用户名: 密码: 验证码:
ZnO基纳米结构MOCVD法可控生长及微结构与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种直接宽带隙化合物半导体材料,其室温禁带宽度为3.37eV,激子束缚能为60meV,是制备半导体发光器和半导体激光器的理想材料。ZnO纳米材料具有丰富的结构形态、广阔的应用前景和科学研究价值。实现纳米光电器件和电子器件的重要一步是实现不同ZnO纳米结构的可控制备。另一方面,ZnO纳米结构随材料尺度的减小会表现出许多不同于块体材料的特殊物理效应,如量子尺寸效应、宏观量子隧道效应、库仑阻塞效应、小尺寸效应、表面效应等,各种新颖的纳米结构的制备、结构表征以及性能分析成为纳米ZnO研究的一个热点。此外,ZnO纳米结构的掺杂与合金化研究是最终实现ZnO纳米光电子器件的一个重要方向,引起了人们的广泛关注。
     本文采用金属有机物化学气相沉积(MOCVD:Metal Organic Chemical VaporDeposition)方法探索了不同形式(量子点、纳米晶颗粒、以及一维纳米结构)和不同形貌(纳米棒,纳米管以及纳米墙)的ZnO纳米结构的生长参数,研究了不同流量和温度对形成不同纳米结构的影响。在此基础上,实现了自组装ZnO纳米形貌的可控生长,并且深入分析了其形成机理;进行了掺Mg合金化纳米结构的研究,深入探讨了合金元素对纳米结构的形貌、微结构和光学性能等的影响。现简要介绍如下:
     1.利用低压MOCVD方法探索ZnO纳米结构的生长工艺。本文通过改变生长温度、反应物摩尔流量等参数,分析了ZnO量子点、纳米晶薄膜、以及一维纳米结构等三种形式的纳米结构的制备条件及生长机理。在流量较小时,生长受动力学控制,晶粒随衬底温度的升高而增大,从量子点向纳米晶薄膜转变。当流量增大时,纳米晶薄膜向纳米棒转变。随着流量的进一步增大,c轴择优取向生长进一步增强,纳米棒的直径减小,形成ZnO纳米线。
     2.通过对富锌情况下生长的样品研究,揭示了不同形貌的ZnO纳米结构(纳米棒,纳米管以及纳米墙)之间的关系,以及它们形成的原因。由于ZnO_x(x<1)的熔点较低,所以当衬底温度较高时,该晶核层会发生蒸发和再吸附现象,从而造成了纳米棒结构向空心的纳米管结构和纳米墙结构转变。
     3.优化生长工艺,制备出形貌新颖的层片状ZnO纳米棒阵列阵列。XRD、Raman测试表明,层片状纳米棒具有很好的晶体质量。XPS表明样品表面存在比较多的表面态。TEM分析表明层片状ZnO纳米棒是一个单晶整体。PL光谱研究表明,近带边峰主要来自于表面激子发射。通过场发射性能的研究,提出样品表面较多的表面态引起所载流子局域化效应是影响场发射性能的重要原因。
     4.采用一种全新的掺杂方法,即用六水硝酸镁为Mg源,实现了ZnMgO纳米结构的制备。制备出了直径分布均匀,排列整齐的ZnMgO纳米棒;实现了Mg成分在单根纳米棒内的均匀分布。Mg的含量可以达到12.7at.%。我们对单根纳米棒进行成分分析,发现Mg含量偏差在0.5at.%之内。通过对制备过程的剖析,我们分析了实验所涉及到的化学反应过程,并提出了ZnMgO纳米棒的生长机理。
     5.在Si衬底的同一区域制备出ZnMgO折叠纳米片和准纳米管的混合结构。基于微结构的分析发现,提出ZnMgO纳米片((?)2(?)0)面的折叠是由于生长前沿的反应物的浓度起伏,生长方向沿<10-10>晶向的六个对称方向随机改变造成的。
     6.改变有机源DZE载气的流量,得到Mg含量分别为2.5、1.2、0at.%的ZnMgO折叠纳米片和准纳米管的混合结构。随着Mg含量的增多,PL谱近带边发射峰发生了微小的蓝移,这是由于Mg的掺入引起的禁带宽度增大;带边峰/可见光峰强度之比降低,这表明Mg掺入会造成样品晶体质量的下降。Raman测试表明:第一,E_2(high)峰随样品中Mg含量的增多,发生了微小的宽化和红移;第二,E_1(LO)振动模的强度随Mg含量的增大而增强。这是因为替代的Mg~(2+)与Zn~(2+)相比具有不同的半径,Mg杂质的掺入打破了晶体原有的平移对称性,从而在晶格中引入了氧空位等微缺陷而造成的。
     7.在Mg含量为2.5at.%的ZnMgO纳米片中观察到柏格斯矢量为1/3<11(?)3>的具有[0001]刃型分量的位错。结合PL谱、Ranman的测试结果,我们分析认为,位错的形成与掺入的Mg元素有很大的关系:晶格中的氧空位浓度随着纳米片中Mg含量的增大而增大,当超过它在ZnO晶格中的固溶度时,氧空位产生凝聚;氧空位凝聚会造成晶格的坍塌,引起(0001)面的消失,从而产生了柏格斯矢量为1/3<11(?)3>的位错。利用能带结构模型,计算得到位错引起的能带弯曲势垒为2.38V。
Zinc oxide(ZnO)is a semiconductor with a direct wide band gap of 3.37 eV and large exciton binding energy of 60 meV at room temperature.Therefore,ZnO is a potential candidate for applications in short-wave optoelectronic devices,such as blue/violet light emitting diodes and laser diodes.Nanostructured ZnO has a diverse group of growth morphologies,which is regarded as the richest family among all the nanomaterials.One important step for fabricating nano-optoelectronics and nanoelectronics devices is to realize the controllable growth of different ZnO nanostructures.It is also necessary to fabricated and characterize complicated structured ZnO nanomaterials to investigate possible distinguished performance in electronics,optics and photonics.In order to widen the spectral range of emission from ZnO based materials and obtain higher luminescence efficiency,alloying ZnO with Mg or Cd is imperative to modulate the band gap.
