用户名: 密码: 验证码:
碳纤维用Lyocell原丝力学性能改进的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文简要地介绍了碳纤维特别是纤维素基碳纤维及其原丝的发展概况,总结了提高和改善Lyocell纤维力学性能的研究现状,并重点介绍了纤维素相对分子质量及其分布的相关测定方法。为了改进碳纤维用Lyocell原丝的力学性能,文中用GPC方法研究了适于生产碳纤维用的Lyocell原丝的纤维素浆粕的相对分子质量及其分布,并用流变方法探讨了从纤维素/NMMO溶液的动态流变数据中预测纤维素的相对分子质量分布和多分散系数,通过其与GPC测定的结果进行对比,验证了流变法测定纤维素浆粕的相对分子质量分布的可行性。此外,本文还采用对Lyocell纤维进行热处理以及用炭黑填充Lyocell纤维等方法提高和改善Lyocell原丝的性能,并研究了热处理及炭黑的填充对Lyocell纤维及最终制备的Lyocell基碳纤维的结构与性能的影响。
     采用GPC法,以0.5%LiCl/DMAc作为流动相可以测定纤维素的相对分子质量分布,国外对此已有多篇报道,但国内至今尚无报道。在没有专用GPC仪的情况下,本论文仅使用液相色谱仪的GPC附件即成功地测定了几种不同来源的纤维素的相对分子质量分布。研究表明随着纤维素浆粕聚合度的增大,所得到的Lyocell纤维的力学性能提高;生产服用的Lyocell纤维和碳纤维用Lyocell原丝的纤维素原料的相对分子质量及其分布的要求不同,生产服用Lyocell纤维要求纤维素的原料聚合度不能太大,相对分子质量分布要比较宽,而生产碳纤维用的Lyocell原丝的纤维素原料的聚合度要比较大,相对分子质量分布适中;实验还发现采用聚合度较高(DP1400)的浆粕纺丝,其可纺性较差,不能稳定连续纺丝,但在其中添加少量聚合度中等的浆粕(DP500~800),则混合浆粕的可纺性较好,且得到的Lyocell纤维力学性能也很好。这是因为这种混合浆粕的相对分子质量及其分布有其特点,它的相对分子质量分布明显变宽,高相对分子质量的峰几乎没有变化,但中低相对分子质量部分含量增多,出现了较低的相对分子质量峰,这些高相对分子质量部分赋予了产品具有好的力学性能,而中低相对分子质量部分好像增塑剂,使加工更易进行。
    
    用流变学方法从纤维素闪MMO溶液的动态流变数据中预测纤维素的相
    对分子质量分布与GPC方法测得的结果是对应的。虽然流变学法得到的微分
    相对分子质量分布是正态分布,不能象GPC的结果那么直观地反映其相对分
    子质量分布的细节,但是用来对照分析纤维素的相对分子质量分布还是可行
    的。此外采用LlorenS提出的预测聚合物样品多分散指数M:/M,的方法,可
    以从纤维素闪MMO.HZO浓溶液的流变数据中计算纤维素的多分散指数,虽
    然从流变数据中计算得到的多分散指数比GPC的结果略大,但变化的规律与
    GPC是一致的,且二者有一定的相关性。因此使用动态流变方法来预测和比
    较不同纤维素的相对分子质量分布以及多分散指数还是非常方便和可行的。
     在自制的实验室装置上对Lyocell纤维进行热处理,发现热处理能提高纤
    维的断裂强度和初始模量,但是断裂伸长率下降。分析了不同的热处理温度
    和热处理时间对纤维力学性能的影响,结果表明温度为160℃,时间为
    12一255时效果较好。此外,热处理中施加张力可以进一步提高Lyocell纤维
    的断裂强度和初始模量,但纤维的断裂伸长率也迅速下降。研究结果还表明
    热处理后的Lyocell纤维结晶度有所提高,但随着张力的增加,结晶度基本不
    变。此外,热处理后的晶区取向基本不变,总取向增大,故无定形区取向提
    高,使热处理后的Lyocell纤维的强度和模量提高。实验还发现,Lyocell纤
    维通过热处理而提高的力学性能并不能长久的维持。随着放置时间的延长,
    其力学性能会逐渐下降,当放置时间超过60天以后,其力学性能回复到热处
    理以前的状态,这是由于纤维素的非热塑性以及Lyocell纤维结晶的特殊性,
    不能象热塑性的芳纶一样通过热处理使之再取向重新结晶来提高纤维的力学
    性能。尽管如此,如果将热处理后的纤维尽快地进行碳化,还是可以提高最
    终的碳纤维的力学性能。将Lyocell纤维在160℃,125定长热处理后14天制
    得碳纤维,其强度可提高12%,模量提高4%左右,断裂伸长保持不变。
     纳米炭黑添加剂对纤维素/NMMO纺丝液的流变性能、Lyocen原丝及最
    终的碳纤维的结构和性能有很大的影响。实验发现纳米级炭黑的加入使体系
    的粘度降低,但随着炭黑含量的逐渐增加,溶液粘度又逐渐增大。随着剪切
    速率的增加,纤维素/NMMO·H20/炭黑溶液的表观粘度降低,表现为典型
    的切力变稀行为。在动态流变实验中,炭黑的加入使溶液的粘性降低,损耗
In this paper, the development and basic feature of carbon fiber, especially cellulose-based carbon fiber and its precursor were briefly introduced. The present situation of improvement of mechanical properties of Lyocell fiber was reviewed. The methods for determining molecular weight (MW) and molecular weight distribution (MWD) were introduced with emphasis. The MW and MWD of cellulose pulps, which are suitable for producing Lyocell precursor for carbon fiber, were studied by gel permeation chromatography (GPC). The MWD and polydispersity indices (PDI) of cellulose were also investigated from the dynamic rheological data of cellulose/ NMMOH2O solutions. The comparison of the results from rheological data and GPC shows that it is feasible to predict the MWD of cellulose by using rheological