用户名: 密码: 验证码:
卟啉衍生物的合成与液晶行为及催化聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了两个系列的新型卟啉衍生物,系统研究了卟啉分子在不同温度下的自组织行为,获得了宽液晶相变温度区间、低结晶温度的室温液晶材料;研究了卟啉与碳纳米管(CNTs)复合物在溶液中的光致电荷转移性质。探索了镍卟啉/MAO体系催化苯乙烯聚合的聚合行为,提出聚合反应机理。本论文的主要创新结果如下:
     (1)证实了所合成的两个系列化合物在一定温度下能够自组织形成柱状液晶相,其液晶态稳定性好、相区宽(最宽达252oC)的特点;证明分子间氢键使得大环共轭液晶的清亮点显著升高。
     (2)利用共价改性方法,实现了对CNTs的分散;研究了液晶卟啉与CNTs体系的光致电荷转移行为。
     (3)系统研究了镍卟啉/MAO体系催化苯乙烯聚合的行为,提出了聚合机理。证明了镍卟啉/MAO体系能够高效引发苯乙烯聚合。
The recent advances in the field of porphyrin derivatives were summarized in the thesis. Porphyrin is a big conjugate annular compound with four nitrogen atoms which may coordinate with metal ions. Porphyrin derivatives have received considerable attention and attracted significant interest for their particular structure and unique physical and chemical properties. They have played an important roll in the field of biological chemistry, medical chemistry, analytical chemistry, catalytic chemistry, material chemistry, etc. Porphyrin derivatives have received considerable attention and attracted significant interest. The review showed the promising applications and the fundamental research trend, especially showed the progress in liquid crystals and catalytic polymerization.
     Since the first liquid crystalline porphyrin which shows mesomorphic behavior was synthesized by Goodby in 1980, liquid crystal porphyrins have received considerable attention for their unique photoeletronic property. Synthesized liquid crystal porphyrins have problems of bad stability of mesophase with higher phase transition temperatures and narrower mesophase range. As a result, the application of liquid crystalline porphyrin was restricted. Worthwhile, the periphery of porphyrin and its metal complexes has 12 active positions, which could link up different structures soft side chains. So, we would synthesize new type liquid crystal of porphyrin materials with better stability of mesophase by molecular design. Besides, metalloporphyrin as catalyst for polymerization of epoxides, cyclic carbonate, methacrylonitrile, etc. has been researched widely, but few metalloporphyrin for olefin polymerization has been reported yet. A. Sen reported metalloporphyrin catalyst for olefin polymerization in 2001, and then opened a new area of porphyrin catalyst.
     In this thesis, two series of porphyrin derivatives and their metal complexes were synthesized. The proposed molecular structure of the compounds has been confirmed with 1H NMR, elemental analysis, etc. Their mesomorphic behaviors have been researched by DSC, polarized microscopic observation (POM), and X-ray diffraction. Combined with molecular simulation and density studies, the structures of their mesophase were proposed. Besides, the electron transfer between mesomorphic porphyrin and CNTs upon non-covalent method using UV-Vis and fluorescent spectra was studied. Finally, the catalytic property of metal porphyrin was studied. Nickel tetraphenylporphyrin (Ni(II)TPP) was synthesized, and was used in catalytic styrene polymerization using MAO as cocatalyst. The mechanism of the polymerization was discussed and a special coordination mechanism was proposed.
     I. The synthesis and characterization of porphyrin derivatives
     In this section, two types of liquid crystal porphyrins derivatives, benzoate-substituted porphyrins and benzoylamino-substituted porphyrins, and their metal complexes were synthesized. The proposed molecular structure was confirmed with elemental analyses, UV-Vis, FTIR, and 1H NMR. The two series of novel liquid crystalline porphyrins were summarized below:
     (1) Benzoate-substituted porphyrin: meso-tetra[4-(3,4,5-tri-n- alkoxy- benzoate)phenyl]porphyrins (n=7, 12, 16), and its nickel and zinc complexes (n=12);
     (2) Benzoylamino-substituted porphyrin: meso-tetra[4-(3,4,5-n-trialkoxy benzoyl amino)phenyl]porphyrins (n=12, 16), and its nickel and zinc complexes (n=12). II. The mesomorphic behaviors of porphyrin derivatives
     The mesomorphic behaviors of porphyrin derivatives were researched by DSC, POM, and XRD. Combined with molecular simulation and density studies, their phase structure and molecular packing model was proposed.