     In this thesis,metal organic chemical vapor deposition(MOCVD)method was used to grow nanostructured ZnO.By optimizing the growth parameter,different forms(nanorods,nanocrystals,nanodots)and different morphologies(nanowires, nanowalls,and nanotubes)of ZnO nanostructrus are fabricated.Based upon that,we successfully fabricated self-assembly ZnO-based nanostructures and the growth mechanisms were proposed.
     1.Different forms of ZnO nanostuctures(nanorods,nanocrystals,nanodots) have been grown by MOCVD method on Si substrates.It was demonstrated that,at small flow rate of the source materials the growth process was controlled by growth kinetics and the obtained ZnO samples transformed from nanodots to nanocrystals at elevated temperatures;while,the growth process was controlled by the growth thermodynamics and the obtained product transforming from nanocrystals to nanorods at elevated flow rate.
     2.Different morphologies of ZnO nanostructures have been grown on silicon substrates by MOCVD.It is proposed that the reason for the one-dimensional nanostructures to the nanowalls or nanotubes is the zinc-rich growth condition at relative high temperature.
     3.Lamellated ZnO nanorods have been grown on silicon substrate by MOCVD. The ZnO nanorods have single hexagonal wurtzite structure and prefered orientation along c axis direction.
     4.ZnMgO nanorod arrays have been synthesized by metal-organic chemical vapor deposition using diethylzinc and magnesium nitrate as the precursors.No oxidant source was used.The ZnMgO nanorods were homogeneous and uniform.The growth process was investigated in detail and a possible growth mechanism was proposed.It is believed that this growth method may avail the uniform distribution of Mg in ZnMgO nanorod.The blueshift of near-band-edge emission of PL spectrum could be readily identified as compared with ZnO crystals,indicating the band-gap engineering in the ZnMgO nanoscale system.
     5.ZnMgO pleated nanosheets and quasi-nanotubes were synthesized in the same region on Si substrate using[Mg(H_2O)_6](NO_3)_2 and zinc diethyl as the reactant source. The nanosheets are periodically pleated with the angles of 120°or 60°between two adjacent pleats.Some of the nanosheets fold into quasi-nanotubes.Homoepitaxial interconnections are observed at the boundaries of the pleats,and the whole pleated nanosheet is a single wurtzite crystal.The growth mechanism is discussed,which is proposed to be a combination of vapor-solid process of two-dimensional growth of the(1210)planes and their random along <1010> directions.
     6.ZnMgO pleated nanosheets and quasi-nanotubes with different Mg content were obtained by changing the zinc diethyl flow rate via metalorganic chemical vapor deposition.The thickness of the nanosheets decreased with the increase of Mg content in the ZnMgO alloy.The Mg incorporation caused the blue-shift of near-band-edge emission of photoluminescence,also(002)peaks position shifted to larger value in X-ray diffraction.The mechanism of the red-shift and broadening of the E2 modes of Raman spectra were discussed.Two additional bands at 387 cm~(-1)and 622 cm~(-1)were observed,which were presumably attribute to the host lattice defects induced by Mg incorporation.
     7.Dislocations with Burgers vector of 1/3<11(?)3> were observed by high-resolution transmission electron microscopy in the ZnMgO nanosheets with Mg content of 2.5 at.%.The Mg incorporation enhances oxygen vacancies in the crystal lattices,thus introducing the dislocations in the ZnMgO pleated nanosheets.The electrostatic potential in the vicinity dislocations was determined to be 2.38 V.
引文
[1]Ye Sun,D.Jason Riley and Michael N.R.Ashfold,Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates,J.Phys.Chem.B,(2006),110,31,15186-15192.
    [2]Xiao-Ping Shen,Ai-Hua Yuan,Ye-Min Hu,Yuan Jiang,Zheng Xu and Zheng Hu.Fabrication,characterization and field emission properties of large-scale uniform ZnO nanotube arrays,Nanotechnology,(2005),16,2039-2043.
    [3]A.Wei,X.W.Sun,C.X.Xu,Z.L.Dong,M.B.Yu and W.Huang.Stable field emission from hydrothermally grown ZnO nanotubes,Appl.Phys.Lett.,(2006),88,213102
    [4]Y.J.Xing,Z.H.Xi,Z.Q.Xue,X.D.Zhang,J.H.Song,R.M.Wang,J.Xu,Y.Song,S.L.Zhang and D.P.Yu.Optical properties of the ZnO nanotubes synthesized via vapor phase growth,Appl.Phys.Lett.,(2002),83,1689-1691.
    [5]B.I.Seo,U.A Shaislamov,M.H.Ha,S.-W.Kim,H.-K Kim and Beelyong Yang,ZnO nanotubes by template wetting process,Phy.E,(2007),37,214-244.
    [6]W.Z.Xu,Z.Z.Ye,D.W.Ma,H.M.Lu,L.P.Zhu,B.H.Zhao,X.D.Yang and Z.Y.Xu Quasi-aligned ZnO nanotubes grown on Si substrate,Appl.Phys.Lett.,(2005),87,093110-1-3.
    [7]Jih-Jen Wu and Sai-Chang Liu,Catalyst-free growth and characterization of ZnO nanorods,J.Phys.Chem.B.,(2002),106,9546-9551.
    [8]Xiaochen Sun,Hongzhou.Zhang,Jun Xu,Qing Zhao,Rongming Wang and Dapeng Yu,Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth,Solid State Commun.,(2004),129,803-807.
    [9]J.Y.Li,X.L.Chen,H.Li,M.He and Z.Y.Qiao,Fabrication of zinc oxide nanorods,J.Crys.Growth.,(2002),14,215-218.