method. Moreover, heat treatment of Lyocell fiber and Lyocell fiber modified by carbon black were applied to improve the mechanical properties of Lyocell precursor, and the effects of heat treatment and the addition of carbon black on the structures and properties of Lyocell fiber and resulted Lyocell-based carbon fiber were also studied.There are many reports about determining the MWD of cellulose by GPC which using 0.5% LiCl in N, N- dimethylacetamide (DMAc) as the eluent. In this paper, MW and MWD of different kinds of cellulose are determined by GPC accessory of High Performance Liquid Chromatography (HPLC). The results show that the mechanical properties of Lyocell fiber are improved with the increasing of the degree of polymerization (DP) of cellulose pulp. The MWD of cellulose for producing textile Lyocell fibers is different from that for producing Lyocell precursor for carbon fiber. The DP of cellulose for producing textile Lyocell fiber can't be too high, and MWD should be broad. However, cellulose for producing Lyocell precursor for carbon fiber should have a high DP and moderate MWD. It is found that the spinnability was poor only using the higher DP (DP 1400) pulp as material, on the other hand the spinnability of blended pulp is improved and the mechanical properties of obtained Lyocell fiber are very well by adding a small
    
    amount of moderate DP (DP500-800) pulp. The MWD of this blended pulp becomes broader and the peak of high MW has no obvious change, whereas the contents of moderate and low MW increase and the low MW peak appears. This high MW section endues the product with good mechanical properties, and the moderate and low MW sections act as the plasticiser, which makes the process easier.Generally speaking, the MWD predicted from the dynamic rheological data of cellulose/NMMO-H2O solutions are consistent with those from GPC. Although the differential MWD obtained from rheological method is bell-shaped and can't describe the detail of MWD of cellulose as GPC, it is feasible to compare the MWD of cellulose from different pulps by using rheological method. Moreover, the method proposed by Llorens, which could predict the PDI of polymer, is also used to calculate the PDI of cellulose from the rheological data of cellulose/NMMOH20 solution. Although the results predicted by rheological method are slight higher than those of GPC, the order of change of PDI determined by rheological method and GPC is identical. Therefore, it is feasible and convenient to predict and compare the relative MWD and PDI of cellulose by using rheological method.The Lyocell fibers are heat treated with keeping a constant length in an experimental apparatus in our laboratory. The results show the tensile strength and initial modulus of treated Lyocell fiber increase sharply, whereas the elongation at break decreases. The effects of temperature and time of heat treatment on the mechanical properties of Lyocell fiber are analyzed. It is found that the mechanical properties reach maximum when the treat temperature is 160℃ and the processing time is 12~25s. Moreover, applying tension on the fiber during the heat treatment could improve further the tensile strength and initial modulus of Lyocell fiber, while the elongation at break of fiber dec
