用户名: 密码: 验证码:
苯乙烯RAFT无皂乳液聚合体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成了二硫代苯甲酸苯乙基酯(CDB)、二硫代苯甲酸异丙苯基酯(PEDB)和二硫代苯甲酸苄基酯(BDB)三种RAFT试剂,利用红外光谱和核磁共振对产物组成进行了表征。
     以三种RAFT试剂为链转移剂、以偶氮二异丁腈(AIBN)为引发剂,进行了苯乙烯的本体聚合反应,结果表明在所制备的三种RAFT试剂中BDB对苯乙烯本体聚合反应的控制性最好。对聚合动力学和分子量的控制进行了研究。研究表明,此种苯乙烯本体聚合体系具有明显的活性自由基聚合特征。提出了活性自由基聚合的动力学模型并对文献中的理论分子量模型进行了修正。
     在前述本体聚合研究工作基础上,进一步研究了RAFT存在下苯乙烯无皂乳液聚合。以BDB用作RAFT试剂进行苯乙烯和丙烯酸的本体共聚,制备具有自乳化功能的低聚物。利用所制备的低聚物进行乳化,进行苯乙烯无皂乳液聚合研究。所合成的RAFT共聚物乳化效果好,得到的聚合物乳液体系稳定。
     研究结果表明要制备稳定的无皂乳液,需要加入三乙胺,所需量为中和80%~100%丙烯酸;加入丙酮有利于低聚物的乳化。在75℃条件下进行聚合反应,无皂乳液聚合反应速率较快,体系稳定。乳液聚合产物的分子量与单体转化率呈线形关系,产物的数均分子量比理论分子量大,随着转化率的增加,分子量分布会变宽。本体共聚配方中BDB/AIBN的比值越大、BDB含量越大,乳液聚合速率越小,相近转化率时产物的分子量越小,分布也越窄。乳液粒的粒径处于250nm~300nm,粒径分布指数为1.335。
Cumyl Dithiobenzoate (CDB), 1-Phenylethyl Dithiobenzoate (PEDB)and Benzyl Dithiobenzoate (BDB),there RAFT agents,were synthesized and the structures of the products were determined by IR spectrum and 1H-NMR spectrum .
     The bulk polymerization of styrene using AIBN as initiator at the presence of a RAFT agent was studied in detail, including the kinetics and control over molecular weight and molecular weight distribution. The results confirmed the distinct living polymerization character of the reaction system and showed that among the three obtained RAFT agents BDB was the best for styrene bulk polymerization system. A mathematic model for the kinetics of the styrene RAFT bulk polymerization was set up and modification to the model of molecular weight reported in literatures was made.
     On the basis of the above bulk polymerization, further study on emulsifier-free emulsion polymerization of styrene with the presence of RAFT was made. Firstly, the RAFT BDB was used for preparation of styrene-acrylic acid RAFT oligomer by bulk polymerization,which has function a self emulsification. The so prepared RAFT copolymer was then employed in followed study on emulsion polymerization of styrene without using any extra surfactant. Polymer Emulsion products of good stability were obtained by this access.
     According to the experiment work, for the preparation of stable soap-free polymer emulsion, triethylamine is needed to neutralized 80~100% of the acylic acid used. The use of acetone is benifitial to the emulsification of the oligomer. At temperature of 75°C, the reaction could proceed faster and thus led to a stable product. The molecular weight of the polymer product showed a linear relationship with the monomer conversion. And the real molecular weight was higher than the theoretical calculation. With a higher monomer conversion, the molecular weight distribution became broader. In the work, the higher ratio
引文
[1]Tsavalas J G, Schork F J, De Brouwer Hans, et al. Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions. Macromolecules, 2001, 34(12): 3938-3946.
    [2]Monteiro M J, Bussels R, Beuermann S, et al. High-pressure 'living' free-radical polymerization of styrene in the presence of RAFT, Australian Journal of Chemistry. 2002, 55 (6): 433-437.
    [3]Butte A, Storti G, Morbidelli M,et al. Miniemulsion living free radical polymerization by RAFT. Macromolecules, 2001,34 (17):5885-5896.
    [4]Vana P, Albertin L, Barner L, et al. Reversible addition-fragmentation chain-transfer polymerization. Journal of Polymer Science, Part A: Polymer Chemistry, 2002, 40(22): 4032-4037.
    [5] Donovan M S, Sumerlin B S, Lowe A B, et al. Controlled/"living" polymerization of sulfobetaine monomers directly in aqueous media via RAFT. Macromolecules, 2002, 35(23): 8663-8666.
    [6] Matyjaszewski K, Muller A H E. Model studies of the slow termination process in the polymerization of styrene by atom transfer radical polymerization. Polym. Prepr., 1997, 38(1): 683-684.