    [10]Xu.dong Wang,Christopher J.Summers,and Zhong Lin Wang,Large-scale hexagonal- patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,Nano Lett.,(2004),4,423-426.
    [11]Yingkai Liua,Zhihui Liu and Guanghou Wang,Synthesis and characterization of ZnO nanorods,J.Crys.Growth.,(2003),252,213-218.
    [12]W.I.Park,D.H.Kim,S.W.Jung and Gyu-Chul Yi.Synthesis and characterization of ZnO nanorods,J.Crys.Growth.,(2003),252,213-218.
    [13]Anli Yang and Zuolin Cui and Gyu-Chul Yi,Controlling the orientation of ZnO nanorod arrays using TiO_2 thin film templates dip-coated by sol-gel,J.Nanopart.Res.,(2007),9,1388-0764.
    [14]Min Guo,Peng Diao and Shengmin Cai,Hydrothermal growth of well-aligned ZnO nanorod arrays,Dependence of morphology and alignment ordering upon preparing conditions,J.Solid State Chem.,(2005),178,1864-1873.
    [15]Ying Dai,Yue Zhang,Yuan Qiang Bai and Zhong Lin Wang,Bicrystalline zinc oxide nanowires,Chem.Phys.Lett.,(2003),375,96-101.
    [16]Ye Zhang,Hongbo Jia,Xuhui Luo,Xihong Chen,Dapeng Yu and Rongming Wang,Synthesis,microstructure,and growth mechanism of dendrite ZnO nanowires,J.Phys.Chem.B.,(2003),107,8289-8293.
    [17]Yong Ding,Pu Xian Gao and Zhong Lin Wang,Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts,A Case of Sn/ZnO,J.Am.Chem.Soc.,(2004),126,2066-2072.
    [18]Yingjiu Zhang,Nanlin Wang,Shangpeng Gao,Rongrui He,Shu Miao,Jun Liu,Jing Zhu and X.Zhang,A simple method to synthesize nanowires,Chem.Mater.,(2002),14,3564-3568.
    [19]X.D.Bai,P.X.Gao,Z.L.Wang and E.G.Wang,Dual-mode mechanical resonance of individual ZnO nanobelts,Appl.Phys.Lett.,(2003),82,4806-4808.
    [20]Kazuki Bando,Taiki Sawabe,Koji Asaka and Yasuaki Masumoto,Room-temperature excitonic lasing from ZnO single nanobelts,J.Lum.,(2004),108,385-388.
    [21]Xiao-Sheng Fang,Chang-Hui Ye,Li-De Zhang,Yan Li and Zhi-Dong Xiao, Formation and optical properties of thin and wide tin-doped ZnO nanobelts, Chem. Lett., (2005), 34,436.
    [22] J Yang, G Liu, J Lu, Y Qiu and S Yang, Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate, Appl. Phys. Lett., 2007,90,103109-1-3.
    [23] Pu Xian Gao and Zhong Lin Wang, Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals, J. Am. Chem. Soc., (2003), 125,11299-11305.
    [24] Zhonglin Wang, Xiangyang Kong, Yong Ding, Puxiao Gao, William L. Hughes, Rusen Yang and Yue Zhang, Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces, Adv. Funct. Mater., (2004), 14, 943-956.
    [25] William L. Hughes and Zhong L. Wang, Formation of oiezoelectric single-crystal nanorings and nanobows, J. Am. Chem. Soc., (2004), 126, 6703-6709.
    [26] CQ Chen, Y Shi, YS Zhang, J Zhu and YJ Yan, Size dependence of Young's modulus in ZnO nanowires, Phys. Rev. Lett., (2006), 96, 075505-1-4.
    [27] Y. Ding, X. Y. Kong and Z. L. Wang, Doping and planar defects in the formation of singlecrystal ZnO nanorings, Phys. Rev. B, (2004), 70, 235408-14.
    [28] J. F. Scott, Applications of modern ferroelectrics, Science, (2007), 315, 954 -959.
    [29] J. Y. Lao, J. Y. Huang, D. Z. Wang and Z. F. Ren, ZnO nanobridges and nanonail, Nano Lett., (2003), 3,235-238
    [30] Guozhen Shen, Jung Hee Cho, Jin Kyoung Yoo, Gyu-Chul Yi and Cheol Jin Lee, Synthesis and optical properties of S-doped ZnO nanostructures, nanonails and nanowires, J. Phys. Chem. B., (2005), 109, 5491-5496.
    [31] Guozhen Shen, Jung Hee Cho and Cheol Jin Lee, Morphology-controlled synthesis, growth mechanism and optical properties of ZnO nanonails. Chem. Phys. Lett., (2005), 401, 414-419.
    [32]S.H.Jo,D.Banerjee and Z.F.Ren,Field emission of zinc oxide nanowires grown on carbon cloth,Appl.Phys.Lett.,(2004),85,1407-1409.
    [33]L.Liao,J.C.Li,D.H.Liu,C.Liu,D.F.Wang,W.Z.Song and Q.Fu,Self-assembly of aligned ZnO nanoscrews,Growth,configuration,and field emission,Appl.Phys.Lett.,(2005),86,083106-1-3.
    [34]Y.W.Zhu,H.Z.Zhang,X.C.Sun,S.Q.Feng,J.Xu,Q.Zhao,B.Xiang,R.M.Wang and D.P.Yu,Efficient field emission from ZnO nanoneedle arrays,Appl.Phys.Lett.,(2003),83,144-146.
    [35]G.Z.Wang,N.G.Ma,C.J.Deng,P.Yu,C.Y.To,N.C.Hung,M.Aravind and Dickon H.L.Ng,One-step growth of ZnO from film to vertically well-aligned nanorods and the morphology-dependent Raman scattering,Appl.Phys.Lett.,(2005),87,231903:1-3.
