用户名: 密码: 验证码:
微生物高效生产γ-聚谷氨酸和β-聚苹果酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-聚谷氨酸(Poly-γ-glutamatic acid, β-PGA)和β-聚苹果酸[poly(β-L-malic acid),PMLA]是两种受到人们关注的生物可降解水溶性聚合物材料,由于其优良的特性在医药和其他广泛领域有极大应用潜力。本文对于两种生物聚合物的微生物合成进行了系统研究。
     首先,开展了对微生物合成γ-PGA的研究。以直接利用葡萄糖合成γ-PGA为目的,筛选获得一株谷氨酸非依赖型γ-PGA生产菌株,经过VITEK系统鉴定和16srDNA序列分析鉴定,命名为Bacillus subtilis ClO。对C10的发酵生产γ-PGA的培养条件进行了优化,发现柠檬酸能够作为C10菌株合成γ-PGA前体;在此基础上,以柠檬酸为底物在发酵罐上进行了间歇发酵和流加发酵培养,通过在发酵中后期流加柠檬酸和氯化铵溶液,γ-PGA产量达到38.2g/L。为了寻找有效提高γ-PGA产量的因素,研究了多种有机酸对于γ-PGA合成的影响,发现草酸能够在低浓度范围内显著促进菌体生长和γ-PGA合成。对关键节点酶活性的影响与代谢途径进行分析,结果表明草酸不进入γ-PGA的合成途径,而柠檬酸可以直接通过TCA循环进入γ-PGA的合成途径,间接作为谷氨酸合成的底物;草酸使丙酮酸脱氢酶活性增加是影响从葡萄糖从头合成谷氨酸的重要因素。对添加柠檬酸和草酸条件下的B. subtilis C10合成γ-PGA的代谢流进行分析,柠檬酸条件下,进入EMP途径的流量减弱,代谢流向HMP途径迁移;而在α-酮戊二酸节点碳流大部分流向γ-PGA合成途径;草酸条件下,α-酮戊二酸节点碳流大部分流向TCA循环,要提高γ-PGA的产量,必须弱化α-酮戊二酸脱氢酶的活性。
     其次,开展了出芽短梗霉合成β-聚苹果酸的研究。分离了一株高产PMLA的生产菌株,对筛选到的菌株进行ITS序列分析鉴定,确定属于A ureobasidium Pullulans,命名为ZD-3d.对产物进行FT-IR和13C-NMR鉴定,确定为PMLA; PMLA酸水解产物为苹果酸、马来酸和富马酸;对PMLA的酸水解过程进行了研究,建立了PMLA水解释放苹果酸的动力学模型。接着对发酵培养条件进行了优化,发现富马酸能够促进菌体合成PMLA,5g/L富马酸能够使PMLA产量达到62.27g/L;碳酸钙能够调节菌体合成胞外多糖(exopolysaccharide, EPS)和PMLA的碳流方向,添加碳酸钙强烈刺激菌体合成PMLA,而抑制普鲁兰多糖的产生。对出芽短梗霉ZD-3d在1OL发酵罐上进行放大培养,PMLA最终浓度57.2g/L. PMLA的最大产率为0.35g/L/h,转化率为0.47g/g葡萄糖。
     本论文对于γ-聚谷氨酸和β-聚苹果酸在相应菌株中的生物合成与代谢机理提出了一些新的研究视角,也为未来工业化生产这两种重要的生物聚合物提供一些新的策略。
As two novel biodegradable biomaterials, Poly-γ-glutamatic acid (γ-PGA) and poly (β-L-malic acid)(PMLA) have great potential applications in medicine and a wide range of other areas because of their excellent features. Microbial syntheses of the two biopolymers have been studied systematically in the present work.
