用户名: 密码: 验证码:
青霉液态发酵生产纤维素酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶可用于水解纤维素,提高其活性并降低其成本,对纤维素原料的生物转化具有重要意义。本论文以山东大学微生物技术国家重点实验室提供的纤维素酶产生菌—青霉JU-A10作为发酵菌株,主要优化了该菌株产纤维素酶的发酵培养基组成和发酵条件,主要结果如下:
     (1)通过考察种子培养时间、接种量、装液量、温度、转速和初始pH对产酶的影响,确定了纤维素酶液态发酵的适宜条件为:种子培养时间32h,接种量10%,装液量100mL,温度30℃,转速200r/min,初始pH5.0。在此条件下滤纸酶活和CMC酶活分别提高61.57%和26.68%。
     (2)考察了不同纤维素原料,如木糖渣、汽爆高梁杆,S.F和微晶纤维素等对纤维素酶发酵的影响。结果表明,经过汽爆预处理的高粱秆所产酶活均高于未做任何处理的高粱秆,以3:1的液固比在0.75%的硫酸溶液中浸泡12h后,在3MP的压力下汽爆150s最有利于产酶,滤纸酶活和CMC酶活与未作任何处理的高粱秆相比可分别提高86.86%和111.06%,与以木糖渣为原料相比分别提高了13.46%和22.00%。微晶纤维素和S.F不仅可以作为碳源,同时对纤维酶的合成具有很好的诱导作用。微晶纤维素的效果远优于S.F,当加入1%的微晶纤维素,发酵96h时,滤纸酶活和CMC酶活均最高,与不加微晶纤维素时相比分别提高了45.41%和41.52%。以汽爆高梁杆为原料,论文还考察了无机盐如硫酸镁和碳酸钙对产酶的影响,结果表明其最佳添加量分别为0.05%和0.5%。滤纸酶活可分别提高28.00%和15.60%,CMC酶活可分别提高33.33%和6.56%。
     (3)确定了青霉JU-A10的生长期和产酶期分别为36h前和36h后,最佳生长温度和最佳产酶温度分别为32℃和28℃。通过对发酵过程温度分段控制,使滤纸酶活和CMC酶活与30℃恒温发酵相比分别提高了15.1%和14.42%。初步确定了青霉JU-A10的适宜生长pH范围和适宜产酶pH范围分都在5.0左右。通过对pH值的在线控制,发现当发酵过程的pH控制在5.0时,滤纸酶活和CMC酶活与只调初始pH值相比分别提高了35.01%和51.21%。
Cellulase could be used for cellulose hydrolysis.Increasing its activity and lowering its production cost was very important for lignocellulose bioconversion.This paper mainly optimize the fermentation medium and fermentation conditions of the fungi-Penicillium strain JU-A10 provided by State Key Laboratory of Microbial Technology, Shandong University. The main experimental results weresummarized as follows:
     (1)Mainly studied the influence of seed cultivation time、inoculum、medium volume、temperature、speed and initial pH on cellulase activity, and the result indicated that the optimization fermentation conditoin composed:seed cultivation time 32h, inoculum 10%, medium volume 100ml, temperature 30℃, speed 200r/min and the initial pH5.0. Under these conditions, the filter paper activity and CMC activity increased by 61.57% and 26.68%.
     (2)Mainly studied the influence of different cellulose materials, such as xylose residue、sorghum bar steam explosion S.F and microcrystalline cellulose on cellulase activity. The results showed that after steam explosion pretreatment of sorghum straw produced higher cellulase activity than no treatment of sorghum straw and to a 3:1 ratio of liquid solution at 0.75% sulfuric acid after 12h immersion, under pressure in 3MP steam explosion 150s is best for cellulase activity.In this condition, the filter paper activity and CMC activity increased by 86.86% and 111.06% compared to without any treatment of sorghum straw, and increased by 13.46% and 22.00% compared to xylose residues as raw materials increased. Microcrystalline cellulose and SF not only as a carbon source,but they have a good induction on the synthesis on cellulase. The effect of microcrystalline cellulose is far better than SF.When adding 1% microcrystalline cellulose, fermentation 96h, the filter paper activity and CMC activity were the highest, and were increased by 45.41% and 41.52% compared to without microcrystalline cellulose. To steam explosion sorghum as raw material rod, the paper also studied the influence of inorganic salts such as magnesium sulfate and calcium carbonate on cellulase activity and the results indicated that the optimal dosage was 0.05% and 0.5%. Filter paper activity were increased by 28.00% and 15.60%, CMC activity were increased by 33.33% and 6.56%.