    [36]Joodong Park,Han-Ho Choi,Kerry Siebein and Rajiv K.Singh,Two-step evaporation process for formation of aligned zinc oxide nanowires.J.Cryst.Growth,(2003),258,342-348.
    [37]Ye Zhang,Hongbo Jia,Rongming Wang,Chinping Chen,Xuhui Luo,Dapeng Yu and Cheoljin Lee,Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate,Appl.Phys.Lett.,(2003),83,4631-4633.
    [38]Lori E.Greene,Matt Law,Joshua Goldberger,Franklin Kim,Justin C.Johnson,Yanfeng Zhang,Richard J.Saykally and Peidong Yang,Low-temperature wafer-scale production of ZnO nanowire arrays,Angew.Chem.,(2003),115,3139-3142.
    [39]Yung-kuan Tseng,Chorng-Jye Huang,Hsin-Min Cheng,I-Nan Lin,Kuo-Shung Liu and ICherng Chen,Characterization and field-emission properties of neddle-like zinc oxide nanowires growth vertically on conductive zinc oxide gilms,Adv.Funct.Mater.,(2003),13,811-814.
    [40]Xinjian Feng,Lin Feng,Meihua Jin,Jin Zhai,Lei Jiang and Daoben Zhu,reversible superhydrophobicity to super-hydrophilicity transition of aligned ZnOnanorod films,J.Am.Chem.Soc.,(2003),13,62-63.
    [41]N.E.Hsu,W.K.Hung and Y.F.Chin,Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,Appl.Phys.Lett.,(2004),86,4671-4673.
    [42]Jiansheng Jie,Guanzhong Wang,Qingtao Wang,Yiming Chen,Xinhai Han,Xiaoping Wang and J.G.Hou,Synthesis and characterization of aligned ZnO nanorods on porous aluminum oxide template,J.Phys.Chem.B.,(2004),108,11976-11980.
    [43]Seung Chul Lyu,Ye Zhang,Cheol Jia Lee,Hyun Ruh and Hwack Joo Lee,Low-temperature growth of ZnO nanowire srray by a simplephysical vapor-deposition method,Chem.Mater.,(2003),15,3294-3299.
    [44]Ying Dai,Yue Zhang and Zhong LinWang,The octa-twin tetraleg ZnO nanostructures,Solid State Commun.,(2003),126,629-633.
    [45]J.G.Lu,Z.Z.Ye,L.Wang,J.Y.Huang and B.H.Zhao,Structural,electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,Mater.Sci.in Semicond.Proc.5(2003)491-496.
    [46]J.E.Jaffe and A.C.Hess,Hartree-Fock study of phase changes in ZnO at high pressure,Phys.Rev.B,(1993),48,7903-7909.
    [47]S.L.King,I.W.Boyd and J.G.E.Gardeniers,Pulsed-laser deposited ZnO for device applications,Appl.Surf.Sci.,(1996),96-98,811-818.
    [48]U.Ozgur,Ya.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Dogan,V.Avrutin,S.-J.Cho and H.Morkoc,A comprehensive review of ZnO materials and devices,J.Appl.Phys.(2005),98,041301-1-103.
    [49]H.Maki,N.Ichinose,N.Ohashi,H.Haneda and J.Tanaka,Lattice relaxation of a ZnO(0001)surface accompanied by a decrease in antibonding feature,J.Cryst.Growth,(2001),229(1-4),114-118.
    [50]C.H.Bates,W.B.White and R.Roy,New high-pressure polymorph of zinc oxide,Science(1962),137,993-993.
    [51]D.C.Look,Recent advances in ZnO materials and devices,Mater.Sci.Eng. B-Solid State Mater.Adv.Technol,(2005),80,383-387.
    [52]J.Q.Hu,Q.Li,X.M.Meng,C.S.Lee and S.T.Lee,Thermal reduction route to the fabrication of coaxial Zn/ZrO nanocables and ZnO nanotubes,Chem.Mater.,(2003),15,305-308.
    [53]R.S.Wagner and W.C.Ellis,Vapor-liquid-solid mechanism of single crystal growth,Appl.Phys.Lett.,(1964),4,89-90.
    [54]B.P.Zhang,N.T.Binh,K.Wakatsuki,Y.Segawa,Y.Yamada,N.Usami,M.Kawasaki and H.Koinuma,Formation of highly aligned ZnO tubes on sapphire(0001)substrates,Appl.Phys.Lett,(2004),84,4098-4100.
    [55]H.W.Liang,Y.M.Lu,D.Z.Shen,B.H.Li,Z.Z.Zhang,C.X.Shan,J.Y.Zhang,X.W.Fan and G.T.Du,Growth of vertically aligned single crystal ZnO nanotubes by plasma-molecular beam epitaxy,Solid State Commun.,2006,137,182-186.
    [56]Hong Jin Fan,Woo Lee,Roland Scholz,Armin Dadgar,Alois Krost,Komelius Nielsch1 and Margit Zacharias,Arrays of vertically aligned and hexagonally arranged ZnO nanowires:a new template-directed approach,Nanotechnology,(2005),16,913-917.
    [57]Aleksandra B.Djurisic and Yu Hang Leung,Optical Properties of ZnO Nanostmetures Small(2006),8-9,944-961.
    [58]O.Dulub,L.A.Boatner and U.Diebold,STM study of the geometric and electronic structure of ZnO(0001)-Zn,(00-1)-O,(0-10),and(11-20)surfaces,Surf.Sci.,(2002),519,201-217.
    [59]B.Meyer and D.Marx,Density-functional study of the structure and stability of ZnO surfaces,Phys.ReV.B,(2003),67,035403-1-11.
    [60]O.Dulub,U.Diebold and G.Kresse Diebold,Novel Stabilization Mechanism on Polar Surfaces:ZnO(0001)-Zn,Phys.Rev.Lett.,(2003),90,016102-1-4.