     Firstly, a glutamic acid-independent strain was screened out from sauce samples to biosynthesize γ-PGA without extrogeneous glutamic acid addition. According to the VITEK system identification and16srDNA sequence analysis, this new isolated strain was nominated as Bacillus subtilis C10. The metabolic characteristics and culture conditions of C10were investigated for enhanced γ-PGA production. The results showed that extrogeneous citric acid could be uasd as precuisor for γ-PGA synthesis, and one fed-batch strategy was examined to further improve the productivity. The mixture solution containing citric acid and ammonium chloride was fed in the later culture stage of fermentation, which resulted in high γ-PGA(38.2g/L) production. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA were also investigated in this strain, especially the effects of five different organic acids as possible precursors on the production of γ-PGA. To understand the possible mechanism for the improved γ-PGA biosynthesis by the tested organic acids, the activities of four key intracellular enzymes were measured. The result indicated that the increased bio activity of pyruvate dehydrogenase by oxalic acid was important for de novo sythesis of glutamic acid from glucose. According to metabolic pathway analyses, citric acid directly entered into the biosynthetic pathway of γ-PGA through the TCA cycle as indirect substrate of glutamate synthetase, while oxalic acid did not enter the biosynthetic pathway of γ-PGA. Metabolic flux analyses of γ-PGA synthesis in strain C10were carried out to explain the different effects caused by the addition of these organic acids. The feeding of citric acid reduced the flux entering the EMP pathway and increased the flux to γ-PGA synthesis pathway in α-ketoglutaric acid node. With the addition of oxalic acid, more carbon flux entered the TCA cycle in this strain. In order to improve the production of γ-PGA, the α-ketoglutaric acid dehydrogenase activity should be weakened in this glutamic acid-independent γ-PGA producer.
     Secondly, a new strain with the distinguished high productivity of PMLA was isolated from fresh plant samples. According to morphological characteristics and phylogenetic analyses of the internal transcribed spacer sequences, one PMLA-producing strain (ZD-3d) was characterized as the candidate of Aureobasidium pullulans. As expected, PMLA can be hydrolyszed into malic acid, maleic acid and fumaric acid, and the corresponding kinetics of PMLA acid hydrolysis was modeled to simulate the whole degradation process. Further culture condition optimization brought about the highest PMLA concentration (62.27g/L) in the shake flask scale. In addition, the contribution of the carbon flux to exopolysaccharide (EPS) and PMLA could be regulated by the addition of CaCO3in the medium. This high-level fermentation process was further scaled up in the10L bench-top fermentor with a high PMLA concentration (57.2g/L), productivity (0.35g/L/h) and yield (0.47g/g glucose).
     The present work made some deep insights into the biosynthesis and regulation of γ-PGA and PMLA in their corresponding strains and promises some novel strategies for industrial production of these two important biopolymers in the future.
引文
[1]Chandra R. and Renurustgi. Biodegradable polymers. Prog Polym Sci.1998, 23:1273-1335
    [2]Nair L. S., Laurencin C. T. Biodegradable polymers as bio materials. Prog Polym Sci.2007,32:762-798
    [3]Gross R. A. and Kalra B. Biodegradable polymers for the pnviromnent. Science. 2002,297:803-807
    [4]Bernd H. A. Rehm. Bacterial polymers:biosynthesis, modifications and applications. Nat. Rev. Microbiol.2010,8,578-592
    [5]Sung M.H., Park C, Kim C.J., POO H., Soda K., Ashiuchi M. Natural and Edible Biopolymer Poly-y-glutamic Acid:Synthesis, Production, and Applications. Chem Rec.2005,5:352-366
    [6]Ivanovics G., and Bruckner V. Chemical and immunologic studies on the mechanism of anthrax infection and immunity I:The chemical structure of capsule substance of anthrax bacilli and its identity with that of the B. mesentericus. ZImmun exp ther.1937,90:304-318.
    [7]Hezayen F.F., Rehm B.H., Tindall B.J., Steinbu" chel A. Transfer ofNatrialba asiatica B1T to N. taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int. J. Syst. Evol. Microbiol.2001,51:1133-1142.
    [8]Niemetz R., Karcher U., Kandler O., Tindall B.J. and Konig H. The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur. J. Biochem.1997,249:905-911.
    [9]Ashiuchi M. and Misono H. Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Appl. Microbiol. Biotechnol.2002,59:9-14.