    [7] Miyamoto M, Sawamoto M, Higashimura T. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system, Macromolecules. 1984, 17( 3 ): 265-268.
    [8] Faust R, Kennedy J P. Living cationic polymerization of vinyl monomers by organoaluminium halides 1. EtAlCl2/ester initiating systems for living polymerization of vinyl ethers, Polym. Bull., 1986, 15: 417-423.
    [9] Matyjaszewski K. Free radical reactions. Ed.Congresses, American Chemical Society, Washington, D.C, 1998, Vol. 685.
    [10] Matyjaszewski K. Controlled/Living radical polymerization: Progress in ATRP, NMP, and RAFT, Ed.Hardcover. American Chemical Society, Washington, D.C,2000,Vol.768.
    [11] Matyjaszewski K, Thomas P. Davis T P. Handbook of radical polymerization, Ed. Hoboken, Wiley-Interscience,2002.
    [12] Ostu T, Matsunaga T, Doi T, et al. Features of living radical polymerization of vinyl monomers in homogeneous system using N, N-diethyl-dithio carbamate derivatives as photoiniferters . Eur. Polym. J., 1995, 31(1):67-68.
    [13] Luo N, Hutchison B J, Kristi S ,et al.Synthesis of a novel methacrylic monomer iniferter and its application in surface photografting on crosslinked polymer substrates. Journal of polymer science, Part A: Polymer Chemistry, 2002, 40(11):1885-1891.
    [14] Doi T, Matsumoto A, Otsu T,et al. Radical polymerization of methyl acrylate by use of benzyl N, N-diethyl dithio carbamate in combination with tetraethylthiuram disulfide as a two-component iniferter. Journal of Polymer Science Part A: Polymer Chemistry,1994, 32(15):2911-2918.
    [15] Otsu T, Yoshioka M, Tanaka M,et al. Synthesis of telechelic polymers through radical polymerization with a two-component iniferter system, Eur. Polym. J., 1992, 28(11):1325-1329.
    [16] Qin S H, Qiu K Y . Vinyl radical polymerization with multi-functional iniferter technique. American chemical society, polym. Prepr., 2000, 4(2):1813-1814.
    [17] Wang J S, Matyjaszewski. "Living" radical/controlled radical polymerization Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules, 1995, 28(7):572-576.
    [18] Ma J W, Cunningham M F, Kim B,et al.Nitroxide partitioning between styrene and water. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39(7):1081-1089.
    [19] Moad G. Product study of the nitroxide inhibited thermal polymerization of styrene.J. Macromol. Sci.Chem., 1982, 6(11):589-593.
    [20] Zhang H, Klumperman B,Ming W,et al.Effect of Cu(Ⅱ) on the kinetics of the homogeneous atom transfer radical polymerization of methylmethacrylate. Macromolecules, 2001, 34(18):6169-6173.
    [21]. Georges M. K, Richard P. N. Veregin, Peter M. et al.Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993, 26(11): 2987-2988.
    [22] Yu Q, Zeng F, Zhu S. Atom transfer radical polymerization of poly (ethylene glycol) dimethacrylate. Macromolecules, 2001 34 (6):1612-1618.
    [23] Wang X S, Armes S.Facile atom transfer radical polymerization of methoxy-capped oligo (ethylene glycol) methacrylate in aqueous media at ambient temperature. Macromolecules, 2000, 33(18):6640-6647.
    [24] Hawthorne D G., Moad G., Rizzardo E, et al. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT) . Macromolecules, 1999, 32 (16):5457-5459.
    [25] Donovan M S.Synthesis of well-defined, stimuli-responsive, water-soluble polymers via the RAFT process.Polym. Prepr.1999,40(2): 281-282.
    [26] Cunningham M F. Living / controlled radical polymerizations in dispersed phase systems. Progress in polymer Science, 2002, 27 (6):1039-1067.
    [27] Rzayev J, Penelle J.Controlled / living free-radical polymerization under very high pressure. Macromolecules, 2002, 35 (5):1489-1491.
    [28]Otsu T, Matsumoto A, Tazaki T,et al. Living radical polymerization of methyl methacrylate with tetraphenylsuccinodinitrile as a thermal iniferter. Memoirs of the Faculty of Engineering, 1986,27(12):137-142.
    [29]Otsu T, Kuriyama A. Polymer design by iniferter technique in radical polymerization: synthesis of ab and aba block copolymers containing random and alternating copolymer sequences. Polymer Journal,1985,17(1):97-104.
    [30]Otsu T, Kuriyama A. Living radical polymerization in homogeneous system by using iniferter: design of block copolymers. Journal of Macromolecular Science ,Part A:Pure and Applied Chemistry,1983,21(8):961-977.