    [61]J.Y.Lao,J.G.Wen and Z.F.Ren,Hierarchical ZnO Nanostructures,Nano Lett.,(2002),2,1287-1291.
    [62]A.Bachtold,P.Hadley,T.Nakanishi and C.Dekker,Logic circuits with carbon nanotube transistors,Science,(2001),294,1317-1320.
    [63]M.H.Huang,S.Mao,H.Feick,H.Q.Yan,Y.Y.Wu,H.Kind,E.Weber,R.Russo and P.D.Yang,Room-temperature ultraviolet nanowire nanolasers,Science,(2001),292,1897-1899.
    [64]李凤生,杨毅,纳米/微米复合技术及应用,国防工业出版社,(2002),p96-97。
    [65]X.D.Wang,C.J.Summers,Z.L.Wang,Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,Nano Lett.,(2004),4,423-426.
    [66]丁秉钧,纳米材料,机械工业出版社,(2003),p55-57.
    [67]R.Triboulet,J.Perriere,Epitaxial growth of ZnO films,Prog.Cryst.Growth Charact.Mater.,(2003),47,65-138.
    [68]S.K.Ghandi,R.J.Field,Highly oriented zinc oxide films grown by the oxidation of diethylzinc,Appl.Phys.,Lett.(1980),37,449-51.
    [69]S.K.Tiku,C.K.Lau and K.M.Lakin,Chemical vapor deposition of ZnO epitaxial films on sapphire,Appl.Phys.Lett.,(1980),36,318-20.
    [70]T.Shiosaki,T.Yamamoto,M.Yagi and A.Kawabata,Plasma-enhanced metalorganic chemical vapor deposition of c-axis oriented and epitaxial films of ZnO at low substrate temperatures,Appl.Phys.Lett.,(1981),39,399-401.
    [71]I.Ohkubo,Y.Matsumoto,A.Ohtomo,T.Ohnishi,A.Tsukazaki,M.Lippmaa,H.Koinuma and M.Kawasaki,Investigation of ZnO/sapphire interface and formation of ZnO nanocrystalline by laser MBE,Appl Sur Sci.,(2000),159,514-519.
    [72]A.Yoshida,K.Maeda,S.Ikeda and A.Ganjoo,Preparation of ZnO thin films using undulator and ArF excimer laser,J.Electron Spectrosc.Relat.Phenom.(1996),80,97-100.
    [73]C.Pacholski,A.Kornowski and H.Weller,Self-assembly of ZnO:from nanodots to nanorods,Angew.Chem.Int.Ed,(2002),41,1188-1191.
    [74]W.I.Park,D.H.Kim,S.W.Jung and G.C.Yi,Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,Appl.Phys.Lett.,(2002),80, 4232-4234.
    [75]Jeong,Sang-Hun,Park,Kyoung-Ho and Song,Ho-Jun,Structural and optical characterization of PA-MOCVD grown ZnO nanorod-arrays on silicon substrates,J.Korean Phys.Soc.,(2007),50,1692-1696.
    [76]Kim,Dong Chan,Kong,Bo Hyun,Kim,Young Yi,Cho,Hyung Koun,Lee,Jeong Yong,Park,Dong Jun,Effect of buffer thickness on the formation of ZnO nanorods grown by MOCVD,Advance in Nanomaterials and processing,(2007),124-126,101-104.
    [77]Z.Z.Ye,J.Y.Huang,W.Z.Xu,J.Zhou and Z.L.Wang,Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape,Sol.Stat.Commun.(2007),141,464-466.
    [78]K.Sakurai,T.Kubo,D.Kajita,T.Tanabe,H.Takasu,Sz.Fujita and Sg.Fujita,Blue photoluminescence from ZnCdO films grown by molecular beam epitaxy,Jpn.J.Appl.Phys.,(2000),39,1146-1148.
    [79]M.Lorenz,E.M.Kaidashev,A.Rahm,Th.Nobis,J.Lenzner,G.Wagner,D.Spemann,H.Hochmuth and M.Grundmann,MgxZn1-x(0≤x<0.2)nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition,Appl.Phys.Lett.,(2005),86,143113-1-3.
    [80]Q.Wan,Q.H.Li,Y.J.Chen and T.H.Wang,X.L.He,X.G.Gao,and J.P.Li,Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires,Appl.Phys.Lett.,(2004),84,3085-3087.
    [81]F.Z.Wang,Z.Z.Ye,D.W.Ma,L.P.Zhu,F.Zhuge,and H.P.He,Synthesis and characterization of quasi-aligned ZnCdO nanorods,Appl.Phys.Lett.,(2005),87,143101-1-3.
    [82]Y.W.Heo,M.Kaufman,K.Pruessner,D.P.Norton,F.Ren,M.F.Chisholm and P.H.Fleming,Optical properties of ZnMgO nanorods using catalysis-driven molecular beam epitaxy,Solid-State Electron.,(2003),47,2269-2273.
    [83]L.P.Zhu,M.J.Zhi,Zhizhen Ye and Binghui Zhao,Catalyst-free two growth of quasialigned ZnMgO nanorods and their properties,Appl.Phys.Lett.,(2006),88,113106-1-3.
    [84]Seung Yong Bae,ChanWoong Na,Ja Hee Kang and Jeunghee Park,Comparative structure and optical properties of Ga-,In-,and Sn-Doped ZnO nanowires dynthesized via thermal evaporation,J.Phys.Chem.B.,(2005),109,2526-2531.
    [85]Wei Liu,Shulin Gu,Shunmin Zhu,Jiandong Ye,Feng Qin,Songmin Liu,X.Zhou,Liquan Hu,Rong Zhang,Yi Shi and Youdou Zheng,The deposition and annealing study of MOCVD ZnMgO,J.Cryst.Growth,(2005),277,416-421.