     All the two series of porphyrin derivatives showed their mesophase under certain temperature and the molecules can self assembled in their mesophase with good stability including wide temperature range and low phase transition temperature. All of the porphyrin derivatives exhibited rectangular columnar phase. Their mesomophic behaviors were greatly dependent on the length of the alkyl chains and their central metal atom. The phase transition temperatures of crystal phase to liquid crystalline (LC) phase(Tm) and LC phase to isotropic phase (Tc) were summarized below: OMR12, Tm=-33 oC, Tc=146.5 oC; AMR12, Tm=-26.0 oC, Tc=225.7 oC; OMR16, Tm=17.5 oC; Tc=109.5 oC; AMR16, Tm=19.3 oC, Tc=189.3 oC; OMR12Zn, Tm=-28.5 oC, Tc=116 oC; AMR12Zn, Tm=-29.9 oC, Tc=203.1 oC; OMR12Ni, Tm=8.6 oC, Tc=136.7; AMR12Ni, Tm=-28.2 oC, Tc=214.3 oC; OMR7, Tm<-50 oC, Tc=169.1 oC.
     The Tm of benzoylamino-substituted porphyrin is similar to that of benzoate-substituted porphyrin with the same chain length, but its Tc is rather higher than that of benzoate-substituted porphyrin. Temperature resolved FTIR spectra studies of AMR12 revealed that hydrogen bonding interaction could influence its molecular assemble in its mesomorphic phase, which lead to a more stable mesophase. Finally, liquid crystalline nano-congeries was prepared using precipitation method.
     III. Electron transfer behavior of porphyrin/carbon nanotubes system
     Electron transfer behavior between mesomorphic porphyrin and carbon nanotubes (CNTs) was studied using UV-Vis and fluorescence spectra, which showed that supramolecular system formed and electron transfer occurred from porphyrin to CNTs, forming electron Donor-Acceptor system, in all conditions including neutral, acid and base solution.
     We also developed a simple method to improve nanotube solubility using covalent method. The modified nanotubes displayed good solubility in chloroform, and the electron transfer between porphyrin and modified CNTs was also studied, which revealed they maybe used as energy or electron transfer antennae.
     IV. Styrene polymerization catalyzed by Ni(II)TPP/MAO for synthesizing polystyrene
     In this section, nickel(II) tetraphenylporphyrin (Ni(II)TPP) was synthesized, and the polymerization of styrene catalyzed with Ni(II)TPP/methylaluminoxane (MAO) was studied. Studies at different polymerization conditions showed that the catalyst system has a high thermal stability and show fairly good activity. The obtained polystyrene was isotactic-rich atactic polymer with narrow molecular weight distribution (PDI=1.5-1.6).
     A special coordination mechanism was proposed using ESR, 13C NMR, etc. With initiation, interaction of Ni(II)TPP and MAO formed the polymerization species, on which styrene monomer can insert through 2,1-fashion. More styrene molecules insert and propagating chains are formed. The propagating chains are terminated mainly throughβ-hydrogen elimination.
引文
[1] Ogoshi H., Mizutani T., Multifunctional and Chiral Porphyrins: Model Receptors for Chiral Recognition, Acc. Chem. Res., 1998, 31 (2), 81.
    [2] Elemans J. A. A. W., Hameren R., Nolte R. J. M., Rowan A. E., Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes, Adv. Mater., 2006, 18 (10), 1251.
    [3] Burrell A. K., Officer D. L., Plieger P. G., Reid D. C. W., Synthetic Routes to Multiporphyrin Arrays, Chem. Rev., 2001, 101 (9), 2751.
    [4] Anderson H. L., Martin S. J., Bradly D. C., Synthesis and Third-Order Nonlinear Optical Properties of a Conjugated Porphyrin Polymer, Angew. Chem. Int. Ed. Engl., 1994, 33 (6), 655.
    [5] Anderson H. L., Building Molecular Wires from the Colours of Life: Conjugated Porphyrin Oligomers, Chem. Commun., 1999, 23, 2323.
    [6] Burroughes H., Bradley D. C., Brown A. R., Parker L. D., Light-emitting Diodes based on Conjugated Polymers, Nature, 1990, 347, 539.
    [7] (a) 吴越, 叶兴凯, 张长安, 金属卟啉类化合物的催化作用, 化学通报,1988, 1, 1; (b) Nimri S., Keinan E., Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes, J. Am. Chem. Soc., 1999, 121 (39), 8978.
    [8] Mansuy D., Cytochrome. P-450 and Synthetic Models, Pure Appl. Chem., 1987, 59 (6), 759.