引文
1 贺福,杨永岗.攻坚碳纤维原丝瓶颈势在必行.化工新型材料,2001,29(1):3~6
    2 贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1997.1~319
    3 D. R. Lovell. Carbon Fibres—Their Place in Modern Technology. London: The Plastic Institute, 1974. 283
    4 许鹤鸣.碳纤维.北京:科学出版社.1979.6
    5 王曾辉,高晋生.碳素材料.上海:华东化工学院出版社.1991.16
    6 H. Blumberg, K. Hillermeier, E. Scholten. Carbon fiber status and development. Chemical Fibers International, 2000, 50(2): 157~161
    7 E. Fitzer, M. Heym. Carbon Fibers-the Outlook. Chemistry and Industry, 1976, 8(21): 663~676
    8 赵培桐,王越飞,叶梅君.粘胶基碳纤维原丝的研制.产业用纺织品,1994,13(3):21~26
    9 K. Harholdt. Carbon fiber, past and future. Industrial Fabric Products Review, 2003, 88 (4): 14~16
    10 贺福,赵建国,王润娥.粘胶基碳纤维.化工新型材料,1999,27(1):3~10
    11 贺福,王润娥,赵建国.我国碳纤维工业的现状及其展望.高科技纤维与应用,1998,23(6):1~7
    
    12 A. A. Konkin. Production of Cellulose Based Carbon Materials. Elsevier Science Publishers, Berlin, Germany, 1985. 283~285
    13 R. Barcon. Carbon fiber from rayon precursor in chemistry and physics of carbon. New York: Macel Dekker Press, 1973.9
    14 赵培桐.粘胶基碳纤维原丝的工艺技术的研究.产业用纺织品,1994(3):27~30
    15 D. J. O'Neil. Precursors for Carbon and Graphite Fibers. Intern. J. Polymeric Mater., 1979, 7:203~218
    16 U. S. Pat. 3,322,489, 1967
    17 Jap. Pat. 2775/70, 1970
    18 彭顺金,邵惠丽,胡学超.新型碳纤维用原丝-高强高模Lyocell纤维纺丝工艺研究.合成纤维工业,2002,25(6):21~24
    19 W. Albrecht, M. Reintjes, B. Wulfhorst. Lyocell fibers. Chemical Fibers International, 1997, 47:298~304
    20 刘瑞刚,胡学超,章潭莉.新一代纤维素纤维Lyocell.合成纤维,1997,26(4):23~28
    21 T. Kreze, S. Malej. Structural characteristics of new and conventional regenerated cellulosic fibers. Textile Res. J., 2003, 73(8): 675~684
    22 吴琪琳,潘鼎,邵惠丽.Lyocell纤维与国产粘胶纤维的对比研究.高分子材料科学与工程,2001,17(4):78~81
    23 Q. Wu, D. Pan. A new cellulosic based carbon fiber from a Lyocell precursor. Textile Res. J., 2002,72(5): 405~410
    24 S. Peng, H. Shao, X. Hu. Lyocell fibers as the precursor of carbon fibers. J. Appl. Polym. Sci., 2003, 90(7): 1941~1947
    25 J. Swan, Brit. Pat. 4,933,1880
    26 T. Edison, Electric lamp. U. S. Pat. 223,398, 1880
    27 W. R. Whitrey, U. S. Pat. 916,905, 1909
    28 W. Watt, L. N. Phillips, W. Johnson. High-strength, high-modulus carbon fibers. Engineer, 1966, 221(5757): 815~818
    29 赵稼祥.碳纤维的现状与新发展.材料工程,1997(2):3~6
    30 罗益峰.沥青基碳纤维发展概况.高科技纤维与应用,1999,24(4):21~26
    
    31 吴琪琳.粘胶基碳纤维的强度及其分散性研究.博士学位论文.上海:东华大学.2002年4月
    32 王依民,杨序纲,陈惠芳.粘胶基碳纤维原丝结构对碳丝性质的影响-原丝形态结构的影响.中国纺织大学学报,1996,22(6):32~37
    33 杨序纲,王依民,陈惠芳.粘胶纤维炭化过程的形态学结构.中国纺织大学学报,1997,23(4):1~7
    34 I. Yoneshiga, H. Teranishi. 系炭素纤维制造法.Japanese Pat.Specification 2774/70,1970