     (3)The growing period and cellulase production period of Penicillium JU-A10 are before 36h and after 36h, and the optimal temperature of growth and cellulase production are 32℃and 28℃.By section on temperature control of fermentation process, the filter paper activity and CMC activity increased by 15.1% and 14.42% compared with the 30℃constant temperature fermentation. Initially identified the appropriate pH of the growing period and cellulase production period of Penicillium JU-A10 are both around 5.0. On-line control of pH indicated that when the pH control at 5.0 in whole fermentation process, the filter paper activity and CMC activity increased by 35.01% and 51.21% compared to only adjust the initial pH value and.
引文
[1]Bergmann A,Hanley N, Wright R. Valuing the attributes of renewable energy investments [J]. Energy Policy.2006,34:1004-1014.
    [2]耿胜荣,程薇,林若泰,等.抗氧化剂及壳聚糖对减轻辐照猪肉异味的影响[J].核农学报,2006,20(6):508-510.
    [3]鲁杰,石淑兰,邢效功,等.NaOH预处理对植物纤维素酶解特性的影响[J].纤维素科学与技术,2004,12(1):1-6.
    [4]Xin Zhang,Yan Liu.Advance of lignocelluloses pretreatment technology [J]. Journal of Cellulose Science and Technology,2005,6(13):54-58.
    [5]Maryam Latifian,Zohreh Hamidi-Esfahani,Mohsen Barzegar.Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions[J].Bioresource T echnology,2007:1-4.
    [6]Femando O.Heidorne,Perola O.Magalhaes,Andre L.Ferraz,etal. Characteriz-ation of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions [J].Enzyme and Microbial Technology,2006(38):436-442.
    [7]李安明,赵海.一株极端嗜热厌氧纤维素分解菌的分离和生理性状研究[J].太阳能学报,1994,15(4):324-329.
    [8]吴显荣.纤维素酶分子生物学研究进展及趋向[J].生物工程进展.1994,14(4):25-27.
    [9]王丹,林建强,张萧,等.直接生物转化纤维素类资源生产燃料乙醇的研究进展[J].山东农业大学学报,2002,33(4):525-529.
    [10]朱崇森.饲用纤维素酶的研究与应用[J].饲料博览,2002,(2):11-13.
    [11]王建平,陈小娥.纤维素酶的研究概况[J].浙江水产学院学报,1996,15(2),140-144.
    [12]Yanhong Li,Fukun Zhao.Advances in cellulase research[J].Chinese Bulletin of Life sciences,2005,17(5):392-397.
    [13]Duff Sheldon J B, Murray William D. Bioconversion of forest products industry waste cellulosics to fuel ethanol:a review[J].Bioresourc Technology,1996,55(1):1-33.
    [14]吴东儒.糖的生物化学[M].北京:高等教育出版社,1990.
    [15]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    [16]陈冠军,杜娟,庄蕾,等.脱墨用棘孢曲霉SM-L22纤维素酶系中内切酶的纯化及性质[J].微生物学报,2001,41(4):469-474.
    [17]孟雷,陈冠军,王怡,等.纤维素酶的多型性[J].纤维素科学与技术,2002,10(2):47-55.
    [18]Reees E T, Siu R,Gand Levinson H S.The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hdyorlysis[J]. Miocrboil, 1950(59):485-497.
    [19]Heorissat Betal.BioTelhc M].1985(3):722-726.
    [20]Laymon R A,Adney W S,Mohagheghi A,et al.Cloning and expression of Full-length Trichoderma reeseicellu biohydrolase I cDNA in Escherichia coli [J].Applied Bioch And Biotech,1996,57(58):389-397.
    [21]Wood T M.The cellulose of fusarium solani Purification and Peeifieity of the (1, 4)-glucosidase components [J].Bioehem.1971,121:353.