    [9] Inaguma M., Hashimoto K., Porphyrin-like fluorescence in oral cancer, Cancer, 1999, 86 (11), 2201.
    [10] Zenkevich E., Sagun E., Knyukshto V., Photophysical and Photochemical Properties of Potential Porphyrin and Chlorin Photosensitizers for PDT, J. Photochem. Photobiol. Biol., 1996, 33(2), 171.
    [11] Krishnamurthy P., Xie T., Schuetz J. D., The Role of Transporters in CellularHeme and Porphyrin Homeostasis, Pharmacol. Therapeut., 2007,114 (3), 345.
    [12] Bonnett R., Photosensitizers of the Porphyrin and Phthalocyanine Series for Photodynamic Therapy, Chem. Soc. Rev., 1995, 24, 19.
    [13] Gust D., Moore T. A., Mimicking Photosynthesis, Science, 1989, 244, 35.
    [14] Baldo M. A., Obrien D. F., You Y., Shoustikov A., Sibley S., Forrest S. R., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, 1998, 395, 151.
    [15] Li J. Y., Liu D., Hong Z., Tong S., Wang P., Ma C., Lee S., A New Family of Isophorone-Based Dopants for Red Organic Electroluminescent Devices, Chem. Mater., 2003, 15 (7), 1486.
    [16] Wang P. F., Xie Z. Y., Tong S. W., Wong O., Lee C. S., Wong N., Lee S., A Novel Neutral Red Derivative for Applications in High-Performance Red- Emitting Electroluminescent Devices, Chem. Mater., 2003, 15 (9), 1913.
    [17] Sendhil K., Vijayan C., Kothiyal M. P., Nonlinear Optical Oroperties of a Porphyrin Derivative Incorporated in Nafion Polymer, Opt. Mater., 2005, 27(10), 1606.
    [18] Ali H., Lier J. E., Metal Complexes as Photo- and Radiosensitizers, Chem. Rev., 1999, 99 (9), 2379.
    [19] Brule E. and Miguel Y. R., Supported Metalloporphyrin Catalysts for Alkene Epoxidation, Org. Biomol. Chem., 2006, 4, 599.
    [20] Zenkevich E. I., Willert A., Bachilo S. M., Rempel U., Kilin D. S., Shulga A. M., Competition between Electron Transfer and Energy Migration in Self-assembled Porphyrin Triads, Mater. Sci. Engineer. C, 2001, 18 (1), 99.
    [21] Hoffman B. M., Ibers J. A., Porphyrinic Molecular Metals, Acc. Chem. Res., 1983, 16 (1), 15.
    [22] Takahashi K., Takano Y., Yamaguchi T., Porphyrin Dye-Sensitization of Polythiophene in a Conjugated Polymer/TiO2 p-n Hetero-junction Solar CellSynthetic Met., 2005, 155 (1), 51.
    [23] Jasieniak J., Johnston M., Waclawik E. R., Characterization of a Porphyrin- Containing Dye-Sensitized Solar Cell, J. Phys. Chem. B, 2004,108 (34), 12962.
    [24] Shiga T., Motohiro T., Photosensitization of Nanoporous TiO2 Film with Porphyrin-Linked Fullerene, Thin Solid Films, 2008, 516 (6), 1204.
    [25] Nestler O., Severin K., A Ruthenium Porphyrin Catalyst Immobilized in a Highly Cross-linked Polymer, Org. Lett., 2001, 3 (24), 3907.
    [26] Murakami Y., Konishi K., Remarkable Co-catalyst Effect of Gold Nanoclusters on Olefin Oxidation Catalyzed by a Manganese-Porphyrin Complex, J. Am. Chem. Soc., 2007, 129 (46), 14401;
    [27] Chen Y., Zhang X. P., Asymmetric Cyclopropanation of Styrenes Catalyzed by Metal Complexes of D2-Symmetrical Chiral Porphyrin: Superiority of Cobalt over Iron, J. Org. Chem., 2007, 72 (15), 5931.
    [28] Sun C., Zhao J., Xu H., Sun Y., Zhang X., Shen J., Fabrication of a Multilayer Film Electrode Containing Porphyrin and its Application as a Potentiometric Sensor of Iodide Ion, Talanta, 1998, 46 (1), 15.
    [29] Deyl Z., Miksik I., Eckhardt A., Kasicka V., Kral V., Porphyrin Based Affinity Interactions: Analytical Applications with Special Reference to Open Tubular Capillary Electrochromatography, Curr. Analy. Chem., 2005, 1 (1), 103.
