用户名: 密码: 验证码:
负载贵金属微介孔分子筛的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载贵金属(如Pt,Pd及Rh等)沸石具有很高的加氢脱芳烃活性,在石油工业中广泛用作催化剂。在制备催化剂时,将贵金属封装在沸石均匀的纳米孔道中,有效的防止金属粒子的长大和团聚,增加活性中心的比表面积。同时沸石较小的孔径只允许小分子进入与活性中心接触,而大分子被排斥在孔口外。但这类催化剂对原料中的硫化物非常敏感,即使很低的含量(如大于5ppm)也容易使其中毒而失活。NaA沸石孔径为4?,将贵金属封装在NaA沸石的孔道中,通过孔口调变,将含硫化合物排斥于孔口之外,完全不与贵金属接触,实现了贵金属催化剂的耐硫设计。但是NaA沸石较小的孔道和外比表面积限制了它的应用,而介孔分子筛具有通畅的传质孔道和大的外比表面,因此我们将制备负载Pt的NaA/MCM-41双孔分子筛和介孔NaA沸石催化剂,氢分子可以自由进出NaA沸石孔道,在贵金属粒子上分解活化,并通过氢溢流进入介孔内,介孔为大分子反应提供了充分的表面和空间。
     本论文在溶胶-凝胶和自组装理论基础上,采用两种不同的方法合成微介孔复合分子筛。(1)首先合成负载Pt的纳米A型沸石,以纳米A型沸石为前驱体采用纳米自组装或者附晶生长合成NaA/MCM-41复合分子筛。(2)通过在A型沸石的合成凝胶中加入有机硅结构导向剂合成介孔NaA沸石。采用XRD、N2吸附-脱附、SEM、TEM和激光粒度分析等手段进行了表征,得到以下结论:
     1在合成A型沸石的体系中,加入不同量的Pt(NH3)4Cl2前驱液,通过XRD、粒度分析和SEM等手段,研究发现Pt(NH3)4Cl2能够影响A型沸石的形态和粒径,随着Pt(NH3)4Cl2加入量的增加,A型沸石的XRD衍射峰降低,粒径变小。当n (Pt(NH3)4Cl2) /n(Al2O3)为0.076时,A型沸石的粒径变为100-300nm;当n (Pt(NH3)4Cl2)/n(Al2O3)为0.15时,得到均匀的纳米颗粒,粒径为100nm以下。
     2在A型沸石合成体系中,加入四甲基氢氧化铵(TMAOH)结构导向剂,当n(H2O)/n(SiO2)在34~54之间,搅拌时间为24h,晶化时间为16~24h时,能够合成200nm左右的圆球状的A型沸石,但是产率较低。
     3采用两步晶化法,以合成的负载Pt的A型沸石为前驱物,加入十六烷基三甲基溴化铵(CTAB)模板剂和硅源,调节体系的pH,通过纳米组装或者附晶生长合成负载Pt的NaA/MCM-41复合分子筛。实验证明复合体系中,NaA沸石的晶化和MCM-41的生长没有产生协同作用,而是一个此消彼长的竞争反应。通过对孔结构分析,此法合成的NaA/MCM-41的等温线出现两个迟滞环,对应于介孔结构和二次堆砌双孔孔道,随着n(SiO2)/n(Al2O3)的增大,BET比表面积增大,当补硅量n(SiO2)/n(Al2O3)为5.15,BET比表面积为326m2/g。SEM表明复合分子筛呈包裹状,具有介孔孔道,不同于二者机械混合。
     4在合成A型沸石体系中,采用不同的硅源,分别加入乙烯基三乙氧基硅烷(A-151)、N,N-二甲基-N-[3-(三甲氧硅)丙基]氯化十八烷基铵(TPOAC);N,N-二甲基-N-[3-(三甲氧硅)丙基]氯化十四烷基铵(TPTAC)两性分子介孔导向剂,采用原位造孔法直接合成介孔NaA型沸石。XRD和N2吸附表明:在合成体系中,加入一定量的上述任一有机硅模板剂都能合成介孔A型沸石。N2吸附脱附分析A-151作为合成介孔A型沸石的偶联剂,A型沸石的BET比表面积为77.5m2/g,孔径为20nm以上。TPOAC作为介孔A型沸石的模板剂,A型沸石孔径分布窄,孔径集中在4nm,BET比表面为256m2/g,并且主要是介孔比表面积。TPTAC作为合成介孔A型沸石的模板剂,A型沸石孔径分布窄,孔径集中在4nm,样品的BET比表面积为244m2/g。SEM和TEM分析A-151作为合成介孔A型沸石的偶联剂,合成的A型沸石是纳米粒子的晶间空隙孔;TPOAC和TPTAC作为介孔A型沸石的模板剂,A型沸石表面呈现无序的蠕虫状介孔,这些短程相连的穿晶介孔直伸到微孔沸石表面。
Noble metal (such as Pt,Pd,Rh,etc.)supported zeolite have excellent hydrodearomatization and hydrodesulfurization activity,which have been widely used as catalysts in the petrochemical industry. The uniform pore structure of the zeolite prevents the growth and agglomeration of metal particles during catalyst preparation by encaging the metal particles within the zeolite pore,which can increase specific surface areas of active site.Simultaneously, those active metal sites are accessible only to the molecules that have diameters small enough to diffuse to the active sites, while larger molecules are excluded from the zeolite pore, however, they are susceptible to sulfur poisoning even at concentrations of a few parts per million Noble metals will be encapsulated