    [31] Kuriyama A, Otsu T. Living radical polymerization of methyl methacrylate with a tetrafunctional photoiniferter: synthesis of star polymer. Kuriyama Polymer Journal, 1984,16(6):511-514.
    [32]Otsu T, Kuriyama A. Living mono- and biradical polymerizations ihomo-geneous stem synthesis of ab and aba type block copolymers. Polym. Bull. (Berlin), 1984, 11(2 ):135-142.
    [33]Ward J H,Shahar N A,Peppas. Kinetics of ‘living’ radical polymerizations of multifunctional monomers,Polymer,2002 ,43(6):1745-1752.
    [34]Joseph Jagur-Grodzinski. Preparation of functionalized polymers using living and controlled polymerizations. Reactive & Functional Polymers,2001,49(1):1-54.
    [35]Rizzardo E, Solomon D H, A new method for investigating the mechanism of initiation of radical polymerization, Polym Bull.(Berlin),1979,6:429-433.
    [36]Devenport W,Michalak L,Malmstrom E,et al. "Living" free-radical polymeri- zations in the absence of initiators: controlled autopolymerization .Marcro- molecules,1997,30( 7 ):1929-1934.
    [37] Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem.Rev.,2001, 101(12); 3661-3688.
    [38]Benoit D,Chaiplinski V,Braslau R,et al. Development of a universal alkoxyamine for "Living" free radical polymerizations .J.Am.Chem.Soc.1999,121:3904-3920.
    [39]Dao J,Benoit D,Hawker C J,J. A versatile and efficient synthesis of alkoxyamine LFR initiators via manganese based asymmetric epoxidation catalysts. Polym. Sci.: Polym.Chem.A,1998,36:2161-2162.
    [40]Hawker C J, Living" free radical polymerization: a unique technique for the preparation of controlled macromolecular architectures. Acc.Chem.Res.,1997, 30:73-76.
    [41]Benoit D,Harth E,Fox P.et al. Accurate structural control and block formation in the living polymerization of 1,3-dienes by nitroxide-mediated procedures . Macromolecules,2000,33( 2 ):363-370.
    [42]Listigovers N A,Georges M.K,Odell P G,et al. Narrow-polydispersity diblock and triblock copolymers of alkyl acrylates by a "living" stable free radical polymerization .Macromolecules,1996,29( 27 ):8992-8993.
    [43]Keoshkerian B,Grorges M,Quinlan M,et al. Polyacrylates and polydienes to high conversion by a stable free radical polymerization process: Use of reducing agents. Macromolecules,1998,31( 21 ):7559-7561.
    [44] Georges M.K,Hamer G K, Listigovers N A . Block copolymer synthesis by a nitroxide-mediated living free radical polymerization process. Macromolecules, 1998,31( 25 ):9087-9089.
    [45]Goto A,Fukuda T. Kinetic study on nitroxide-mediated free radicalpolymerization of tert-butyl acrylate.Macromolecules,1999,32( 3 ):618-623.
    [46]Ohn K,Lzu Y,Yamamoto S,et al. Nitroxide-controlled free radical polymerization of a sugar-carrying acryloyl monomer. Macromol.Chem. Phys.,1999,200:1619- 1625.
    [47]Pradel J L,Boutevin B,Ameduri B J. Controlled radical polymerization of 1,3-butadiene. II. initiation by hydrogen peroxide and reversible termination by TEMPO. Polym.Sci.,Part A:Polym.chem.,2000,38:3293-3302.
    [48]Burguiere C,Dourges M A,Charleux B,et al. Synthesis and characterization of unsaturated poly(styrene-b-n-butyl methacrylate) block copolymers using TEMPO-mediated controlled radical polymerization . Macromolecules,1999, 32( 12 ): 3883-3890.
    [49]Chong Y K,Ercole F,Moad G, et al. Midazolidinone nitroxide-mediated p polymerization . Macromolecules,1999,32( 21 ):6895-6903.
    [50]Le Mercier C,Lutz J,Matyjaszewski K, et al. Controlled/living radical polymerization.Ed. ACS Symposium Series 768, American Chemical Society. Washington,D C,2000,122:108.
    [51] Benoit D,Grimaldi S,Robin S, et al. Kinetics and mechanism of controlled free-radical polymerization of styrene and n-butyl acrylate in the presence of an acyclic -phosphonylated nitroxide.J. Am. Chem. Soc.,2000,122(25):5929-5939.
    [52]Lokaj J,Vlcek P,Kriz J. Synthesis of polystyrene-poly(2-(dimethylamino)ethyl methacrylate) block copolymers by stable free-radical polymerization .Macro- molecules, 1997,30(24):7644-7646.
    [53]Harth E,Hawker C J,Fan W,et al. Chain end functionalization in nitroxide- mediated "Living" free radical polymerizations. Macromolecules, 2001, 34(12): 3856-3862.