    [30] Jin R. H., Controlled Location of Porphyrin in Aqueous Micelles Self-Assembled from Porphyrin Centered Amphiphilic Star Poly(oxazolines), Adv. Mater., 2002, 14 (12), 889.
    [31] Twyman L. J., Ge Y., Porphyrin Cored Hyperbranched Polymers as Heme Protein Models, Chem. Commun., 2006, 15, 1658.
    [32] High L. R. H., Holder S. J., Penfold H. V., Synthesis of Star Polymers of Styrene and Alkyl (Meth)acrylates from a Porphyrin Initiator Core via ATRP,Macromolecules, 2007, 40 (20), 7157.
    [33] Inoue K., Functional Dendrimers, Hyperbranched and Star Polymers, Prog. Polym. Sci., 2000, 25 (4), 453.
    [34] Aida T., Inoune S., Metalloporphyrins as Initiators for Living and Immortal Polymerizations, Acc. Chem. Res. 1996, 29 (1), 39.
    [35] Chamdrasekhar S., Sadashiva B., Suresh K., Liquid Crystals of Disc-like Molecules, Pramana, 1977, 9 (5), 471.
    [36] Singh S., Phase transitions in liquid crystals, Phys. Rep., 2000, 324 (2),107.
    [37] Maeda F., Harsusaka K., Ohta K., Kimura M., Discotic Liquid Crystals of Transition Metal Complexes. 35. Establishment of a Unique Mesophase in Bis(octaalkoxyphthalocyaninato)lutetium(III) Complexes, J. Mater. Chem., 2003, 13 (2), 243.
    [38] Kumar S., Varshney S. K., Design and Synthesis of Discotic Nematic Liquid Crystals, Org. Lett., 2002, 4 (2), 157.
    [39] Goodby J. W., Robinson P.S., Teo B. K., Cladis P. E., The Discotic Phase of Uro-porphyrin I Octa-N-dodecyl Estei, Mol. Cryst. Liq. Cryst. Lett., 1980, 56 (1), 303.
    [40] Liu C., Pan H., Fox M. A., Bard A. J., High-Density Nanosecond Charge Trapping in Thin Films of the Photoconductor ZnODEP, Science, 1993, 261, 897.
    [41] Schouten P. G., Warman J. M., Haas M. P., Fox M. A., Pan H., Charge Migration in Supramolecular Stacks of Peripherally Substituted Porphyrins, Nature, 1991, 353, 736.
    [42] Liu C., Pan H., Tang H., Fox M. A., and Bard A. J., Effect of Structural Order on the Dark Current and Photocurrent in Zinc Octakis(β-decoxyethyl) porphyrin Thin-Layer Cells, J. Phys. Chem. 1995, 99 (19), 7632
    [43] Bartczak A., Namiki Y., Qian D. J., The Interactions between Tetrapyridyl Porphyrin and Viologen units Covalently Linked to Polymers, J. Photochem.Photobiol. Chem., 2003, 159 (3), 259.
    [44] Gregg B. A., Fox M. A. , Bard A. J., Porphyrin Octaesters: New Discotic Liquid Crystals, J. Chem. Soc., Chem. Commun., 1987, 15, 1134.
    [45] Gregg B. A., Fox M. A., Bard A. J., Octakis(beta-hydroxyethyl)porphyrin (octaethanolporphyrin) and its Liquid Crystalline Derivatives: Synthesis and Characterization, J. Am. Chem. Soc., 1989, 111 (8), 3024.
    [46] Pan H., Liu C., Fox M. A., Reversible Charge Trapping/Detrapping in a Photoconductive Insulator of Liquid Crystal Zinc Porphyrin, Chem. Mater., 1997, 9 (6), 1422.
    [47] Castella M., Lopez-Calahorra F., Velasco D., and Finkelmann H., The First Asymmetrically β-Polysubstituted Porphyrin-based Hexagonal Columnar Liquid Crystal, Chem. Commun., 2002, 20, 2348.
    [48] Segade A., Castella M., Lopez-Calahorra F., and Velasco D., Synthesis and Characterization of Unsymmetrically β-Substituted Porphyrin Liquid Crystals: Influence of the Chemical Structure on the Mesophase Ordering, Chem. Mater., 2005, 17 (21), 5366.
    [49] Milgrom L., Yahioglu G., Bruce D .W., Morrone S., Henari F. Z., Blau W. J., Mesogenic Zinc Complexes of 5,10,15,20-tetraarylethynyl-substituted Porphyrins, Adv. Mater., 1997, 9 (4), 313.