in zeolite NaA channels with 4? aperture.Zeolite NaA opening will be subsequently adjusted by ion-exchanged and Chemical vapor deposition (CVD) to a proper size to exclude sulfur compounds and prevent from contacting noble metals, which makes sulfur-tolerant catalyst design come true.But its small pore width and external surface area limits its application.While mesoporous molecular sieves possess smooth mass transfer channels and large external surface area.Herein we will prepare NaA/MCM-41 loaded with platinum bimodal pore molecular sieves and mesopore zeolite NaA catalysts. Then hydrogen molecules can readily diffuse in and out of the micro-cage, dissociatively adsorb, activate on metal particles and migrate mesopore surface into via hydrogen spillover that provides enough external surface area for larger molecules reaction.
     In this paper, based on sol-gel and self-assembly theory, micro-mesoporous molecular sieves have been synthesized by different two methods.(1)Nanosized NaA zeolite loaded with platinum was synthesized.NaA/MCM-41 composite materials were subsequently obtained from nanosized zeolite NaA precursor solutions by overgrowth or nanoparticles self-assembly. (2)Mesoporous zeolite NaA was directly synthesized by addinging organosilane surfactant into the initial synthesis mixture and characterized with XRD, N2 adsorption-desorption, SEM, TEM and particle size distribution etc. The results obtained from experiments and studies were given in following.
     1 Pt/NaA-zeolite could be synthesized by incorporating different Pt(NH3)4Cl2 content precursor into the initial systhesis mixture and characterized with XRD, particle size analysis and SEM methods.The research has found that platinum precursors would have an impact on the crystal morphology of the final zeolite.The framework structure of zeolite A progressively could disappear and the particle size could decrease as the platinum content was increased.When n(Pt(NH3)4Cl2)/n(Al2O3) in initial synthesis composition was 0.076, the particle size of zeolite A would ranged between 100 and 300nm.When n(Pt(NH3)4Cl2)/n(Al2O3) in initial synthesis composition was 0.15, the uniform nanosized particles less than 100nm could be obtained.
     2 Round spherical zeolite NaA particles with diameter 200nm could be obtained by the addition of tetramethylammonium hydroxide(TMAOH) into the initial systhesis mixture zeolite A,when the ratio of n(H2O)/n(SiO2) was between 34 and 54,stiring time was 24h and crystallization time varied from 16h to 24h. But the yield of nanosized zeolite A is low.