    [10]Kunioka M. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl Microbiol Biotechnol.1997,47:469-475
    [11]Yoo n S.H., Lee S.Y. Comparison of transcript levels by DNA micro array and metabolic flux based on flux analysis for the production of poly-gamma-glutamic acid in recombinant Escherichia coli. Genome. Inform.2002,13:587-588.
    [12]Shi, F., Xu, Z.N., Cen, P.L. Microbial production of natural poly-amino acid. Sci. China Ser. B-Chem.2007,50,291-303.
    [13]Kunioka M., Goto A. Biosynthesis of poly (y-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol. Biotechnol.1994,40:867-872.
    [14]Shin I.L., Van Y.T., Yeh L.C. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol.2001,78: 267-272.
    [15]Buescher J.M., Margaritis A. Microbial Biosynthesis of Polyglutamic Acid Biopolymer and Applications in the Biopharmaceutical, Biomedical and Food Industries. Crit. Rev. Env. Sci. Technol.2007,27:1-19
    [16]Thorne C.B., Gomez C.G., Noyes H.E. and Housewright R.D. Production of a glutamyl polypeptide by Bacillus subtilis. J. Bacteriol.1954,68:307-315.
    [17]Ashiuchi M., Tani K., Soda K. and Misono H. Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing polygamma-glutamate. J. Biochem. 1998,123:1156-1163.
    [18]Ashiuchi M., Soda K., Misono H. A poly-y-glutamate synthetic system IFO 3336: Gene cloning and biochemical analysis of poly-y-glutamate Escherichia coli clone cells. Biochem Biophys Res Commun.1999,263:6-12
    [19]Ashiuchi M., Shimanouchi K., Nakamura H., Kamei T., Soda K., Park C., Sung M.H. Misono H. Enzymatic synthesis of high-molecular-mass poly-gamma-glutamate and regulation of its stereochemistry. Appl. Environ. Microbiol.2004,70:4249-4255.
    [20]Ashiuchi, M., Kamei, T., Baek, D. H., Shin, S. Y., Sung, M. H., Soda K., Yagi, T., and Misono, H. Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence. Appl. Microbiol. Biotechnol.2001,57:764-769.
    [21]Ashiuchi, M., Kamei, T., and Misono, H. Poly-gamma-glutamate synthetase of Bacillus subtilis. J. Mol. Catal. B.2003.23:101-106.
    [22]Wu Q., Xu H., Shi N.N., Yao J., Li S., Ouyang P. Improvement of poly(gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Appl. Microbiol. Biotechnol.2008,79:527-535.
    [23]Yukihiro K., Yoshio S., Isamu N. Method for producing polyglutamic acid or a salt thereof. US Patent 5268279. July 23,1990
    [24]Huang B., Qin, P., Xu, Z., Zhu, R., Meng Y. Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(γ-glutamic acid). Bioresour. Technol.2011,102:3595-3598
    [25]Tran L.S., Nagai, T., and Itoh, Y. Divergent structureof the ComQXPA quorum-sensing components:molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol.2000,37:1159-1171.
    [26]Nicola R. S. and Beth A. L. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gama-DL-glutamic acid production and biofilm formation. Mol Microbiol.2005,57(4),1143-1158
    [27]Shih I.L., Wu J.Y. Biosynthesis and Application of Poly (gamma-glutamic acid). In:Bernd H. A. Rehm (Eds.), Microbial Production of Biopolymers and Polymer Precursors:Applications and Perspectives. Caister Academic Press,2009
    [28]Leonard C.G., Housewright R.D. and Thorne C.B. Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J. Bacteriol.1958,76: 499-503.
    [29]Chen J., Shi R, Zhang B., Zhu F., Cao W.F., Xu Z.N., Xu G.H., Cen P.L. Effects of cultivation conditions on the production of y-PGA with Bacillus subtilis ZJU-7. Appl. Biochem. Biotechnol 2008, doi:10.1007/sl2010-008-8307-z.
    [30]Ito Y, Tanaka T., Ohmachi T. and Asada Y. Glutamic acid independent production of poly(gamma-glutamic acid) by Bacillus subtilis TAM-4. Biosci Biotech Biochem.1996,60:1239-1242.