    [50] Patel B. R., Suslick K. S., Discotic Liquid Crystals from a Bis-Pocketed Porphyrin, J. Am. Chem. Soc., 1998, 120 (45), 11802.
    [51] Liu W., Shi T., Synthesis and characterization of liquid crystal of meso-tetra (4-n-octanoyloxyphenyl)porphyrin, Chem. Res. Chin. Univ., 1998, 1 4 (2), 210.
    [52] Liu, W., Shi, Y. H., Shi, T. S., Liu, G. F., Liu, Y. X., Wang C., Synthesis and Characterization of Liquid Crystalline 5,10,15,20-tetrakis(4-n-alkanoyloxy- phenyl)porphyrins, Liq. Cryst., 2003, 30, 1255.
    [53] Shimizu Y., Miya M., Nagata A., Ohta K., Yamamoto I., Kusabayashi S.,Mesomorphic Phase-Tansitions of Tetraphenylporphyrins with 4 Long Aliphatic Chains, Liq. Cryst., 1993, 1 4(3), 795.
    [54] Shimizu Y., Matsuno J., Miya M., Nagata A., The First Aluminium Discotic Metallomesogen: Hydroxo [5,10,15,20-tetrakis(4-n-dodecylphenyl) porphy- rinato]aluminium (III), J. Chem. Soc., Chem. Commun., 1994, 20, 2411.
    [55] Nagata A., Shimizu Y., Nagamoto H., Miya M., Synthesis and Mesomorphic Behavior of Oxochloro [5,10,15,20-tetrakis(4-N- dodecylphenyl)porphinato] Molybdenum (V), Inprg. Chim. Acta., 1995, 238 (1), 169.
    [56] Maeda Y., Shimizu Y., Enantiotropic and Monotropic Transitions of the Discotic Mesogen 5,10,15,20-tetrakis(4-n-dodecylphenyl)porphyrin under Pressure, Liq. Cryst., 1998, 25 (4), 537.
    [57] Monobe H., Miyagawa Y., Mima S., Sugino T., Uchida K., Shimizu Y., Photoconductive Properties of a Mesogenic Long-chain Tetraphenyl- porphyrin Oxovanadium(IV) Complex, Thin Solid Films, 2001, 393 (1), 217.
    [58] Burroes H. D., Rocha Gonsalves A. M., Leitao M. L. P., Miguel M. Da G., Pereira M. M., Phase Transitions and Self-assembly in Meso-tetrakis (undecyl) Porphyrin, Supramol. Sci., 1997, 4 (3), 241.
    [59] Ohta K., Ando M., Yamamoto I., Discotic Liquid Crystals of Transition metal Complexes. 23: Synthesis and Mesomorphism of Tetrakis (3, 4-di-n- alkylphenyl) porphyrin Derivatives and Their Metal Complexes, J. Porphyr. Phthalocya., 1999, 3 (4), 249.
    [60] Monobe H., Mima S., Sugino T., Shimizu Y., Mesomorphic and Photocond- uctive Properties of A Mesogenic Long-chain Tetraphenylporphyrin Nickel(II) Complex, J. Mater. Chem., 2001, 11(5), 1383.
    [61] Kimura M., Saito Y., Ohta K., Hanabusa K., Shirai H., Kobayashi N., Self-Organization of Supramolecular Complex Composed of Rigid Dendritic Porphyrin and Fullerene, J. Am. Chem. Soc., 2002, 124 (19), 5274.
    [62] Shimichi K., Motoko T., Novel Liquid Crystals Consisting of Tetraphenyl- porphyrin Derivatives, Tetrahedron Lett., 1990, 31(22), 3157.
    [63] Ohta K., Ando N., Yamamoto I., Discotic Liquid Crystals of Transition metal Complexes. 22. Synthesis and Mesomorphism of Octa-alkoxy- substituted tetra-phenylporphyrin Derivatives and Their Copper(II) Complexes, Liq. Ctryst., 1999, 26 (5), 663.
    [64] Ohta K., Yamaguchi N., Yamamoto I., Discotic Liquid Crystals of Transition metal Complexes. 24. Synthesis and Mesomorphism of Porphyrin Derivatives Substituted with Two or Four Bulky Groups, J. Mater. Chem., 1998, 8 (12), 2637.