     3 With a two-step synthesis strategy, NaA/MCM-41 composite molecular sieves have been prepared by overgrowth or nanoparticles self-assembly from as-synthesized nanosized zeolite A supported platinum precursor in the presence of cetyltrimethylammonium bromide surfactant solution and adding silica source under adjusting systematic pH. The experiments turned out that crystallization of zeolite NaA and MCM-41 worked in a competitive rather than a cooperative manner.N2 adsoption-desorption isotherms for NaA/MCM-41 samples in this manner exhibited a typical irreversible type IV isotherm with two separate hysteresis loops,which correspond to framework-confined mesopores and secondary interparticles mesopores.The BET specific surface areas increase as the amount of TEOS was increased in the second step synthesis mixture.The BET specific surface area was 326m2/g when n(SiO2)/n(Al2O3) by the addition of TEOS was 5.15.SEM and TEM showed composite molecular sieves presented packed shape and had mesoporous channels,which are different from mechanical mixture.
     4 Mesoporous zeolite NaA was synthesized by a direct synthesis route adding vinyltriethoxysilane(A-151), octadecyldimethyl (3-trimethoxysilyl propyl) ammonium chloride (TPOAC) or tetradecyldimethyl (3-trimethoxy silylpropyl) ammonium chloride (TPTAC) amphiphilic organosilanes as a mesopore-directing agent into conventional alkaline zeolite NaA synthesis mixtures. The zeolite products were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM).XRD and nitrogen sorption results showed the present method is suitable as a direct synthesis route to highly mesoporous zeolites. nitrogen sorption analysis proved the BET specific surface area of zeolite NaA at optimum condition was 77.5 m2/g and pore width was over 20nm using A-151 as a mesoporous-directing agent;the BET specific surface area of zeolite NaA at optimum condition was 256 m2/g and pore width with narrow distribution was 4nm using TPOAC as a mesoporous-directing agent; the BET specific surface area of zeolite NaA at optimum condition was 244 m2/g and pore width with narrow distribution was 4nm using TPTAC as a mesoporous-directing agent.SEM and TEM analysis results revealed zeolite NaA contained intercrystalline void space by A-151 as a mesoporous-directing agent; zeolite NaA surface appeared disordered wormhole-like mesoporous using TPOAC and TPTAC as mesoporous-directing agents,and the short-range correlation intracrystalline mesopores stretch to zeolite NaA surface.
引文
[1]徐如人,庞文琴等著.分子筛与多孔材料化学[M].北京:科学出版社,2004:2-3.
    [2] Milton R M.Molecular sieve adsorption[P].US Patent:2,882,243,1959-4-14.
    [3] Milton R M.Molecular sieve adsorption[P].US Patent:2,882,244,1959-4-14.
    [4] George T K.Chemistry of crystalline aluminosilicates.II.The synthesis and properties of zeolite ZK-4[J].Inorga. Chem., 1966, 5(9):1537-1539.
    [5] George T K.Chemistry of crystalline aluminosilicatesⅢ.The synthesis and properties of zeolite ZK-5[J]. Inorga.chem.,1966,5(9):1539-1541.
    [6] Breck D W.Crystalline Zeolite Y[P].US Patent:3,130,007.1964-4-21.
    [7] Flanigen E M,Bennett J M,Grose R W,etc.Silicalite,a new hydrophobic crystalline silica molecular sieve[J].Nature,1978,271:512-516.
    [8]李玉平,窦涛.微孔-介孔复合分子筛的合成近况[J].太原科技, 2001,6:28-31.
    [9] Beck J S,Kresge C T,Roth W J,etc. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc.,1992, 114:10834-10843.
    [10] Kresge C T,Beck J S,Roth W J etc.Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism[J]. Nature,1992, 359:710-712.