    [31]吴群,徐虹,许琳Bacillus subtilis NX2合成y-PGA的立体构型调控机理.过程工程学报.2006,6:458-461
    [32]Birrer G.A., Cromwick A.M., Gross R.A. y-Poly(glutamic acid) formation by Bacillus licheniformis 9945a:physiological and biochemical studies. Int. J. Biol. Macromol.1994,16:265-275
    [33]Cromwick A.M., Birrer G.A., Gross R.A. Effects of pH and aeration on gamma-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol. Bioeng.1996,50:222-227
    [34]Shih I.L., Van Y.T., Chang Y.N. Application of statistical experimental methods to optimize production of poly (y-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme. Microb. Technol.2002,31:213-220.
    [35]Yoon S.H., Do J.H., Lee S.Y., Chang H.N. Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnol. Lett.2000, 22:585-588.
    [36]Xu, H., Jiang, M., Li, H., Lu, D. and Ouang, P. Efficient production of poly(gamma-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem.2005,40:519-523.
    [37]Jung D.Y., Jung S., Yun J.S., Kim J.N., Wee Y.J., Jang H.G., Ryu H.W. Influences of cultural medium component on the production of poly(y-glutamic acid) by Bacillus sp. RKY3. Biotechnol. Bioprocess Eng.2005,10:289-295.
    [38]Kubota H., Matsunobu T., Uotani K., Takebe H., Satoh A., Tanaka T., Tanguchi M. Production of poly(y-glutamic acid) by Bacillus subtilis F-2-01. Biosci. Biotechnol. Biochem.1993,57:1212-1213
    [39]Kunioka M., Goto A. Biosynthesis of poly (y-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol. Biotechnol.1994,40:867-872.
    [40]Ogawa Y., Yamaguchi F., Yuasa K. and Tahara Y. Efficient prodution of Polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci. Biotech. Biochem.1997,61:1684-1687.
    [41]Huang J., Du Y.M., Xu G.H., Zhang H.L., Zhu F., Huang L., Xu Z.N. High yield and cost-effective production of Poly(y-glutamic acid) with Bacillus s ubtilis. Eng. Life Sci.2011,4:1-7
    [42]Cheng C, Asada Y., and Aida T. Production of y-Poluglutamic Acid by Bacillus licheniformis A35 under Denitrifying Conditions. Agric Biol. Chem.1989,53: 2369-2375
    [43]Soliman N.A., Berekaa M.M., Abdel-Fattah Y.R. Polyglutamic acid (PGA) production by Bacillus sp. SAB-26:application of Plackett-Burman experimental design to evaluate culture requirements. Appl. Microbiol. Biotechnol 2005,69, 259-267.
    [44]Cao, M., Geng, W., Liu, L., Song, C, Xie, H., Guo, W., Jin, Y., Wang, S., Glutamic acid independent production of poly-y-glutamic acid by Bacillu amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour. Technol.2011, 102,4251-4257.
    [45]Lee S.Y., Chang H.N., Thakur N.N., Do J.H. Method for manufacturing highly-concentrated polyglutamic acid with additional supply of saccharide. US patent US,20030124674 Al. Nov.19,2002
    [46]Tanaka T., Fujita K.I., Takenishi S., Taniguchi M. Existence of an optically Heterogeneous peptide unit in poly(gamma-glutamic acid) produced by Bacillus subtilis. J. Fermen. Bioeng.1997,84:361-364.
    [47]Shi F. Study on the production of poly y-glutamic acid by microorganism, [dissertation].Hangzhou:Zhejiang University; 2006.
    [48]Jiang H., Shang L., Yoon S.H., Lee S.Y., Yu Z. Optimal production of poly-y-glutamic acid by metabolically engineered Escherichia coli. Biotechnol Lett.2006,28:1241-1246
    [49]曹旭.y-PGA的异源表达及发酵工艺研究[学位论文].浙江大学,2007
    [50]Su Y, Li X., Liu Q., Hou Z., Zhu X., Guo X., Ling P. Improved poly-y-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresource Technology.2010,101:4733-4736
    [51]Manocha B., Margaritis A. A Novel Method for the Selective Recovery and Purification of y-Polyglutamic Acid from Bacillus licheniformis Fermentation Broth. Biotechnol. Prog.2010,26:734-741
    [52]Prescott A.G., Albert G., Scott L.R. Ⅱ., Louis R. Method for producing medical and commercial grade poly-gamma-glutamic acid of high molecular weight. United States Patent 20050095679. May 5,2005.