    35 贺福,杨永岗.提高碳纤维强度的理论基础及其技术途径.高科技纤维与应用,2001,26(2):7~10,32
    36 J. D. Timpa, H. H. Ramey, JR. Relationship between cotton fiber strength fibers strength and cellulose molecular weight distribution: HVI calibration standands. Textile Res. J., 1994, 64(10): 557~562
    37 彭顺金.高性能Lyocell纤维及其用于碳纤维原丝的研究.博士学位论文.上海:东华大学.2003年12月
    38 张松洁.碳纤维用新型纤维素纤维原丝的研制.硕士论文.上海:东华大学.2004年3月
    39 T. Kreze, S. Strnad, K. Stana-Kleinschek, et al. Correlation between structure characteristics and adsorption properties of regenerated cellulose fibers. J. Mat. Res. Innovat., 2001, 4:107~111
    40 H. Chanzy, S. Nawrot, S. Perez, et al. Proceeding of the TAPPI International Dissolving and Speciality Pulps Conference, Boston, 1983, 127~132
    41 彭顺金,张松洁,邵惠丽等.纺丝工艺对高相对分子质量Lyocell纤维素纤维性能的影响.东华大学学报(自然科学版),2003,29(2):83~87
    42 莫冬次.Lyocell纤维纺丝工艺概述.广西化纤通讯,2002(1):25~29
    43 李庆春,黄知清,杨春波等.Lyocell纤维适用浆粕初探.广西化纤通讯,2001(1):5~8
    44 董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学.北京:中国纺织出版社,1996.411~497
    
    45 王曙中,王庆瑞,刘兆峰.高科技纤维概论.上海:中国纺织大学出版社,1999.322
    46 李新贵,黄美荣.高级液晶聚合物材料工程.上海:华东师范出版社,2000.50
    47 叶祖望.用GPC-[η]法研究热处理对芳纶1414分子结构的影响.硕士论文.上海:东华大学.1982年8月
    48 D. W. Chae, H. G. Chae, B. C. Kim. Physical properties of Lyocell fibers spun from isotropic cellulose dope in NMMO monohydrate. Textile Res. J., 2002, 72(4): 335~340
    49 M. E. Vickers, N. P. Briggs, R. N. Ibbett, et al. Small angle X-ray scattering studies on Lyocell cellulosic fibres: the effects of drying, re-wetting and changing coagulation temperature. Polymer, 2001, 42:8241~8248
    50 A. Nechwatal, T. Reuβmann, C. Hauspurg.提高Lyocell的弹性模量.国际纺织导报,2002(2):10~15
    51 魏东山,戴冕,邵惠丽等.Lyocell纤维干燥工艺的选择.上海纺织科技,2003,31(1):10~11
    52 程博闻,孙常宏.Lyocell纤维的现状及发展趋势.人造纤维,1999(2):26~30
    53 H. Chanzy, M. Paillet, R. Hagege. Spinning of cellulose from Nmethylmorpholine N-oxide in the presence of additives. Polymer, 1990, 31: 400~405
    54 H. D. Chanzy. Process for the Preparation of a Shapeable Solution of Cellulose in Presence of a Tertiary Amine Oxide and an Additive. U. S. Pat. 4880469, 1989
    55 W. Jie. Ultimate Mechanical Properties of Polyethylene and Cellulose Fibers: Breaking Strength, Breaking Strain, and Modulus. PhD Thesis, State University of New York, 1996:1~150
    56 Z. Lewandowski. Application of a linear synthetic polymer to improve the properties of cellulose fibers made by the NMMO process. J. Appl. Polym. Sci., 2002, 83:2762~2773
    57 D. Vorbach, E. Taeger. Properties of carbon filled cellulose filaments. Chemical Fibers International, 1998, 48:120~122
    
    58 F. Meister, D. Vorbach. Lyocell products with built-in functional properties. Chemical Fibers International, 1998, 48:32~35
    59 张引枝,贺福,王茂章等.炭黑添加剂对PAN原丝性能的影响.炭素技术,1997(5):5~8
    60 张引枝,樊彦贞,贺福等.炭黑添加剂对活性炭纤维中孔率的影响.炭素技术,1997(6):5~11
    61 T. Eremeeva. Size exclusion chromatography of enzymatically treated cellulose and related polysaccharides: a review. J. Biochem. Biophys. Methods, 2003, 56: 253~264