    [11] Gramlich V, Meier W M. The crystal structure of hydrated NaA:a detailed refinement of a pseudosymmetric zeolite structure[J].Z.Kristallogr.,1971,133:134-149.
    [12] Smith J V. Topochemistry of zeolite and related materials.1.Topology and geometry[J]. Chem.Rev., 1988,88:149–182.
    [13] Breck D W, Eversole W G, Milton R M,etc. Crystalline zeolites. I. The properties of a new synthetic zeolite, type A[J]. J. Am. Chem. Soc.,1956, 78 (23):5963–5972.
    [14] Chu P, Dwyer F G, Vartuli J C,etc.Crystallization method employing microwave radiation.[P] U.S. Patent:4,778,666,1988-10-18.
    [15] Arafat A, Jansen J C, Ebaid A R,etc.Microwave preparation of zeolite Y and ZSM-5[J].Zeolites,1993,13(3):162-165.
    [16] Girnus I, Jancke K, Vetter R J,etc.Large AlPO4-5crystals by microwave heating [J]. Zeolites,1995,15 (1):33-39.
    [17] Cundy C S, Forrest O J,Plaisted R J. Some observations on the preparation and propertiesof colloidal silicalites. Part I: synthesis of colloidal silicalite-1 and titanosilicalite-1 (TS-1) [J].Micropor. Mesopor. Mater. 2003,66(2-3):143-156.
    [18] Bonaccorsi L, Proverbio E. Influence of process parameters in microwave continuous synthesis of zeolite LTA[J]. Micropor. Mesopor. Mater.2008,112 (1-3):481–493.
    [19] Breck D W, Flanigen E M.“molecular sieves”society of the chemical industry [M]. London, 1968 :47 .
    [20] McNicol B D,Pott G T,Loos K R etc.Spectroscopic studies of zeolite synthesis,Evidence for a solid-state mechanism[M].Adv.Chem.Series 121“Molecular Sieves”,Meier W N Uytterhoeven J B ,(Eds)1973:152-161.
    [21] Zhdanov S P.‘Miecular Series I’[M].Adv. Chem.Series Washington D C 1971,101:20
    [22] Angell C L.ACS Symposium Series[M].1977,40:194.
    [23] Reed T B, Breck D W. Crystalline zeolites.Ⅱ. crystal structure of synthetic zeolite, type A[J]. J. Am. Chem. Soc., 1956, 78 (23):5972–5977.
    [24] Weise P B,Maatman R W,Mower E B etc.Catalysis by crystalline aliminosilicatesⅡ.molecular-shape selective reactions[J].J. Catal, 1962,1:307-312.
    [25]祝阳4A分子筛催化稀乙醇制备乙烯[J].石油与天然气化工,38(6): 487-489.
    [26]邓锋杰,徐少华,温远庆等.4A分子筛固载铂催化剂催化乙炔硅氢加成反应[J].化工进展,2008, 27 (1):112-115.
    [27] Mintova S,Olson N H,Valtchev V,etc.Mechanism of zeolite A nanocrystal growth from colloids at room temperature[J]. Science , 1999,283: 958-960.
    [28] Mintova S,Fieres B,Bein T etc.Crystal growth of nanosized LTA zeolite from precursor collids[J]. Stud. Surf. Sci. Catal.2002,142:223-229.
    [29] Larlus O, Mintova S, Bein T etc. Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution[J].Micropor Mesopor Mater,2006, 96:405–412.
    [30] Singh P S,White J W. Nucleation and growth of zeolite A under reagent controlled conditions[J].Phys. Chem. Chem. Phys.1999,1:4131-4138.
    [31] Rakoczy R A,Traa Y.Nanocrystalline zeolite A: synthesis, ion exchange and dealumination[J]. Micropor.Mesopor.Mater,2003,60:69–78.