    [54]Bertin D,Destarac M,Boutevin B.In Polymer and Surfaces:A Versatile Combination; Ed Hommel,D. ,.Research Signpost.Trivandrum India,1998,47-75.
    [55]Malmstrom E E,Hawker C J. Macromolecular engineering via 'living' free radical polymerizations. Macromol.Chem. Phys., 1998,199(6):923-935.
    [56]Stchling U M,Mamstrom E E,Waymouth,R M,et al. Synthesis of poly(olefin) graft copolymers by a combination of metallocene and "living" free radical polymerization techniques .Macromolecules,1998,31( 13 ):4396-4398.
    [57]Tsoukatos T,Pispas S,Hadjichritidis N.Complex macromolecular architectures by combining TEMPO living free radical and anionic polymerization. Macromolecules,2000,33( 26 ):9504-9511.
    [58]Puts R D,Sogah D Y. Multifunctional initiators containing orthogonal sites. one-pot, one-step block copolymerization by simultaneous free radical and either cationic ring-opening or anionic ring-opening polymerization .Macromolecules, 1998,31( 23 ):8425-8428.
    [59]Robert B,Grubbs R B,Hawker C J, et al. A tandem approach to graft and dendritic graft copolymers based on Living free radical polymerizations.Ed. Angewandte Chemie International Edition in English J. Angew. Chem. Int. ,1997,36(3):270-272.
    [60]Wang J S, Matyjaszewski K. Controlled/'living' radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process , Macromolecules, 1995, 28(23): 7901-7910.
    [61]Kato M, Kamigaito M, Sawamoto M, et al.Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris(triphenyl-phosphine) ruthenium(II) / methylaluminum bis(2,6-di-tert-butylph-enoxide) initiating system: possibility of living radical polymerization, Macromolecules, 1995, 28(5): 1721-1723.
    [62]Percec V, Barboiu B. 'Living' radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl, Macromolecules, 1995, 28(23): 7970-798.
    [63]Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes J. Am. Chem. Soc.:1995,117(20):5614-5615.
    [64]Patten T E, Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials. Adv. Mater., 1998,10(12):901-915.
    [65] Matyjaszewski K,Xia J. Atom transfer radical polymerization. Chem. Rev.,2001,101(9):2921-2990.
    [66]Kamagaito M,Ando T,Sawamoto M. Metal-catalyzed living radical polymerization. Chem. Rev.,2001,101(12):3689-3745.
    [67]Ajaya Kumar Nanda and Krzysztof Matyjaszewski . Effect of [bpy]/[Cu(I)] ratio, solvent, counterion, and alkyl bromides on the activation rate constants in atom transfer radical polymerization .Macromolecules,2003,36( 5 ): 599-604.
    [68] Nanda, A. K.; Matyjaszewski, K.. Matyjaszewski. Effect of [PMDETA]/[Cu(I)] ratio, monomer, solvent, counterion, ligand, and alkyl bromide on the activation rate constants in atom transfer rdical polymerization.Macromolecules,2003, 36( 5):1487-1493.
    [69] Goto A,Fukuda T. Determination of the activation rate constants of alkyl halide initiators for atom transfer radical polymerization. Macromolecular Rapid Communications,1999,20(12): 633-636.
    [70]Matyjaszewski K. Transition meta catalysis in controlled radicalpolymerization: Atom Transfer Radical Polymerization. Chemistry -A European Journal,1999, 5(11):3095-3102.
    [71] Patten T E, Matyjaszewski K. Copper(I)-catalyzed atom transfer radical polymerization. Acc. Chem. Res.,1999,32(10):895-903.
    [72] Ando T,Kamagaito M, Sawamoto M. Iron(II) chloride complex for living radical polymerization of methyl methacrylate. Macromolecules,1997,30( 16 ):4507- 4510.
    [73] Matyjaszewski, K.; Wei, M.; Xia, J.; McDermott, N. E. Controlled/"living" radical polymerization of styrene and methyl methacrylate catalyzed by iron complexes. Macromolecules,1997,30( 26 ):8161-8164.
    [74] Granel C,Dubois P,Jerome R,et al. Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides. Macromolecules,1996,29( 27 ): 8576-8582.
    [75]Uegaki H,Kotani Y,Kamigaito M,et al. Nickel-mediated living radical polymerization of methyl methacrylate. Macromolecules,1997,30( 8 ):2249-2253.
    [76] Percec, V.; Barboiu, B.; Neumann, A.; Ronda, J. C.et al. Metal-catalyzed "living" radical polymerization of styrene iitiated with arenesulfonyl chlorides. from heterogeneous to homogeneous catalysis . Macromolecules,1996,29( 10 ):3665- 3668.
    [77]Moineau G,Granel C,Dubois P,et al. Controlled radical polymerization of methyl methacrylate initiated by an alkyl halide in the presence of the wilkinson catalyst . Macromolecules,1998,31( 2 ):542-544.