    [86]T.Yoshiie,H.Iwanaga,N,Shibata,K.Suzuki and S,Takeuchi,.Studies of dislocation loops produced by irradiation of ZnO in a high-voltage electron microscope,Philosophical Magazine A,(1980),41,935-942.
    [87]Agus Setiawan,Zahra Vashaei,Meoung Whan Cho,Takafumi Yao Hiroyuki Kato,Michihiro Sano,Kazuhiro Miyamoto,I.Yonenaga and Hang Ju Ko,Characteristics of dislocations in ZnO layers grown by plasma-assisted molecular beam epitaxy under different Zn/O flux ratios,(2004),96,3763-3768.
    [88]H.P.Sun,X.Q.Pan,x.L.Du,Z.X.Mei,Z.Q.Zeng and Q,K.Xue,Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001)sapphire surface,Appl.Phy.Lett.(2004),85,4385-4387.
    [89]J.Y.Lao,J.Y.Huang,D.Z.Wang,Z.F.Ren,D.Steeves,B.Kimball and W.Porter,ZnO nanowalls,Appl.Phys,A(2004),78,539-542.
    [90]Yu.A.Osip'yan,V.F.Petreko,A.V.Zareski and R.W.Whitwoth,Adv,Phy.,(1986),35,115.
    [91]E.Muller,D.Gerthsen,P.Bruckner,F.Scholz,Th.Gruber and A.Waag,Probing the electrostatic potential of charged dislocations in n-GaN and n-ZnO epilayers by transmission electron holography,Phys.Rev.B,(2006),73,245316.
    [92]J.Grabowska,A.Meaney,K,K.Nanda,J.-P.Mosnier,M.O.Henry,J.-R. Duclere and E.McGlynn,Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems:Limiting effects on device,Phys.Rev.B.,(2005),71,115439-1-7.
    [93]S.J.Chen,Y.C.Liu,C.L.Shao,R.Mu,Y.M.Lu,J.Y.Zhang,D.Z.Shen and X.W.Fan,Structural and optical properties of uniform ZnO nanosheets,Adv.Mater.,(2005),17,586-590
    [94]S.Ozaki,T.Tsuchiya,Y.Inokuchi and S.Adachi,Photoluminescence and photomodulated transmittance spectroscopy of ZnO nanowires,Phys.Stat.Sol.A,(2005),202,1325-1335.
    [95]Hsu-Cheng Hsu and Wen-Feng Hsieh,Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires,Solid State Commun.,(2004),131,371-375.
    [96]W.M.Kwok,A.B.Djurisic,Y.H.Leung,W.K.Chan,D.L.Phillips,H.Y.Chen,C.L.Wu,S.Gwo and M.H.Xie,Study of excitonic emission in highly faceted ZnO rods,Chem.Phys.Lett.,(2005),412,141-144.
    [97]Y.H.Tong,Y.C.Liu,S.X.Lu,L.Dong,S.J.Chen and Z.Y.Xiao,The optical properties of ZnO nanoparticles capped with polyvinyl butyral,J.Sol-Gel Sci.Technol.,(2004),30,157-161.
    [98]Hyo-Won Suh,Gil-Young Kim,Yeon-Sik Jung,Won-Kook Choia and Dongjin Byun,Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis,J.Appl.Phys.,(2005),97,044305-1-6.
    [99]B.K.Meyer,H.Alves,D.M.Hofmann,W.Kreigseis,D.Forster,F.Bertram,J.Christen,A.Hoffmann,M.Strassburg,M.Dworzak,U.Haboeck and A.V.Rodina,Bound exciton and donor-acceptor pair recombinations in ZnO,Phys.Stat.Sol.B,(2004),241,231-260.
    [100]A.Teke,U.Ozgur,S.Dogan,X.Gu and H.Morkoc,Excitonic fine structure and recombination dynamics in single-crystalline ZnO,Phys.Rev.B,(2004),70,195207-1-10.
    [101]J.Gutowski,N.Presser and I.Broser,Accep-exciton complexes in ZnO:A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy,Phys.Rev.B,(1988),38,9746-9758.
    [102]D.C.Look,C.Cos,kun,B.Claflin and G.C.Farlow,Electrical and optical properties of defects and impurities in ZnO,Physica B,(2003),340-342,32-38.
    [103]D.C.Look,R.L.Jones,J.R.Sizelove,N.Y.Garces,N.C.Giles and L.E.Halliburton,The path to ZnO devices:donor and acceptor dynamics,Phys.Stat.Sol.A,(2003),195,171-177.
    [104]C.G.Van de Walle,Electrical and optical properties of defects and impurities in ZnO,Physica B,(2001),308,899-903.
    [105]U.Ozgur,Ya.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Dogan,V.Avrutin,S.-J.Cho and H.Morkoc,A comprehensive review of ZnO materials and devices,J.Appl.Phys.,(2005),98,041301-1-103.
    [106]A.Kobayashi,O.F.Sankey and J.D.Dow,Deep energy levels of defects in the wurtzite semiconductors,Phys.Rev.B,(1983),28,946-956.
    [107]K.Thonke,T.Gruber,N.Teofoliv,R.Schcnfelder,A.Waag,and R.Sauer,Donor-acceptor pair transitions in ZnO substrate material,Physica B,(2001),308-310,945-948.
    [108]H.J.Ko,Y.F.Chen,T.Yao,K.Miyajima,A.Yamamoto and T.Goto,Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,Appl.Phys.Lett.,(2000),77,537-539.
    [109]D.W.Hamby,D.A.Lucca,M.J.Klopfstein and G.Cantwell,Temperature dependent exciton photoluminescence of bulk ZnO,J.Appl.Phys.,(2003),93,3214-3217.
    [110]Y.Harada,H.Kondo,N.Ichimura and S.Hashimoto,Photoluminescence spectra of ZnO particles embedded in thin alkali halide crystals,J.Lumin.,(2000),87-89,405-407.