    [65] Nakai T., Ban K., Ohta K., and Kimura M., Discotic Liquid Crystals of Transition metal Complexes. 32. Synthesis and Liquid-Crystalline Properties of Doubledeckers and Tripledeckers Based on Cerium Complexes of Bis- and Tetrakis (3, 4-dialkoxyphenyl) porphyrin, J. Mater. Chem., 2002, 12 (4), 844.
    [66] Arunkumar C., Bhyrappa P. and B. Varghese, Synthesis and Axial Ligation Behaviour of Sterically Hindered Zn (II) Porphyrin Liquid Crystals, Tetrahedron Lett., 2006, 47 (46), 8033.
    [67] Inoue S., Immortal Polymerization: The Outset, Development, and Application, J. Polym. Sci. Polym. Chem., 2000, 38 (16), 2861.
    [68] Webster O. W., Living Polymerization Methods, Science, 1991, 25, 887.
    [69] Aida T., Inoue, S., Living Polymerization of Epoxides with Metaloporphyrin and Synthesis of Block Copolymers with Controlled Chain Lengths, Macromolecules, l981, 14 (5), 1162.
    [70] Amass A. J., Perry M. C., Riat D. S., Tighe B. J., Colclough E., Steward M. J., The Ring-opening Polymerization of Oxetane to Living Polymers using a Porphinato-aluminium Catalyst, Eur. Polym. J. 1994, 30 (5), 641.
    [71] Aida T., Inoue S., Activation of Carbon Dioxide with Aluminum Porphyrinand Reaction with Epoxide, J. Am. Chem. Soc., 1983, 105 (5), 1304.
    [72] Aida T., Ishikawa M., Inoue S., Alternating Copolymerization of Carbon Dioxide and Epoxide Catalyzed by The Aluminum Porphyrin System, Macromolecules, 1986,19(1), 8.
    [73] Sugimoto H., Kuroda K., The Cobalt Porphyrin-Lewis Base System: A Highly Selective Catalyst for Alternating Copolymerization of CO2 and Epoxide under Mild Conditions, Macromolecules, 2008, 41 (2), 312.
    [74] Gridnev A. A., Ittel S. D., Fryd M., and Wayland B. B., Formation of Organocobalt Porphyrin Complexes from Reactions of Cobalt(II) Porphyrins and Dialkylcyanomethyl Radicals with Organic Substrates, Organometallics, 1993, 12 (12), 4871.
    [75] Wayland B. B., Poszmik G., and Mukerjee S. L., Living Radical Polymerization of Acrylates by Organocobalt Porphyrin Complexes, J. Am. Chem. Soc., 1994, 116 (17), 7943.
    [76] Wayland B. B., Basickes L., Mukerjee S., Living Radical Polymerization of Acrylates Initiated and Controlled by Organocobalt Porphyrin Complexes, Macromolecules, 1997, 30 (26), 8109.
    [77] Gridnev A. A., Ittel S. D., Fryd M., Wayland B. B., Kinetic Model for the Reaction of Cobalt Porphyrins with Olefins under Free Radical Conditions, Organometallics, 1996, 15 (1), 222.
    [78] Nanda A. K., and Kishore K., Catalytic Radical Polymerization of Vinyl Monomers by Cobalt Porphyrin Complex and Metamorphosis of Block-into-block Copolymer, Polymer 2001, 42 (6), 2365.
    [79] Nanda A. K., Kishore K., Autocatalytic Oxidative Polymerization of Indene by Cobalt Porphyrin Complex and Kinetic Investigation of the Polymerization of Styrene, Macromolecules, 2001, 34 (6), 1600
    [80] Nanda A. K., and Kishore K., Catalytic Oxidative Polymerization of 1, 1- Diphenylethylene at Ambient Temperature and Potential Application ofPeroxide Macroinitiator, Macromolecules, 2002, 35 (17), 6505.
    [81] Li Y., Wayland B. B., Macromonomer Living Character in the Cobalt(II) Porphyrin Chain Transfer Catalysis for Radical Polymerization of Methacrylic Acid in Water, Chem. Commun., 2003, 13, 1594.
    [82] Oh Y., Swenson D., Goff H. M., Olefin Polymerization Activity and Crystal Structure of Alkyliron (III) Porphyrin Complexes, Bull. Korean Chem. Soc. 2003, 24, 167.
    [83] Wayland B. B., Peng C., Fu X., Lu Z., and Fryd M., Degenerative Transfer and Reversible Termination Mechanisms for Living Radical Polymerizations Mediated by Cobalt Porphyrins, Macromolecules 2006, 39 (24), 8219.