    [22]Walker L.P.,Wilson D.B. Enzymatic hydrolysis of cellulose:an overview. Bioresource Technology,1991,36,3-14.
    [23]Goyal A., Ghosh B., Eveleigh D. Characteristics of fungal cellulose[J]. Bioresource Technology,1991,36,37-50.
    [24]Wood T M.Biocliemistry and ceneties of cellulose Degerdation. FE Ms Symp, 43.London[J].Aacdemic.1988:21.
    [25]龙鸿,朱玉环,辛孝贵.纤维素酶对小麦、水稻和高梁茎秆作用研究[J].沈阳农业大学学报,1996,12(27):94-97.
    [26]Ghose T K.and Pathak A N.纤维素酶的应用[J].应用微生物,1974,4:48-50.
    [27]Toyama N and Ogawa K..Sugar production from agricultural Woody Wastes by saccharification with Trichoderma viride cellulase Bioengineering[J]. Symp,1975,5:225.
    [28]张树政主编.酶制剂工业[M].科学出版社.1984,7.
    [29]王燕.纤维素酶与饲料生产[J].黑龙江畜牧兽医,1999,7:22-23.
    [30]王泉林王曙雁赵树根.纤维素酶饲用复合酶制剂的生产和应用研究(续)[J].饲料博览.1996,2:32-33.
    [31]尹清强,陈侠甫.复合酶制剂对猪增重的影响[J].饲料研究,1992,3:5.
    [32]高大威.酶制剂在饲料中的应用[J].饲料工业,1992,13(1):28.
    [33]王贵权,吕兴有.纤维素酶治疗牛消化道疾病150例[J].黑龙江畜牧盖医,1991,7:31.
    [34]只兴有.纤维素酶治疗奶牛低酸度酒精阳性乳[J].黑龙江畜牧兽医,1991,6:33.
    [35]杜秉海,曲音波,高培基等.纤维废渣固态酒精发酵及纤维素-淀粉共发酵的研究[J].食品与发酵工业,1995,5:15-20.
    [36]王沁,赵学慧.纤维素酶水解稻草生产单细胞蛋白(SCP):Ⅱ稻草酶解液生产SCP的研究[J].微生物学杂志,1993,13(2):8-12.
    [37]张遐耘,张文悦.黄酒糟纤维素酶处理和单细胞蛋白生产的研究[J].粮食与饲料工业,1998,7:24-25.
    [38]Mandels M,Sternberg D and Andreotti R E.Symp On qnzymatic Hydrolysis of cellulos Aulanko[J],Finland,ed.M.Bailey,1975,3:12-14.
    [39]外山信男.纤维素酶研究进展(综述)[J].发酵工业杂志,1969,47(11):714.
    [40]王兰芬.纤维素酶的作用机理及开发应用[J].酿酒科技,1997,6:16-17.
    [41]陈书峰.绿色木霉固态发酵生产纤维素酶新工艺研究(硕士论文).北京:清华大学化学工程系,2003.
    [42]乞永立,耿月霞,任章启.纤维素酶的生产及应用.河北化工,2000,1:25-26.
    [43]Suzuki T.A dense cell culture system for microorganisms using a stirred ceramic membrane reactor incorporating asymmetric porous ceramic filters [J]. Ferment Bioeng,1996,82 (3):264-271.
    [44]Nakano K,Rischke M,Sato S,et al.Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor [J].Appl Microbiol Biotechnol,1997,48 (5):597-601.
    [45]Holst O,Manelius A,Krahe M,et al.Thermophiles and Fermentation Technology[J].Comp Biochem Physiol,1997,118 A:415-422.
    [46]Hartbrich A,Schnitz QWeuster-Botz D,et al.Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial cell densities [J].Biotech.Bioeng,1996,51 (6):624-635.
    [47]Bermejo L L,Welker N E,Papoutsakis E T.Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification [J].App Environ Microbiol,1998,64 (3):1079-1085.
    [48]Lee Dora, Yu Alex H C, Saddler John N.Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates[J]. Biotechnology and Bioengineering,1995,45(4): 328-336.
