workshop held 18-20 April 2005, St.Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey, 2006, 88pp.
    
    [119] Lee, K. Global net community production estimated from the annual cycle of surface water total dissolvedinorganic carbon [J]. Limnology and Oceanography, 2001, 46: 1287-1297.
    
    [120] Takahashi, T., Goyet, C, Chipman, D., et al. Ratio of organic carbon and calcium carbonate productionsobserved at the JGOFS 47°N, 20°W site [R]. JGOFS Report No 7, Abstracts, JGOFS North Atlantic BloomExperiment. International Scientific Symposium, SCOR/ICSU, 1990, 76-77.
    
    [121] Hawaii Ocean Time-series Data Organization & Graphical System (HOT-DOGS).http://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html
    
    [122] Borges, A.V., Frankignoulle, M. Short-term variations of the partial pressure of CO_2 in surface waters ofthe Galician upwelling system [J]. Progress in Oceanography, 2001, 51: 283-302.
    
    [123]鲁中明.近海环境表层海水pCO_2周日变化及控制过程[D].厦门大学,2007.
    
    [124] Siethoff, H., Goyet, C, Peltzer, E.T. Variation of CO_2 partial pressure in surface seawater in the equatorialPacific Ocean [J]. Deep-Sea Research I, 1997, 44: 1611-1625.
    
    [125] Bates, N.R., Takahashi, T, Chipman, D.W., et al. Variability of pCO_2 on diel to seasonal timescales in theSargasso Sea near Bermuda [J]. Journal of Geophysical Research, 1998,103(C8): 15567-15585.
    
    [126] Webb, K.L., DuPaul, W.D., Wiebe, W., et al. Enewetak (Enewetok) atoll: aspects of the nitrogen cycle on acoral reef [J]. Limnology and Oceanography, 1975, 20: 198-210.
    
    [127] Smith, S.V. Mass balance in coral reef-dominated areas [A]. In: Jansson, B.O. (ed.), Lecture notes oncoastal and estuarine studies [M]. Berlin Heidelberg New York: Springer, 1988, 209-226.
    
    [128] Chou, W.C., Sheu, D.D., Chen, C.T.A., et al. Seasonal variability of carbon chemistry at the SEATS??time-series site, northern South China Sea between 2002 and 2003 [J]. Terrestrial, Atmospheric andOceanic Sciences, 2005,16 (2): 445-465.
    
    [129] Millero, F.J. The thermodynamics of the carbonate system in seawater [J]. Geochimica et CosmochimicaActa, 1979,43: 1651-1661.
    
    [130] Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and oneatmosphere total pressure [J]. American Journal of Science, 1983,283: 780-799.
    
    [131] Chisholm, J.R.M. Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia [J].Limnology and Oceanography, 2000,45(7): 1476-1484.
    
    [132] Yates, K.K., Halley, R.B. CO_3~(2-) concentration and pCO_2 thresholds for calcification and dissolution on theMolokai reef flat, Hawaii [J]. Biogeosciences, 2006, 3(3): 357-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700