    [53]Singer, J.W., Shaffer, S., Baker, B., Bernareggi, A., Stromatt, S., Nienstedt, D., and Besman, M. Paclitaxel poliglumex (XYOTAX; CT-2103):an intracellularlytargeted taxane. Anticancer Drugs.2005,16:243-254.
    [54]Li C, Yu D.F., Newman R.A., Cabrai F., Stephens L.C., Hunter N., Milas L. Wallace S. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res.1998,58: 2404-2409
    [55]Auzenne E., Donato N.J., Li C., Leroux E., Price R.E., Farquhar D., Klostergaard J. Superior therapeutic profile of poly-L-glutamic acid-paclitaxel copolymer compared with taxol in xenogeneic compartmental models of human ovarian carcinoma. Clin Cancer Res.2002:8(2):573-581
    [56]Milas L., Mason K.A., Hunter N., Li C., Wallace S. Poly(L-glutamic acid)-paclitaxel conjugate is a potent enhancer of tumor radiocurability. Int. J. Radiat. Oncol. Biol. Phys.2003,55(3):707-712
    [57]Zou Y., Wu Q.P., Tansey W, Chow D., Hung M.C., Charnsangavej C., Wallace S., Li C. Effectiveness of water soluble poly(L-glutamic acid)-camptothecin conjugate against resistant human lung cancer xenografted in nude mice. Int. J. Oncol.2001,18(2):331-336
    [58]Bhatt R., Vries P., Tulinsky J., Bellamy G., Baker B., Singer J.W, Klein P. Synthesis and in vivo antitumor activity of poly(L-glutamic acid) conjugates of 20(S)-Camptothecin. J. Med. Chem.2003,46(1):190-193
    [59]Singer J.W, Bhatt R., Tulinsky J., Buhler K.R., Heasley E., Klein P., Vries P. Water-soluble poly-(L-glutamic acid)-Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J. Controlled Release.2001,74(1-3): 243-247
    [60]Li C. Poly (L-glutamic acid)-anticancer drug conjugates. Adv. Drug Delivery Rev. 2002,54(5):695-713
    [61]Zou Y., Wu Q.P., Tansey W., Chow D., Hung M.C., Charnsangavej C., Wallace S., Li C. Effectiveness of water soluble poly(L-glutamic acid)-camptothecin conjugate against resistant human lung cancer xenografted in nude mice. Int. J. Oncol.2001,18(2):331-336
    [62]Liang H.F., Chen C.T., Chen S.C., Kulkarni A.R., Chiu Y.L., Chen M.C., Sung H.W. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials, 2006,27(9):2051-2059
    [63]Liang H.F., Chen S.C., Chen M.C., Lee P.W., Chen C.T., Sung H.W. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. Bioconjugate Chem.2006, 17(2):291-299
    [64]Liang H.F., Yang T.F., Huang C.T., Chen M.C., Sung H.W. Preparation of nanoparticles composed of poly(γ-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J. Controlled Release.2005, 105(3):213-225
    [65]Akagi T., Higashi M., Kaneko T., Kida T., Akashi M. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(γ-glutamic acid). Macromol. Biosci.2005,5(7):598-602
    [66]Akagi T., Higashi M., Kaneko T., Kida T, Akashi M. Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine copolymers. Biomacromolecules 2006,7 (1): 297-303
    [67]Akagi T., Kaneko T., Kida T., Akashi M. Preparation and characterization of biodegradable nanoparticles based on poly(y-glutamic acid) with 1-phenylalanine as a protein carrier.J. Controlled Release.2005,108:226-236
    [68]Lin Y.H., Chung H.K., Chen H.T., Liang S.F., Chen U.C., Sung H.W. Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 Cells. Biomacromolecules.2005,6(2): 1104-1112
    [69]Hsieh, C.Y., Tsai, S.P., Wang, D.M., Chang, Y.N., Hsieh, H.J. Preparation of y-PGA/chitosan composite tissue engineering matrices. Biomaterials.2005,26 (28),5617-5623.