    [49]Kim Tae Hyun, Kim Jun Seok, Sunwoo Changshin, Lee Y Y. Pretreatment of corn stover by aqueous ammonia[J]. Bioresource Technology,2003,90(1):39-47.
    [50]Sun Ye, Cheng Jiayang.Hydrolysis of lignocellulosic materials for ethanol production:a review[J].Bioresource Technology,2002,83 (1):1-11.
    [51]Ballesteros I, Oliva J M., Negro M J, et al.Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes[J].Process Biochemistry,2002,38(2):187-192.
    [52]Negro M J, Manzanares P, Oliva J M. et al. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment[J].Biomass and Bioenergy,2003,25(3):301-308.
    [53]Vlasenko E Y, Ding H, Labavitch J M.et.al.Enzymatic hydrolysis of pretreated rice straw[J].Bioresource Technology,1997,59(2-3):109-119.
    [54]Zheng Y Z., Lin H M., Tsao G T, Pretreatment for cellulose hydrolysis by carbon dioxide explosion[J]. Biotechnol Prog,1998,14,890-896.
    [55]Kyoung Heon Kim, Juan Hong. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis[J].Bioresource Technology,2001,77:139-144.
    [56]Margaretavon Sivers, Guid Zacchi. A techno-economical comparison of three processes for the production of ethanol from pine[J].Bioresource Technology,1995,51(1):43-52.
    [57]Esteghlalian A, Hashimoto G A, Fenske J J.Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover,poplar and switchgrass[J].Bioresource Technology,1997,59(2-3):129-136.
    [58]Knill C J, Kennedy J F.Degradation of cellulose under alkaline conditions [J]. Carbo-hydrate Polymers,2003,51(3):281-300.
    [59]Curreli N, Fadda M B, Rescigno Antonio et. al. Mild alkaline/oxidative pretreatment of wheat straw[J].Process Biochemistry,1997,32(8):665-670.
    [60]Takacs E, Wojnarovits L, Foldvary C, et. al.Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose [J].Radiation Physics and Chemistry,2000,57(3-6): 399-403.
    [61]Foldvary C M, Akacs E, Wojnarovits L.Effect of high-energy radiation and alkali treatment on the properties of cellulose[J].Radiation Physics and Chemistry.2003, 67(3-4):505-508.
    [62]Sidiras D, Koukios E.Simulation of acid-catalysed organosolv fractionation of wheat straw[J].Bioresource Technology,2004,94(1):91-98.
    [63]Henning J, Torny E, Johan B, et al. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888[J]. Enzym e and M icrobial Technology,2003,32:851-861.
    [64]Jorgensen H,Morkeber G A,Krogh KB R,et al. Production of cellulases and hemicellulases by three Penicillium species:Effect of substrate and evaluation of cellulose adsorp tion by cap illary electrophoresis[J]. Enzyme & Microbial Technol,2005,36:42-48.
    [65]孙宪昀,曲音波,刘自勇.青霉木质纤维素降解酶系研究进展[J].应用与环境生物学报,2007,13(5):736-740.
    [66]Wang D, Qu Y B, Gao P J. Studies on the regulation of cellilase system by ATP and cAMP in mycelial fungi[J].Acta Microbiol Sin,1996,36 (1):12-18.
    [67]Koch A, Weigel C T, Schulz G. Cloning, sequencing, and heterologous exp ression of a cellulase2encoding cDNA (cbh1) from Penicillium janthinellum[J]. Gene,1993,124 (1): 57-65.
    [68]胡丹,刘霞.高产纤维素酶青霉菌的筛选及产酶条件的研究[J].中国食品添加剂.2007:82-84.
    [69]朱振,单淑芳.高产纤维素酶真菌的筛选及产酶条件优化的研究[J].安徽农学通报.2009,15(14):52-54.
    [70]刘韫滔,淑霞.纤维素降解菌L-06的筛选、鉴定及产酶条件的分析[J].生物工程学报.2008,24(6):1112-1116.
    [71]杨斌,吕燕萍.分解蔗渣的研究[J].华中农业大学学报.1997,10,5(16):361-366.