    [84] Morrison D. A.,. Davis T. P, Heuts J. P. A., Messerle B., Gridnev A. A., Free Radical Polymerization with Catalytic Chain Transfer, J. Polym. Sci. Polym. Chem., 2006, 44 (21), 6171.
    [85] Peng C., Fryd M., and Wayland B. B., Organocobalt Mediated Radical Polymerization of Acrylic Acid in Water, Macromolecules, 2007, 40 (19), 6814.
    [86] Long G. S., Snedeker B., Bartosh K., Werner M. L., Sen A., Transition Metal Phthalocyanine and Porphyrin Complexes as Catalysts for the Polymerization of Alkenes, Can. J. Chem. 2001, 79, 1026.
    [87] Lehmann M,, Gearba R. I., Koch M. H. J., Ivanov D. A., Semiflexible Star-Shaped Mesogens as Nonconventional Columnar Liquid Crystals, Chem. Mater., 2004, 16 (3), 374.
    [88] 李中芳, 王宇新, 王亚权, Meso-5,10,15,20-四(对羟基苯基)卟啉及其稀土配合物的新合成方法, 山东理工大学学报(自然科学版), 2003, 17(1), 1.
    [89] James P. C., Robert R. G., Christopher R., Thomas R. H., George L., and Ward T., Picket fence porphyrins: Synthetic Models for Oxygen Binding Hemoproteins, J. Am. Chem. Soc., 1975, 97 (6), 1427.
    [90] 朱宝库, 徐志康, 徐佑一, 四(4-硝基苯基)卟啉和四(4-氨基苯基)卟啉的合成, 应用化学, 1999, 16(1), 68.
    [91] 刘淑清, 孙浩然, 徐吉庆, 李冬梅, 四(4-N-吡啶基)卟啉衍生物的合成及表征, 应用化学, 2000, 17, 260.
    [92] 贾慧颖, 徐蔚青, 刘国发, 5,10,15,20-四(对氯苯基)卟啉羟基稀土配合物的光谱研究, 高等学校化学学报, 2004, 25, 338.
    [93] David K. L., Infrared Spectra of N-methyltetraphenylporphyrin Complexes, Inorg. Chem., 1978, 17(2), 231.
    [94] Wang Q. M., Bruce D.W., Synthesis of Calamitic, Liquid Crystalline Porphyrins with Lateral Aromatic Branches, Tetrahedron Lett., 1996, 37 (42), 7641.
    [95] Omenat A., Barberá J., Serrano J. L., Houbrechts S., Persoons A., Columnar Liquid Crystals with Highly Polar Groups: Evaluation of the Nonlinear Optical Properties, Adv. Mater., 1999, 11 (15), 1292.
    [96] Kraft A., Reichert A., Kleppinger R., Supramolecular Liquid Crystals with Columnar Mesophases Through Self-assembly of Carboxylic Acids Around a Tribasic Core, Chem. Commun., 2000, 12, 1015.
    [97] Barbera J., Iglesias R., Serrano J. L., Sierra T., Palacios B., Switchable Columnar Metallomesogens. New Helical Self-Assembling Systems, J. Am. Chem. Soc. 1998, 120 (12), 2908.
    [98] Pang D., Wang H. and Li M., Smectic A Liquid Crystals From Dihydrazide Derivatives with Lateral Intermolecular Hydrogen Bonding, Tetrahedron, 2005, 61(25), 6108.
    [99] Xin H., Wang H., Bai B., Pang D., Li M., A Family of Low Molecular Weight Organogelators Based on Mesomorphic Dihydrazide Derivatives, J. Mol. Liq., 2008, 139, 143.
    [100] Okada S., and Segawa H., Substituent-Control Exciton in J-Aggregates of Protonated Water-Insoluble Porphyrins, J. Am. Chem. Soc., 2003, 125 (9), 2792.
    [101] Maiti N. C., Mazumdar S., Perlasamy N., J- and H-aggregates of Porphyrins with Surfactants: Fluorescence, Stopped Flow and Electron Microscopy Studies, J. Porphyr. Phthalocya., 1998, 2 (4), 369.
    [102] An B. K., Kwon S.-K., Jung S.-D., Park S. Y., Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles, J. Am. Chem. Soc., 2002, 124 (48), 14410.
    [103] Iijima S., Helical Microtubules of Graphitic Carbon, Nature, 1991, 354, 56.
    [104] Sun Y.-P., Fu K., Lin Y., Huang W., Functionalized Carbon Nanotubes: Properties and Applications, Acc. Chem. Res., 2002, 35 (12), 1096.