    [78] Kotani, Y.; Kamigaito, M.; Sawamoto, M. Re(V)-mediated living radical polymerization of styrene ReO2I(PPh3)2/R-I initiating systems. Macromolecules, 1999,32( 8 ):2420-2424.
    [79] Chen J,Juan Chu J, Zhang K. Atom transfer radical polymerizations of methyl methacrylate catalyzed by EBiB/SnCl2·2H2O(FeCl2·4H2O)/FeCl3·6H2O/MA5- DETA systems. Polymer,2004,45(1):151-155.
    [80] Xia J H, Matyjaszewski K, Controlled/"living" radical polymerization. atom transfer radical polymerization catalyzed by copper(I) and picolylamine complexes .Macromolecules,1999,32( 8 ):2434-2437.
    [81]Metin H,Acar, Bicak N. Synthesis of hexylated triethylenetetramine: New ligand for homogeneous atom transfer radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry.2003, 41(11): 1677-1680.
    [82] Teodorescu, M.; Gaynor, S. G.; Matyjaszewski, K. Halide anions as ligands in iron-mediated atom transfer radical polymerization . Macromolecules,2000, 33( 7 ):2335-2339.
    [83] Wang J S, Matyjaszewski K. "Living"/controlled radical polymerization. transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator . Macromolecules,1995,28( 22 ):7572-7573.[18]
    [84] Xia J H, Matyjaszewski K. Controlled/"living" radical polymerization. homogeneous reverse atom transfer radical polymerization using AIBN as the initiator . Macromolecules,1997,30( 25 ):7692-7696.
    [85] Moineau, G.; Dubois, P.; Jerome, R.; et al. Alternative atom transfer radical polymerization for MMA using FeCl3 and AIBN in the presence of triphenylphosphine: An easy way to well-controlled PMMA. et al. Macromolecules,1998,31( 2 ):545-547.
    [86]Wang W X,Dong Z H,Xia P,et al. Reverse atom transfer radical polymerization of methyl acrylate using AIBN as the initiator under heterogeneous conditions. Macromolecular Rapid Communications. 1998,19(12):647-649.
    [87]Xia J H, Matyjaszewski K. Homogeneous reverse atom transfer radical polymerization of styrene initiated by peroxides . Macromolecules,1999,32( 16 ): 5199- 5202.
    [88]Zhu S M,Wang W,T W ,et al. Reserse atom transfer radical polymerization of styrene using BPO as the initiator under heterogeneous conditions. Acta Polymerica,1999,50(7):267-269.
    [89]Chen X P,Qiu K Y. Synthesis of well-defined poly(methyl methacrylate) by radical polymerization with a new initiation system TPED. Macromolecules,1999,32( 26 ):8711-8715.
    [90]Qin D Q,Qin S H,Qiu K Y. Living/controlled radical polymerization of styrene with a new initiating system: DCDPS/FeCl3/PPh3. Journal of Polymer Science Part A: Polymer Chemistry, 2000,38(1):101-107.
    [91]秦东奇, 钦曙辉,丘坤元. 新型引发体系引发 MMA“活性”自由基聚合. 高等学校化学学报,2000, 21(4):650-652.
    [92]Qin D Q,Qin S H,Qiu KY. Living/controlled radical polymerization of methyl methacrylate by reverse ATRP with DCDPS/FeCl3/PPh3 initiating system.Polymer ,2000,41(20):7347-7353.
    [93]Coessens V,Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization . Prog.Polym.sci.,2001,26(3):337-377.
    [94]Muhlebach A,Gaynor S G, Matyjaszewski K. Synthesis of amphiphilic block copolymers by atom transfer radical polymerization (ATRP) . Macromolecules, 1998,31( 18 ):6046-6052.
    [95]Boener H G,Beers K, Matyjaszewski K,et al. Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerization. Macromolecules,2001,34( 13 ):4375-4383.
    [96]Cheng G,Boker A,Zhang M,et al. Amphiphilic cylindrical core-shell brushes via a "grafting from" process using ATRP . Macromolecules,2001,34( 20 ):6883-6888.
    [97]Qin D Q,Qin S H,Qiu K Y. Living/controlled radical polymerization of styrene with a new initiating system: DCDPS/FeCl3/PPh3.Journal of Polymer Science Part A: Polymer Chemistry ,2000,38(1):101-107.
    [98]Gaynor S G,Edelman S, Matyjaszewski K,et al. Synthesis of branched and hyperbranched polystyrenes . Macromolecules,1996,29( 3 ):1079-1081.
    [99] Matyjaszewski K, Gaynor S G,Kulfan A. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. acrylic AB* monomers in "living" radical polymerizations . Macromolecules,1997,30( 17 ):5192-5194.