    62 唐爱民,梁文芷.纤维素的功能化.高分子通报,2000(4):1~9
    63 A. H. Conner. Size exclusion chromatography of cellulose and cellulose derivatives. In:Wu C, editor. Handbook of size exclusion chromatography. New York: Marcel Dekker, 1995. 331-352
    64 H. Jerosch, B. Lavedrine, J. C. Cherton. Study of the stability of celluloseholocellulose solutions in N, N-dimethylacetamide-lithium chloride by size exclusion chromatography. J. Chromatogr. A, 2001, 927:31~38
    65 Y. T. Bao, A. Bose, M. R. Ladisch, et al. New approach to aqueous gel permeation chromatography of nondeviratized cellulose. J. Appl. Polym. Sci., 1980, 25:263~275
    66 C. L. McCormick, D. K. Lichatowich. Homogeneous solution reactions of cellulose, chitin, and other polysaccharides to produce controlled-activity pesticide systems. J. Polym. Sci., Polym. Lett. Ed., 1979, 17:479~484
    67 C. L. McCormick, P. A. Callais, B. H. Hutchinson. Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules, 1985, 18: 2394~2401
    68 M. Terbojevich, A. Cosani, G. Conio, et al. Mesophase formation and chain rigidity in cellulose and derivatives. 3. Aggregation of cellulose in N, Ndimethylacetamide-lithium chloride. Macromolecules, 1985, 18:640~646
    69 J. L. Ekmains. Gel permeation chromatographic analysis of cellulose. Am. Lab. News, 1987a. Jan/Feb: 10~11
    70 T. Bikova, A. Treimanis. Problems of the MWD analysis of cellulose by SEC using DMAc/LiCl: a review. Carbohydr. Polym., 2002, 48:23~28
    
    71 A. M. Striegel. Theory and applications of DMAc/LiCl in the analysis of polysaccharides. Carbohydr. Polym., 1997, 34:267~274
    72 A. El-Kafrawy. Investigation of cellulose/LiCl/dimethylacetamide and cellulose/LiCl/N-methy1-2-pyrrolidinone solutions by ~(13)C NMR spectroscopy. J. Appl. Polym. Sci., 1982, 27:2435~2443
    73 A. M. Striegel, J. D. Timpa, P. Piotrowiak, et al. Multiple neutral alkali halide attachments onto oligosaccharides in electrospray ionization mass spectrometry. Int. J. Mass Spectrom. Ion Proc., 1997, 162:45~55
    74 S. Spange, A. Reuter, E. Vilsmeier, et al. Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of solvatochromic technique. J. Polym. Sci. A: Polym. Chem., 1998, 36(11): 1945~1955
    75 A. M. Striegel, J. D. Timpa. Molecular characterization of polysaccharides dissolved in Me_2Nac-LiCl by gel-permeation chromatography. Carbohydr. Res., 1995, 267:271~290
    76 程博闻.纤维素在LiCl/极性溶剂体系中溶解性能的研究.天津纺织工学院学报,2000,19(2):1~3
    77 J. A. Cuculo, S. M. Hudson, A. V. Wilson. Direct solvents for cellulose. Int. Fiber J., 1993, 8(3): 50~57
    78 J. L. Ekmanis. Gel permeation chromatographic analysis of cellulose. Proceedings of the Conference on GPC Analysis of Cellulose. Paper 251. Pittsburgh, Atlanta City, NJ, 1986
    79 J. D. Timpa. Application of universal calibration in gel permeation chromatography for molecular weight determination of plant cell wall polymers: cotton fiber. J. Agric. Food Chem., 1991, 39:270~275