    [111]M.Haupt,A.Ladenburger,R.Sauer,K.Thonke,R.Glass,W.Roos,J.P.Spatz,H.Rauscher,S.RiethmFller and M.Mcller,Ultraviolet-emitting ZnO nanowhiskers prepared by a vapor transport process on prestructured surfaces with self-assembled polymers,J.Appl.Phys.,(2003),93,6252-6257.
    [112]H.J.Ko,Y.Chen,S.K.Hong and T.Yao,Control of polarity of ZnO films grown by plasma-assisted molecular-beam epitaxy:Zn- and O-polar ZnO films on Ga-polar GaN templates,Appl.Phys.Lett.,(2000),77,3571-3573.
    [113]S.W.Kim,S.Fujita and S.Fujita,ZnO nanowires with high aspect ratios grown by metalorganic chemical vapor deposition using gold nanoparticles,Appl.Phys.Lett.,(2005),86,153119-1-3.
    [114]B.P.Zhang,N.T.Binh,Y.Segawa,Y.Kashiwaba and K.Haga,Photoluminescence study of ZnO nanorods epitaxially grown on sapphire [11-20]substrates,Appl.Phys.Lett.,(2004),84,586-588.
    [115]Q.Yang,K.Tang,J.Zuo and Y.Qian,Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route,Appl.Phys.A,(2004),79,1847-1851.
    [116]W.Gopel and U.Lampe,Influence of defects on the electronic structure of zinc oxide surfaces,Phys.Rev.B,1980,22,6447-6462.
    [117]A.B.Djurisic,W.C.H.Choy,V.A.L.Roy,Y.H.Leung,C.Y.Kwong,K.W.Cheah,T.K.Gundu Rao,W.K.Chan,H.E Lui and C.Surya,Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structure,Adv.Funct.Mater.,(2004),14,856-864.
    [118]Z.Chen,N.Wu,Z.Shan,M.Zhao,S.Li,C.B.Jiang,M.K.Chyu and S.X.Mao,Effect of N2 flow rate on morphology and structure of ZnO nanocrystals synthesized via vapor deposition,Scr.Mater.,(2005),52,63-67.
    [119]X.Liu,X.Wu,H.Cao and R.P.H.Chang,Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,J.Appl.Phys.,(2004),95,3141-3147.
    [120]N.Y.Garces,L.Wang,L.Bai,N.C.Giles,L.E.Halliburton and G.Cantwell, Role of copper in the green luminescence from ZnO crystals,Appl.Phys.Lett.,(2002),81,622-624.
    [121]D.C.Reynolds,D.C.Look and B.Jogai,Fine structure on the green band in ZnO,J.Appl.Phys.,(2001),89,6189-6191.
    [122]A.van Dijken,E.Meulenkamp,D.Vanmaekelbergh and A.Meijer-ink,The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,J.Phys.Chem.B,(2000),104,1715-1723.
    [123]X.Q.Meng,D.Z.Shen,J.Y.Zhang,D.X.Zhao,Y.M.Lu,L.Dong,Z.Z.Zhang,Y.C.Liu and X.W.Fan,The structural and optical properties of ZnO nanorod arrays,Solid State Commun.,(2005),135,179-182.
    [124]Q.X.Zhao,P.Klason,M.Willander,H.M.Zhong,W.Lu and J.H.Yang,Deep-level emissions influenced by O and Zn implantations in ZnO,Appl.Phys.Lett.,(2005),87,2119120-I-3.
    [125]I.Shalish,H.Temkin and V.Narayanamurti,Size-dependent surface luminescence in ZnO nanowires,Phys.Rev.B,(2004),69,245401-1-4.
    [126]H.Zhou,H.Alves,D.M.Hofmann,W.Kriegseis,B.K.Meyer,G.Kaczmarczyk and A.Hoffmann,Behind the weak excitonic emission of ZnO quantum dots:ZnO/Zn(OH)(2)core-shell structure,Appl.Phys.Lett.,(2002),80,210-212.
    [127]D.Li,Y.H.Leung,A.B.Djuris(?)ic',Z.T.Liu,M.H.Xie,S.L.Shi,S.J.Xu and W.K.Chan,Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,Appl.Phys.Lett.,(2004),85,1601-1603.
    [128]H.J.Fan,R.Scholz,F.M.Kolb,M.Zacharias,U.Gcsele,F.Heyr-oth,C.Eisenschmidt,T.Hempel and J.Christen,On the growth mechanism and optical properties of ZnO multi-layer nanosheets,Appl.Phys.A,(2004),79,1895-1900.
    [129]S.A.Studenikin,N.Golego and M.Cocivera,Fabrication of green and orange photoluminescent,undoped ZnO films using spray pyrolysis,J.Appl.Phys., (1998),84,2287-2294.
    [130]D.Zhao,C.Andreazza,P.Andreazza,J.Ma,Y.Liu and D.Shen,Temperature-dependent growth mode and photoluminescence properties of ZnO nanostructures,Chem.Phys.Lett.,(2004),399,522-526.
    [131]S.M.Abrarov,Sh.U.Yuldashev,T.W.Kim,S.B.Lee,Y.H.Kwon and T.W.Kang,Effect of photonic band-gap on photoluminescence of ZnO deposited inside the green synthetic opal,Opt.Commun.,(2005),250,111-119.
    [132]C.C.Lin,H.P.Chen,H.C.Liao and S.Y.Chen,Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,Appl.Phys.Lett.,(2005),86,183103-1-3.
    [133]Q.Wan,Q.H.Li,Y.J.Chen,T.H.Wang,X.L.He,J.P.Li and C.L.Lin,Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,Appl.Phys.Lett.,(2004),84,3654-3656.
    [134]S.W.Chung,J.Y.Yu and J.R.Heath,Silicon nanowire devices,Appl.Phys.Lett.,(2000),76,2068-2070.