    [72]宋安东,苏丽娟.γ射线对斜卧青霉的诱变筛选及产酶条件优化[J].核农学报,2008,22(3):280-285.
    [73]周新萍.产纤维素酶菌株的鉴定、诱变育种、发酵产酶条件及酶学性质研究[D].中国优秀硕士学位论文全文数据库.2007,(06).
    [74]Xu Fang, Shinichi Yano, Hiroyuki Inoue, et al..Lactose Enhances Cellulase Production by the Filamentous Fungus Acremonium cellulolyticus[J] Journal of Bioscience and Bioengineering.2008,106 (2):115-12.
    [75]戴四发,贺淹才,谢德镳,等.绿色木霉分泌纤维素酶特性研究[J].中国饲料.2003,06: 17-19.
    [76]王水顺,袁彩,陈静蓉,等.黑曲霉SL2-111复合酶固体发酵工艺研究[J].工业微生物.2001,31(4):26-30.
    [77]Mostafa M. El-Sheekh, Abdel-mohsen S. Ismail, Mostafa A. El-Abd, et al.Effective technological pectinases by Aspergillus carneus NRC1 utilizing the Egyption orange juice industry Scraps[J]. International Biodeterioration & Biodegradation.2009,63 (1):12-18.
    [78]刘佳,袁兴中,曾光明,等.表面活性剂对绿色木霉产纤维素酶影响的实验研究[J].中国生物工程杂志,2006,26(8):62-66.
    [79]Xiao-Lan Liu, Guang-Ming Zeng, Lin Tang, et al.Effects of dirhamnolipid an SDSon enzyme production from Phanerochaete chrysosporium in submerged fermentation[J].Process Biochemistry.2008,43 (11):1300-1303.
    [80]O.Garcia-Kirchner,M.Segura-Granados and P.Rodriguez-Pascual.Effect of media composition and growth conditions on production of β-glucosidase by Aspergillus niger C-6[J]. Applied Biochemistry and Biotechnology.2005,121:347-359.
    [81]Alam M Z.Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresource Technology[J]. 2008:4709-4716.
    [82]康东亮,吕世峰,阎振丽,等.里氏木霉R3液体深层发酵产纤维素酶工艺优化研究.河南工业大学学报[J],2006,27(5)47-50.
    [83]Hayward T K, Hamilton J, Tholudar A, et al. Improvements in titer, productivity, and yield using solka-floc for cellulase production. Applied Biochemistry and Biotechnology[J].2000,84-86 (1-9):859-874.
    [84]曲音波,高培基.造纸厂废物发酵生产纤维素酶、酒精和酵母综合工艺的研究进展.食品与发酵工业[J],1993,3:62-65.
    [85]余晓斌,具润漠.里氏木霉液体发酵法生产纤维素酶[J].食品与发酵工业.1998,24(1):20-25.
    [86]Xu Fang, Shinichi Yano,Hiroyuki Inoue,et al.Strain Improvement of Acremonium Cellulolyticus for Cellulase Production by Mutation [J] Journal of Bioscience and Bioengineering,2009,107 (3):256-261.
    [87]潘海波,汤斌,张庆庆,等.混合菌液态发酵纤维素酶及发酵pH的优化[J].安徽工程科技学院学报,2007,22(4):42-44.
    [88]李海红,同帜,仝攀瑞.酵生产蛋白饲料的研究[J].西北大学学报(自然科学版),2003,33(6):693-696.
    [89]Ahamed A, Vermette P.Enhanced enzyme production from mixed cultures of Trichoder-ma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor [J].Biochemical Engineering Journal.2008,42 (1):41-46.
    [90]卢月霞、陈凯.纤维素降解菌的筛选及相互作用分析.安徽农业科学[J],2007,35(1):11-17.
    [91]Esterbauet, H.Production of Trichoderma cellulase in laboratory and pilot scale, Bioresources Technology [J],1991, (36):51-65.
    [92]Webb, C. The production of cellulose in a spouted bed fermentor using cells immobilizedin biomass support particles, Biotechnol Bioeng[J],1986, (28):41-50.
    [93]夏黎明,余世袁,程芝.固定化里氏木霉制畜纤维素酶的研究.南京林业大学学报[J],1993,17(2):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700