    [105] Murakami H., Nomura T., Nakashima N., Noncovalent Porphyrin- Functionalized Single-walled Carbon Nanotubes in Solution and the Formation of Porphyrin-nanotube Nanocomposites, Chem. Phys. Lett., 2003, 378, 481.
    [106] Li H., Zhou B., Lin Y., Gu L. R., Wang W., Fernando K. A. S., Kumar S.,Allard L. F., and Sun Y., Selective Interactions of Porphyrins with Semiconducting Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., 2004, 126(4), 1014.
    [107] Baskaran D., Mays J. W., Zhang X. P., and Bratcher M. S., Carbon Nanotubes with Covalently Linked Porphyrin Antennae: Photoinduced Electron Transfer, J. Am. Chem. Soc., 2005, 127 (19), 6916.
    [108] Hasobe T., Fukuzumi S., Kamat P. V., Ordered Assembly of Protonated Porphyrin Driven by Single-Wall Carbon Nanotubes. J- and H-Aggregates to Nanorods, J. Am. Chem. Soc., 2005, 127 (34), 11884.
    [109] Guldi D. M., Rahman G. M. A., Sgobba V., Ehli C., Multifunctional Molecular Carbon Materials-from Fullerenes to Carbon Nanotubes, Chem. Soc. Rev., 2006, 35 (5), 471.
    [110] (a) Rosca I. D., Watari F., Uo M., Akasaka T., Oxidation of Multiwalled Carbon Nanotubes by Nitric Acid, Carbon, 2005, 43 (15), 3124.
    [111] Hamon M. A., Chen J., Hu H., Chen Y., Itkis M. E., Rao A. M., Eklund P. C., Haddon R. C., Dissolution of Single-Walled Carbon Nanotubes, Adv. Mater., 1999, 11 (10), 834.
    [112] Adler A. D., A Simplified Synthesis for Meso-tetraphenylporphine, J. Org. Chem., 1966, 32, 476.
    [113] Bovey F. A., High Resolution NMR of Macromolecules, Academic Press: New York; 1972; Chapter 8, pp 147-179.
    [114] Sun H., Shen Q., Yang M., New neutral Ni(II)- and Pd(II)-based initiators for polymerization of styrene, Eur. Polym. J., 2002, 38 (10), 2045.
    [115] Inoue Y., Nishioka A., Chujo R., Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Polystyrene and Poly-α-methylstyrene, Die. Macromol. Chem. 1972, 156 (1), 207.
    [116] Ascenso J. R., Dias A R., Gomes P. T., Romao C. C., Tkatchenko I., Revillon A., Pham Q. T., Isospecific Oligo-/Polymerization of Styrene with Soluble Cationic Nickel Complexes. The Influence of Phosphorus(III) Ligands, Macromolecules, 1996, 29 (12), 4172.
    [117] Renner M. W., Fajer J., Oxidative Chemistry of Nickel Porphyrins, J. Biol. Inorg. Chem., 2001, 6, 823.
    [118] Tritto I., Sacchi M. C., Locatelli P., Li S. X., Low-temperature 1H and 13C NMR Investigation of Trimethylaluminium Contained in Methylaluminoxane Cocatalyst for Metallocene-based Catalysts in Olefin Polymerization, Macromol. Chem. Phys., 1996, 197 (4), 1537.
    [119] Zakharov I. I., Zakharov V. A., Potapov A. G., Zhidomirov G. M., A DFT Quantum-chemical Study on the Structures and Active Sites of Polymethyl- aluminoxane, Macromol. Theory. Simul., 1999, 8 (3), 272.
    [120] Johnson L. K., Killian C. M., Brookhart M., New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins, J. Am. Chem. Soc., 1995, 117 (23), 6414.
    [121] Guldi D. M., Kumar M., Neta P., Reactions of Alkyl and Fluoroalkyl Radicals with Nickel, Iron, and Manganese Porphyrins, J. Phys. Chem., 1992, 96 (23), 9576.
    [122] Musaev D. G., Froese R. D. J., Svensson M., Morokuma K., A Density Functional Study of the Mechanism of the Diimine-Nickel-Catalyzed Ethylene Polymerization Reaction, J. Am. Chem. Soc., 1997, 119, 367.
    [123] Deng L., Margl P., Ziegler T., A Density Functional Study of Nickel(II) Diimide Catalyzed Polymerization of Ethylene, J. Am. Chem. Soc., 1997, 119, 1094.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700