    [70]Yoshida H., Klinkhammer K., Matsusaki M., Moller M., Klee D., Akashi M. Disulfide-crosslinked electrospun poly(y-glutamic acid) nonwovens as reduction-responsive scaffolds. Macromol. Biosci.2009.9(6):568-574
    [71]Matsusaki M., Serizawa T., Kishida A., Endo T., Akashi M. Novel functional biodegradable polymer:synthesis and anticoagulant activity of poly(y-glutamic acid) sulfonate (y-PGA-sulfonate). Bioconjugate Chem.2002,13(11):23-28
    [72]Matsusaki M., Akashi M. Novel functional biodegradable polymer IV: pH-sensitive controlled release of fibroblast growth factor-2 from a poly(y-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules. 2005,6(6):3351-3356
    [73]游庆红,张新民,陈国广,徐虹,欧阳平凯.y-PGA的生物合成及应用.现代化工.2005,22:56-59
    [74]Shin I.L., Van Y.T., Yeh L.C. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol.2001, 78:267-272.
    [75]Kunioka M. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol. Biosci.2004,4:324-329.
    [76]Inbaraj, B.S., Wang, J.S., Lu, J.F., Siao, F.Y., Chen, B.H. Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid). Bioresour. Technol.2009,100:200-207.
    [77]Bodn'ar M., Kjoniksen A.L, Molnar R.M., Hartmann J.F., Daroczi L., Nystroem B., Borbely J. Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions. J. Hazard. Mater.2008,153:1185-1192.
    [78]Shin I.L., Van Y.T., Yeh L.C. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol.2001, 78:267-272.
    [79]Ashiuchi M., Misono, H. Poly-y-glutamic acid. In:Steinbuchel, A.,Marchessault, R.H. (Eds.), Biopolymers for medical and pharmaceutical applications, Vol.1. Wiley-VCH, Weinheim,2005. pp.619-634.
    [80]Kashima N., Furuta K., and Tanabe I. Permeability enhancer. United States Patent 20060025346. Feb 2,2006
    [81]Yamamoto S., Kitagawa M., Suzuki M., Sogabe A., Ashiuchi M. gamma-L-pga producing microorganism, method of producing gamma-L-pga using the microorganism, crosslinked substance produced using the microorganism, and external dermal agent produced using the microorganism. US patent us 20090203790A1. March 12,2007
    [82]汪家铭.聚γ-谷氨酸增效复合肥的发展与应用.精细化工原料及中间体.2010,6:23-28
    [83]王传海,何都良,郑有飞,姚克敏,徐红.保水剂新材料γ-PGA的吸水性能和生物学效应的初步研究.中国农业气象.2004,25(2):19-21
    [84]Nagata N., Nakahara T., and Tabuchi T. Fermentative production of poly(β-L-malic acid), a polyelectrolytic biopolyester, by Aureobasidium sp. Biosci. Biotechnol. Biochem.1993,57:638-642.
    [85]Lee B.S., Vert M., Holler E. Water-Soluble Aliphatic Polyesters:Poly(malic acid)s. In:Doi Y, Steinbuechel A (eds), Biopolymers, Vol.3, Polyesters I. Wiley-VCH, Weinheim,2002. pp 75-103.