    [100]Coessens V,Pyun J, Peter J, et al. Functionalization of polymers prepared by ATRP using radical addition reactions . Macromolecular Rapid Communications, 2000,21(2): 103-109.
    [101]Werne V, Patten, T . Preparation of structurally well-defined polymer- nanoparticle hybrids with controlled/living radical polymerizations. J. Am. Chem. Soc.,1999,121(32):7409-7410.
    [102]Pyun J, Matyjaszewski K,Kowalewski T,et al. Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces. J. Am .Chem. Soc.,2001, 9445-9446
    [103] Matyjaszewski K,Miller P J,Shukla N,et al. Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator . Macromolecules,1999,32( 26 ):8716-8724.
    [104] David M ,Haddleton ,Kukulj D. Atom transfer polymerisation of methyl methacrylate mediated by solid supported copper catalysts. Radigue Chemical Communications, 1999,99-100.
    [105] Haddleton D M,Duncalf D J,Kukulj D,et al. 3-Aminopropyl silica supported living radical polymerization of methyl methacrylate: dichlorotris(triphenyl phosphine)ruthenium(II) mediated atom transfer polymerization . Macro- molecules,1999,32( 15 ):4769- 4775.
    [106]Kickebich G,Paik H J, Matyjaszewski K. Immobilization of the copper catalyst in atom transfer radical polymerization .Macromolecules,1999,32( 9 ):2941-2947.
    [107]Shen Y,Zhu S,Zeng F,et al. Atom transfer radical polymerization of methyl methacrylate by silica gel supported copper bromide/multidentate amine .Macro- molecules,2000,33( 15 ):5427-5431.
    [108] Shen Y,Zhu S,Pelton R. Packed column reactor for continuous atom transfer radical polymerization: Methyl methacrylate polymerization using silica gel supported catalyst. Macromolecular Rapid Communications, 2000,21(14):956- 958.
    [109]Shen Y,Zhu S,Zeng F,et al. Synthesis of methacrylate macromonomers using silica gel supported atom transfer radical polymerization. Macromolecular Chemistry and Physics, 2000,201(13):1387-1394.
    [110]Hong S C, Matyjaszewski K. Fundamentals of supported catalysts for atom transfer radical polymerization (ATRP) and application of an immobilized/soluble hybrid catalyst system to ATRP .Macromolecules,2002,35(20 ):7592-7605.
    [111]Hong S C,Paik H, Matyjaszewski K. An immobilized/soluble hybrid catalyst system for atom transfer radical polymerization . Macromolecules,2001,34(15 ): 5099-5102.
    [112]Hong S C,Neugebauer D,Inoue N,et al. Preparation of segmented copolymers in the presence of an immobilized/soluble hybrid ATRP catalyst system. Macromolecules,2003,36( 1 ):27-35.
    [113] Mitsukami Y, Donovan M S, Lowe A B, et al. Water-soluble polymers. 81. direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT .Macromolecules, 2001, 34(7), 2248-2256.
    [114]Jancova K,Kops J,Chem X,et al. Synthesis by ATRP of poly(ethylene-co- butylene)-block-polystyrene, poly(ethylene-co-butylene)-block-poly (4-acetoxystyrene) and its hydrolysis product poly(ethylene-co-butylene)-block- poly(hydroxystyrene). Macromolecular Rapid Communications, 1999,20(4):219- 223.
    [115]Jagur-Grodzinski J. Preparation of functionalized polymers using living and controlled polymerizations. Reactive and Functional Polymers, 2001, 49(1):1-54.
    [116]Baum M, Brittain W. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique .Macromolecules, 2002, 35( 3 ), 610-615.
    [117]Stenzel-Rosenbaum M, Davis T P, Chen V,et al. Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39(16):2777-2783.
    [118] Moad G, Chiefari J, Chong (Bill) Y K, et al. Living free radical polymerization with reversible addition - fragmentation chain transfer (the life of RAFT). Polym. Int., 2000,49(9): 993-1001.
    [119] Chiefari J , Chong(Bil1)Y K , Ercole F , et a1 . Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process .Macromolecules,1998,31(16):5559-5562.
    [120] Du F S,Zhu M Q,Guo H Q,et a1.An ESR study of reversible addition- fragmentation chain transfer copolymerization of styrene and maleic anhydride . Macromolecules,2002,35( 18 ),6739-6741.
    [121] Hawthorne D G,Moad G,Rizzardo E,et a1.Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT): direct ESR observation of intermediate radicals .Macromelecules,1999,32( 16 ):5457-5459.
    [122] Schilli C,Liinzenfer M G,Mtiller A H E.Benzyl and cumyl dithiocarbamates as chain transfer agents in the RAFT polymerization of N-isopropyl-acrylamide. in situ FT-NIR and MALDI-TOF MS investigation. Macromolecules,2002,35(18 ):6819-6827.