    [135]Sepideh Shafiei,Amirhasan Nourbakhsh,Bahrain Ganjipour,Mostafa Zahedifar and Gholamreza Vakili-Nezhaad,Diameter optimization of VLS-synthesized ZnO nanowires,using statistical design of experiment,Nanotechnology,(2007),18,355708-1-6.
    [136]Yi Liu,Tian Tan,Bo Wang,Xuemei Song,Er Li,Hao Wang and Hui Yan,Superhydrophobic behavior on transparency and conductivity controllable ZnO/Zn films,J.Appl.Phys.,(2008),103,056104-1-3.
    [137]L.Wischmeier,T.Voss,I.Ruckman and J.Gutowski,Dynamic of surface-exciton emission in ZnO nanowires,Phy.Rev.B,(2006),74,195333-1-8.
    [138]Y.Yang,B.K.Tay,X.W.Sun,J.Y.Sze,Z.J.Han and J.X.Wang,Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation,App.Phy.Lett.,(2007),91,071921-1-3.
    [139]Johanners Fallert,Robert Hauschild,Felix Stelzl,Alex Urvban,Markus Wissinger,Huijuan Zhou,Claus Klingshirn and Heinz Kalt,Surface-state related luminescence in ZnO nanocrystal,J.Appl.Phys.,(2007),101,073506-1-4.
    [140]G W.Cong,H.Y.Wei,P.F.Zhang,W.Q.Peng,J.J.Wu,X.L.Liu,C.M.Jiao,W.G Hu,Q.S.Zhu and Z.G Wang,One-step growth of ZnO from film to vertically well-aligned nanorods and the morphology-dependent Raman scattering,Appl.Phys.Lett.,(2005),87,2319032-1-3.
    [141]Bhupend Kumar,Hao Gong,Shue Yin Chow,Sudhiranjan Tripathy and Younan Hua,Photoluminescence and multiphonon resonant Raman scattering in low-temperature grown ZnO nanostructures,Appl.Phys.Lett.,(2006),89,071922-1-3.
    [142]T.Makino,Y.Segawa,S.Yoshida,A.Tsukazaki,A.Ohtomo,M.Kawasaki and H.Koinuma,Spectral shape analysis of ultraviolet luminescence in n-type ZnO:Ga,J.Appl.Phys.,(2005),98,093520-1-4.
    [143]C.X.Xu,X.W.Sun and B.J.Chen,Field emission from gallium-doped zinc oxide nanofiber array,Appl.Phys.Lett.,(2004),84,1540-1542.
    [144]C.J.Pan,H.C.Hsu,H.M Cheng,C.Y.Wu and W.F.Hsieh,Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires,J.Solid State Chem.(2007),180,1188.
    [145]J.Madarasz,P.P.Varga,G Pokol and J.Anal,Evolved gas analyses(TG/DTA-MS and TG-FTIR)on dehydration and pyrolysis of magnesium nitrate hexahydrate in air and nitrogen,Appl.Pyrolysis,(2007),79,475-478.
    [146]C.H.Ye,X.S.Fang,Y.F.Hao,X.M.Teng and L.D.Zhang,Zinc oxide nanostructures:morphology derivation and evolution,J.Phys.Chem.B,(2005),109,19758-19765.
    [147]X.Y.Kong,Y.Ding,R.Yang and Z.L.Wang,Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts,Science,(2004),303,1348-1351.
    [148]L.Spanhe and M.A.Anderson,Semiconductor clusters in the sol-gel process: quantized aggregation,gelation,and crystal growth in concentrated zinc oxide colloids,J.Am.Chem.Soc.,(1991),113,2826-2833.
    [149]T.C.Damen,S.P.S.Porto and B.Tell,Raman effect in zinc oxide,Phys.Rev.(1966),142,570-574.
    [150]J.F.Scott,uv Resonant raman scattering in ZnO,Phys.Rev.B,(1970),2,1209-1211.
    [151]D.F.Zhang,L.D.Sun and C.H.Yan,Optical properties of ZnO nanoplatelets and rectangular cross-sectioned nanowires,Chem.Phys.Lett.,(2006),422,46-50.
    [152]Y.Yan,S.J.Pennycook,J.Dai,R.P.H.Chang,A.Wang and T.J.Marks,Polytypoid structures in annealed In2O3-ZnO films,Appl.Phys.Lett.,(1998),73,2585-2587.
    [153]P.Paraynthal and F.H.Pollak,Raman Scatttering in Alloy Semiconductors:"Spatial Correlation" Model,Phys.Rev.Lett.,(1984),52,1822-1825.
    [154]G.Du,Y.Ma,Y.Zhang and T.Yang,Preparation of intrinsic and N-doped p-type ZnO thin films by metalorganic vapor phase epitaxy,Appl.Phys.Lett.,(2005),87,213103-1-3.
    [155]J.B.Wang,H.M.Zhong,Z.F.Li and W.Lu,Raman study for E2 phonon of ZnO in Zn1-xMnxO nanoparticles,J.Appl.Phys.,(2005),97,086105-1-3.
    [156]H.Y.Xu,Y.C.Liu,C.S.Xu,C.L.Shao and R.Mu,Structural,optical,and magnetic properties of Mn-doped ZnO thin film,J.Chem.Phys.,(2006),124,074707-1-4.
    [157]J.S.Thakur,G.W.Auner,V.M.Naik,C.Sudakar,P.Kharel and G.Lawes,Raman scattering studies of magnetic Co-doped ZnO thin films,J.Appl.Phys.,(2007),102 093904-1-6.
    [158]H.P.Sun,X.Q.Pan,X.L.Du,Z.X.Mei,Z.Q.Zeng and Q.K.Xue,Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001)sapphire surface,Appl.Phys.Lett.,(2004),85,4385-4387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700