    [86]Kajiyama T., Kobayashi H., Taguchi T., Komatsu Y, Kataoka K., Tanaka J. Study on the hydrolytic degradation of poly(α, β-malic acid) by direct polycondensation. Mater Sci Eng C Mater BiolAppl.2004,24:821-825
    [87]余文兵,周华,韦萍.生物降解材料聚苹果酸的合成方法及应用进展.化工进展.2004,10:1086-1090
    [88]Cammas S., Renard I., Langlois V, Guerin P. Poly(malic acid):obtaining high molecular weights by improvement of the synthesis rout. Polymer.1996,37:4215
    [89]Ohtani N., Kimura Y., Kitao T. Kobunshi R. Preparation of Polymalic Acid and Its Ester Derivatives by Direct Polycondensation of Malic Acid and beta -Ethyl Malate. Kobunshi Ronbunshu 1987,44:701-709
    [90]Tetsuto K., Hisatoshi K., Kazuko M., Tetsushi T., Kazunori K. Determination of end-group structures and by-products of synthesis of poly(α,β-malic acid) by direct polycondensation. Polym. Degrad. Stab.2004,84:151-157
    [91]Shimada K., Matsushima K., Fukumoto J. Poly-(L)-malic acid:a new protease inhibitor from penicillium cyclopium. Biochem biophy. Res. Common.1969, 35:619-624
    [92]Vert M., Lenz R.W. Preparation and properties of poly-β-malic acid:a functional polyester of potential biomedical importance. Polymer Prepr.1979,20:608-611.
    [93]Fischer H., Erdmann S., and Holler E. An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase a in vitro. Biochemistry 1989,28:5219-5226.
    [94]Rathberger K., Reisner H., Willibald B., Molitoris H.P., Holler E. Comparative synthesis and hydrolytic degradation of poly (L-malate) by myxomycetes and fungi. Mycol Res.1999,103:513-520.
    [95]Jose A.P. Synthesis, characterization and biomedical applications of microbial polymalic and polyglutamic acids derivatives [dissertation]. Universitat Politecnica de Catalunya.2008
    [96]Lee B.S., Maurer T., Kalbitzer H.R., Holler E. β-Poly(L-malate) production by Physarum polycephalum 13C nuclear magnetic resonance studies. Appl Microbiol Biotechnol.1999,52:415-42
    [97]Lee B.S., Holler E. β-Poly (L-malate) production by non-growing microplasmodia of Physarum polycephalum Effects of metabolic intermediates and inhibitors. FEMS Microbiol Lett.2000,193:69-74.
    [98]Nakajima-kambe T., Hirotani N., Nakahara T. Poly(β-Malic Acid) Production by the Non-Growing Cells of Aureobasidium sp. Strain A-91.J. Ferment. Bioeng. 1996,82:411-413
    [99]Liu S., Steinubchel A. Investigation of poly(β-L- malic acid) production by strains of Aureobasidium pullulans. Appl Microbiol Biotechnol.1996, 46:273-278.
    [100]Liu S.J., Steinbiichel A. Production of poly(malic acid) from different carbon sources and its regulation in Aureobasidium pullulans. Biotechnol Lett.1997, 19:11-14.
    [101]Lee B.S., Holler E. Effects of culture conditions on β-poly (Lmalate) production by Physarum polycephalum. Appl. Microbiol. Biotechnol.1999, 51:647-652
    [102]万印华,曹伟锋,苏仪,沈飞,陈向荣,赵方.β-聚苹果酸及其盐的制备方法.中国专利.200910078227.2009
    [103]Ljubimova, J.Y., Fujita M., Ljubimov A.V., Torchilin V.P., Black K.L. Holler E. Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery. Nanomedicine.2008,3:(2): 247-265.
    [104]Lee B.S., Fujita M., Khazenzon N.M., Wawrowsky K.A., Farkas D.L., Black K.L., Ljubimova.JY., Holler E. Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(β-L-malic acid)for drug delivery. Bioconjugate Chem.2006,17:317-326
    [105]Ljubimova J.Y., Fujita M., Khazenzon N.M., Lee B.S., Farkas D.L., Black K.L., Ljubimova J.Y., Holler E. Nanoconjugate based on polymalic acid for tumor targeting. Chem. Biol. Interact.2008,171,2:195-203
    [106]丁锐,李光吉.生物高分子聚苹果酸及其衍生物的合成与应用前景.高分子通报.2005,2:47-56
    [107]洪义国,孙谧,张云波,李勃生.16S rRNA在海洋微生物系统分子分类鉴定及分子检测中的应用.海洋水产产研究.2002,23:58-63
    [108]Yamane T., Shimizu S. Fed-batch in microbial process. Adv. Biochem. Eng. 1984,30:147-194
    [109]Andrew R., Argyrios M. Optimization of cell growth and poly(glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol Lett.2003,25: 465-468
    [110]Hasegawa T., Hashimoto K., Kawasaki H., Nakamatsu T. Changes in enzyme activities at the pyruvate node in glutamate-overproducing Corynebacterium glutamicum. JBiosci Bioeng.2008,105,12-19.