    [123] Gaze C,Gilbert B C.Investigations of structure and conformation. Part 11. Electron spin resonance spectra of sulphur- and oxygen-conjugated radicals derived from 1,3-dithiolan, 1,3-oxathiolan, and related compounds. Journal of the Chemical Society, Perkin Transactions 2, 1979,763-769.
    [124] Bemdt A.in Loadoh-Bornstein-Magnetic properties ofFree Radicals;H Fischer,K H Hetlwege EdsSpringer.Verlag:Berlin,1977;VolⅡ.558.
    [125] Muller A H E,Zhuang R,Litvlnenko G.Kinetic analysis of "living" polymer- ization processes exhibiting slow equilibria. 1. degenerative transfer (direct activity exchange between active and "Dormant" species). Application to group transfer polymerization. Macromolecules,1995,28(12 ):4326-4333.
    [126]唐向阳,于九皋,王艳君.可逆加成-断裂链转移聚合研究进展.高分子通报,2004,3:29-37。
    [127] Barner-Kowollik c,Qu J F,Uyen Nguyen T L,et a1.Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate. Macromolecules,2001,34(22 ):7849-7857.
    [128] Monteiro M J,de Barbeyrac J. Intermediate radical termination as the mechanism for Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization . Macromolecules.2001. 34(3 ):349-352.
    [129] de Brouwer, H.; Monteiro, M. J.; Tsavalas, J. G,et a1.Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer .Macromolecules,2000,33( 25 ):9239-9246.
    [130] Tsavalas J G, Schork F J,Brouwe H D,et a1.Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions Macromolecules,2001,34(12 ):3938-3946.
    [131] Prescott S W,BalIard M J, Bizzardo E,et a1.Successful use of RAFT techniques in seeded emulsion polymerization of styrene: living character, RAFT agent transport, and rate of polymerization . Macromolecules,2002,35(14 ):5417-5425.
    [132] Lansalot M,Davis T P.Heuts J P A.RAFT miniemulsion polymerization: influence of the structure of the RAFT agent .Macromolecuhs,2002.35(20 ):7582-7591.
    [133] Mayadusne R T A。Rizzardo E,Chiefari J,et a1.Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT Polymerization) using dithiocarbamates as chain transfer agents .Macromolecules,1999,32(21 ):6977-6980.
    [134] Meijs G F, Rizzardo E. Preparation of controlled molecular weight olefin- terminated polymers by free radical methods: chain transfer using allylic sulfides. Macromolecules, 1988, 21(3): 122-123.
    [135] Chiefari J, Mayadunne R T, Moad C L, et al. Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer(RAFT Polymerization). effect of the activation group Z. Macromolecules, 2003,36( 7 ):2273-2283.
    [136] Rizzardo, E, Chiefari J, Mayadunne R T A, et al. Synthesis of defined polymers by reversible addition-fragmentation chain transfer: the RAFT process. ACS. Symp. Ser., 2000, 768, 278-296,.
    [137] Destarac M, Charmot D, Franck X,et al. Dithiocarbamates as universal reversible addition-fragmentation chain transfer agents, Macromol Rapid Commun, 2000,21:1035-1039.
    [138] Charmot D, Corpart P, Adam H, et al. Controlled radical polymerization in dispersed media. Macromol. Symp., 2000,150: 23-32.
    [139] Chong Y K, Krstina J, Le T P, et al. Thiocarbonylthio compounds(S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT Polymerization). effect of the free-radical leaving group R. Macromolecules, 2003,36(7 ):2256-2272.
    [140] Moad G, Chiefari J, Chong Y K, et al. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym Int, 2000, 49(9): 993~1001.
    [141] Moad G, Chiefari J, Mayadunne R T A, et al. Initiating free radical polymerization , Macromol. Symp., 2002, 182: 65-80.
    [142] Monteiro M J, de Brouwer H. Intermediate radical termination as the mechanism for retardation in reversible addition-fragmentation chain transfer polymerization. Macromolecules, 2001, 34(3 ): 349-352.
    [143] Barner-Kowollik C, Quinn J F, Morsley D R, et al. Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: assessing rate coefficients for the addition-fragmentation equilibrium. Polym. Sci., Part A: Polym. Chem., 2001,39, 1353-1365.
    [144] Kwak Y, Goto A, Tsujii Y,et al. Kinetic study on the rate retardation in radical polymerization of styrene with addition-fragmentation chain transfer. Macromolecules, 2002, 35(8 ):3026-3029
    [145] Goto A, Sato K, Tsujii Y, et al. Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules, 2001, 34( 3 ): 402-408.