    80 T. R. Dawsey, C. L. McCormick. The lithium chloride /dimethylacetamide solvent for cellulose: a literature review. J. Macromol. Sci. Rev. Macromol. Chem. Phys., 1990, C30 (384): 405~440
    81 C. L. McCormick. Novel cellulose solutions. U. S. Pat. 4278790, 1981
    82 T. Roder, B. Morgenstern, N. Schelosky. Solutions of cellulose in N,Ndimethylacetamide/lithium chloride studied by light scattering methods. Polymer, 2001, 42:6765~6773
    
    83 A. A. Silva, M. L. Laver. Molecular weight characterization of wood pulp cellulose: dissolution and size exclusion chromatographic analysis. Tappi J., 1997,80(6): 173-180
    84 S. Striouk, B. A. Wolf. Fractional dissolution of unsubstituted cellulose. Macromol. Chem. Phys., 2000, 201: 1946-1949
    85 J. D. Timpa, H. H. Ramey, JR.. Molecular characterization of three cotton varieties, Textile Res. J., 1989, 9: 661-664
    86 J. F. Kennedy, Z. S. Rivera, C. A. White, et al. Molecular weight characterization of underivatized cellulose by GPC using lighium chloride-dimethylacetamide solvent system. Cell. Chem. Technol., 1990, 24: 319-325
    87 H. Jerosch, B. Lavedrine, J. C. Cherton. Study of the stability of cellulose-holocellulose solutions in N, N-dimethylacetamide-lithium chloride by size exclusion chromatography. J. Chromatogr. A, 2001, 927: 31-38
    88 A. Grubisic, P. Rempp, H. A. Benoit. Universal calibration for gel permeation chromatography. Polym. Lett., 1967, 5: 753-759
    89 A. M. Emley, M. Ali, R. J. Heywood. A size exclusion chromatography study of cellulose degradation. Polymer, 2000, 41: 8513-8521
    90 M. A. Rousselle, P. S. Howley. Molecular weight of cotton cellulose: effect of treatment with a total cellulase. Textile Res. J., 1998, 68 (8): 606-610
    91 B. Hortling, P. Farm, J. Sundquist. Investigations of pulp components (polysaccharides, residual lignins) using HP/SEC system with viscometric、RI and UV detectors. Proceedings of 3rd European workshop on lignocellulosics and pulp, 28-31 August, Stockholm, Sweden, 256-259
    92 G. I. Welch. Solution properties and unperturbed dimensions of PVDF. Polymer, 1974, 15: 429-432
    93 M. Strlic, J. Kolene, J. Kolar, et al. Enthalpic interactions in size exclusion chromatography of pullulan and cellulose in LiCl/N,N-dimethylacetamide. J. Chromatogr. A, 2002, 964: 47-54
    94 M. Strlic, J. Kolar. Size exclusion chromatography of cellulose in LiCl/N,N-dimethylacetamide. J. Biochem. Biophys. Methods. 2003, 56: 265-279
    95 U. Wertermark, K. Gustafsson. Molecular size distribution of wood polymers in birch kraft pulps. Holzforschung, 1994, 48:146-150
    
    96 J. Llorens, E. Rude, R. M. Marcos. Unimodal molecular weight distribution of commercial polymers from viscoelastic data. J. Polym. Sci., Part B: Polym. Phy., 2000, 38:1539~1546
    97 C. Lavallee, A. Berker. More on the prediction of molecular weight distributions of linear polymers from their rheology. J. Rheo., 1997, 41(4): 851~871