    [111]Shimizu H., Tanaka H., Nakato A., Nagahisa K., Kimura E., Shioya S., Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst. Eng.2003,25:291-298.
    [112]Belitsky B.R., Sonenshein A.L. Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. JBacteriol.1998,180,6298-6305.
    [113]Sahin N. Oxalotrophic bacteria. Res Microbiol.2003,154,399-407.
    [114]Tanner A., Bornemann S. Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J Bacteriol.2000,182,5271-5273
    [115]陈坚,李寅.发酵过程优化原理与实践.化学工业出版社.2002
    [116]陈坚,堵国成,卫功元,华兆哲.微生物重要代谢产物--发酵生产与过程解析.化学工业出版社.2005
    [117]张星元,潘中明.代谢网络刚性与代谢工程.生物工程进展.1999,19:38-42
    [118]张蓓.代谢工程.天津大学出版社.2003
    [119]Sauer U., Cameron D.C., Bailey J. E. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides riboflavin and folic acid. Biotechnol. Bioeng.1998,59 (2):227-238
    [120]黄明志,蔡显鹏,陈双喜,储炬,庄英萍,张嗣良.鸟苷发酵过程的定量和优化:抑制NH4+离子积累提高了苷产量70%.兰物工程学报.2003,19(2):200-204
    [121]Cromwick A. and Gross R.., Investigation by NMR of Metabolic Routes to Bacterial y-Poly(Glutamic Acid) Using 13C Labeled Citrate and Glutamate as Media Carbon Sources. Can. J. Microbiol.1995,41:(10) 902-909
    [122]陈宁,刘辉.柠檬酸钠对L-亮氨酸发酵代谢流分布的影响.高校化学工程学报.2008,22:478-483
    [123]White T., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomalRNAgenes for phylogenetics. In:Innis MA et al (eds) PCR protocols. Academic, San Diego,1990, pp 315-322
    [124]Tamura K., Dudley J., Nei M., Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol.2007, 24:1596-159
    [125]Zalar P. et al. Gunde-Cimerman N. Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol.2008,61:21-38
    [126]陈剑山,郑服丛.ITS序列分析在真菌分类鉴定中的应用.安徽农业科学.2007,35(13):3785-37860
    [127]Carol A., Engel R., Straathof A.J.J, Zijlmans T.W., van Gulik W.M., van der Wielen L.A.M. Fumaric acid production by fermentation. Appl Microbiol Biotechnol.2008,78:379-389
    [128]Goldberg I., Rokem J.S., Pines O. Organic acids:old metabolites, new themes. J Chem Technol Biotechnol.2006,81:1601-1611
    [129]Reeslev M., Jorgensen B.B., Jorgensen O.B. Exopolysaccharide production and morphology of Aureobasidium pullulans grown in continuous cultivation with varying ammonium-glucose ratio in the growth medium. J Biotechnol.1996, 51(2):131-135
    [130]Schwartz H., Radler F. Formation of L-malate by Saccharomyces cerevisiae during fermentation. Appl Microbiol Biotechnol.1988,27:553-560
    [131]Zelle R.M., de Hulster E., Kloezen W., Pronk J.T., van Maris A.J.A. Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol.2010,76:744-750
    [132]Leathers T.D. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol.2003,62:468-473
    [133]Li B.X., Zhang N., Peng Q., Yin T., Guan F.F, Wang G.L., Li Y. Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl Microbiol Biotechnol. 2009,84:293-300
    [134]谢志鹏,徐志南,郑建明,岑沛霖.靛酚蓝反应测定发酵液中的氨态氮.浙江大学学报工学版.2005,39:437-444

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700