    [146] Monteiro M J, Hodgson M, De Brouwer H. The influence of RAFT on the rates and molecular weight distributions of styrene in seeded emulsion polymerization. J. Polym. Sci. , Part A: Polym. Chem., 2000;38:3864-3874.
    [147] Monteiro M J, Van der Vlist J, et al. Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: effect of surfactant migration upon film formation. Polym. Sci., Part A: polym. Chem., 2000, 38:4206-4217
    [148] Monteiro M J, de Barbeyrac J. Free-radical polymerization of styrene in emulsion using a reversible addition-fragmentation chain transfer agent with a low transfer constant: effect on rate, particle size, and molecular weight. Macromolecules, 2001; 34(13 ):4416-4423.
    [149]De Brouwer H, Tsavalas J G, Schork F J, et al. Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer. Macro- molecules, 2000; 33(25 ):9239-9246
    [150] Barner-Kowollik C, Quinn J F, Nguyen T L U, et al. Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate. Macromolecules, 2001, 34(22 ), 7849-7857.
    [151] Monteiro M J, Van der Vlist J, et al. Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: effect of surfactant migration upon film formation. Polym. Sci. Part A: polym. Chem., 2000, 38:4206-4217.
    [152] 曹同玉,刘庆普,胡金生. 聚合物乳液合成原理性能及应用[M]. 化学工业出版社,北京, 1997.
    [153] Robert M F. The homogeneous nucleation of polymer colloids. Br. Polym. J., 1973, 5(5): 467-483.
    [154] Goodwall A R, Wilkinson M C, Hearn J. Mechanism and emulsion polymerization of styrene in soap-free systems. J. Polym. Sci., Part A: Polymer Chem., 1977, 15(9): 2193-2218.
    [155] Chang H S, Chen S A. Kinetics and mechanism of emulsifier-free emulsion polymerization: styrene/surface active ionic co-monomer system. J. Polym. Sci., Part A: Polymer Chem., 1985, 23(10): 2615-2630.
    [156] Chen S A, Chang H S. Kinetics and mechanism of emulsifier-free emulsion polymerization. Ⅲ. Styrene/nonionic co-monomer(2-hydroxyethyl methacrylate) system. J. Polym. Sci., Part A: Polymer Chem., 1990, 28(9): 2547-2567.
    [157] Ou J L, Yang J K, Chen H. Styrene/potassium persulfate/water systems: effects of hydrophilic comonomers and solvent additives on the nucleation mechanism and the particle size. Eur. Polym. J., 2001, 37(3): 789-799.
    [158] Blom H P, Gauthier M, LI K, et al. Soap-free emulsion polymerization of n-butyl acrylate: copolymerization with 1,1- (dimethyl) -1- (3-methacryloxy ethyl)-1-(sulfopropyl) ammonium betaine.J. App. Polym. Sci., 1998, 70(1): 227 -236.
    [159] Okaniwa M. Synthesis of poly(dimethyl-siloxane) and poly(butadine) composite particles and the properties of their grafted polymer particles. Polymer,2000, 41(2): 453-460.
    [160] Akihiko K, Hideki F. Preparation of thermo-sensitive magnetic micro-spheres and their application to bioprocesses. Colloids and Surfaces A, 1999, 153(3): 435-438.
    [161] Obtusuka Y, Kawaguchi H. Preparation of amphoteric latex by modification of styrene-acrylamide copolymer latex. J. App. Polym. Sci., 1987. 26,1637.
    [162]Goodwin J W, Ottwill R H, Petton R, et al. Dielectric and dynamic mechanical relaxation of poly(ether ether ketone)/poly(etherimide) blends below the glass transition. Macromol. Rapid Commun., 1995,10,173-176.
    [163]许涌深,曹同玉,龙复等. 无皂乳液共聚合的动力学和机理. 合成橡胶工业, 1992, 15(2):98-108.
    [164] Tsavalas J G, Schork F J, de Brouwer H, Monteiro M J. Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions. Macromolecules, 2001,34(12 ):3938-3946.
    [165] Kanagasabapathy S, Claverie J, Uzulina I. Reversible addition fragmentation transfer (RAFT) polymerization in emulsion. ACS Polym. Prepr. 1999,40(2): 1080-1091.
    [166] Uzulina I, Kanagasabapathy S, Claverie J. Reversible addition fragmentation transfer (RAFT) polymerization in emulsion. Macromol Symp, 2000,150:33-36.
    [167] Le T P, Moad G, Rizzardo E, et al, Polymerization with living characteristics PCT Int Appl , WO 9801478. 1998.
    [168]Mueller A H E, Zhuang R, Yan D, et al. Kinetic analysis of ‘living’ polymerization processes exhibition slow equilibrial.Degenerative transfer(direct activity exchange between active and ‘dormant’ speies) Application to group transfer polymerization, Macromolecules, 1995,28:4326~4333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700