    98 倪如青,陈稀,余木火.由聚合物熔体的动态流变学性质测定分子量分布.合成纤维,1993,22(5):37~44
    99 C. Carrot, J. Guillet. From dynamic moduli to molecular weight distribution: a study of various polydisperse linear polymers. J. Rheo., 1997, 41(5):1203~1220
    100 W. H. Tuminello. Molecular weight and molecular weight distribution from dynamic measurements of polymer melts. Polym. Eng. Sci., 1986, 26(19): 1339~1347
    101 W. H. Tuminello, N. C. Mauroux. Determing molecular weight distributions from viscosity versus shear rate flow curves. Polym. Eng. Sci., 1991, 31(20): 1496~1507
    102 W. Thimm, C. Friedrich, M. Marth, et al. On the Rouse spectrum and the determination of the molecular weight distribution from rheological data. J. Rheo., 2000, 44:429~438
    103 C. Pattamaprom, R. G. Larson, and T. J. Van Dyke. Quantitative predictions of linear viscoelastic rheological properties of entangled polymers. Rheol. Acta, 2000, 39:517~531
    104 R. S. Anderssen, D. W. Mead. Theoretical derivation of molecular weight scaling for rheological parameters. J. Non-Newtonian Fluid Mech., 1998, 76: 299~306
    105 J. Llorens, E. Rude, R. M. Marcos. Polydispersity index from linear viscoelastic data: unimodal and bimodal linear polymer melts. Polymer, 2003, 44:1741~1750
    106 E. van Ruymbeke, R. Keunings, C. Bailly. Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data. J. Non-Newtonian Fluid Mech., 2002, 105:153~175
    
    107 H. Fujita, K. Ninomiya. Dependence of mechanical relaxation spectra of linear amorphous polymers on the distribution of molecular weights. J. Polym. Sci., 1957, 24: 233-260
    108 G. R. Zeichner, C. W. Macosko. On-line viscoelastic measurements for polymer melt processes. SPE ANTEC Tech. Conf., San Francisco, May, 1982
    109 B. H. Bersted, J. D. Slee. A relationship between steady-state shear melt viscosity and molecular weight distribution in polystyrene. J. Appl. Polym. Sci., 1977,21:2631-2644
    110 M. T. Shaw, W. H. Tuminello. A closer look at the MWD-viscosity transform. Polym. Eng. Sci., 1994, 34: 159-165
    111 S. Wu. Polymer molecular weight distribution from dynamic melt viscoelasticity. Polym. Eng. Sci., 1985, 25: 122-128
    112 W. T. Tuminello. Molecular weight distribution of tetrafluoroethylene-hexafluoropropylene copolymers. Polym. Eng. Sci., 1989, 29(10): 645-653
    113 W. J. McGrory, W. T. Tuminello. Determining the molecular weight distribution from the stress relaxation properties of a melt. J. Rheol., 1990, 34: 867-890
    114 W. H. Tuminello, T. A. Treat, A. D. English. Poly(tetrafluoroethylene): molecular weight distributions and chain stiffness. Macromolecules, 1988, 21: 2606-2610
    115 G. X. Gu, X. C. Hu, H. L. Shao, et al. Study on molecular weight distribution of cellulose by using rheological methods. SEN'I GAKKAISHI, 2001, 57(2): 34-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700