    [32] Zhu Guangshan, Qiu Shilun, Yu Jihong etc.Synthesis and characterization of high-qualityzeolite LTA and FAU single nanocrystals[J]. Chem. Mater,1998, 10 (6), 1483-1486.
    [33] Alfaro S, Valenzuela M A, Bosch P etc.Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template[J].Mater Lett, 2007,61:4655–4658.
    [34] Bayati B,Babaluo A A,Karimi R,etc.Hydrothermal synthesis of nanostructure NaA zeolite:The effect of synthesis parameters on zeolite seed size and crystallinity[J]. J.Eur.Ceram.Soc.,2008,28: 2653–2657.
    [35] Yang Hong,Chen Honglin,Du Hongbin,etc. Incorporating platinum precursors into a NaA-zeolite synthesis mixture promoting the formation of nanosized zeolite[J]. Micropor.Mesopor.Mater.,2009, 117 :33–40.
    [36] Barrer R M,Bromley,Kent etc.Moleclar sieve adsoption[P]. US Patent: 3306922, 1967-2-28.
    [37] Corma A, Rey F,Rlus J etc. Supermolecular self-assembled molecules as organic directing agent for synthesis of zeolites[J]. Nature, 2004 ,431:287-290.
    [38] Altwasser S, Glaser R,Weitkamp J etc.Ruthenium-containing small-pore zeolites for shape-selective catalysis[J]. Micropor Mesopor Mater, 2007,104 :281–288.
    [39] Yang Hong, Chen Honglin, Chen Jinwen etc. Shape selective and hydrogen spillover approach in the design of sulfur-tolerant hydrogenation catalysts[J] J. Catal.,2006 ,243: 36–42.
    [40] Chen C Y, Burkett S, Li H X,etc.Studies on mesoporous materials. II. Synthesis mechanism of MCM-41[J]. Micropor. Mater.,1993,2(1): 27-34.
    [41] Huo Q S, Margolese D I, Ciesla U, etc. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature,1994,368:317-321.
    [42] Huo Q S, Margolese D I, Ciesla U,etc. Organization of organic molecules with Inorganic molecular species into nanocomposite biphase arrays[J]. Chem.Mater.,1994, 6(8): 1176-1191.
    [43] Inagaki S, Sakamoto Y, Fukushima Y, etc. Pore wall of a mesoporous molecular sieve derived from kanemite [J]. Chem. Mater., 1996, 8(8): 2089-2095.
    [44] Dessau R M,Schlenker J L,Higgins J B etc Framework topology of AIPO4-8: the first 14-ring molecular sieve[J]. zeolites,1990,10(6):522-524.
    [45] Davis M E,Saldarriaga C, Montes C,etc. A molecular sieve with eighteen-memberedrings[J].Nature.,1988,331:698-699.
    [46] Edler K J,White J W.Room-temperature formation of molecular sieve MCM-41[J].J Chem Soc, Chem Commun,1995:155~156.
    [47] Chatterjee M,Iwasaki T,Hayashi H,etc.Room-temperature formation of thermally stable aluminium-rich mesoporous MCM-41[J]. Catal Lett,1998, 52: 21~23.
    [48] Voegtlin A C,Matijasic A,Patarin J,etc.Room-temperature synthesis of silicate mesoporous MCM-41-type materials:influence of the synthesis pH on the porosity of thematerials obtained[J]. Micropor.Mater.,1997 10:137- 147.
    [49] Wu C G,Bein T. Microwave synthesis of molecular sieve MCM-41[J].J.Chem.Soc, Chem.Commun, 1996: 925~926.
    [50]冯芳霞,窦涛,萧墉壮等.干粉法合成介孔分子筛MCM-41[J].石油学报(石油加工).1998, 14(3):89-92.
    [51]高雄厚,毛学文,唐荣荣等.晶化条件对MCM-41分子筛孔壁厚度与性能的影响[J]石油学报(石油加工),1998,14(3):17-20.
    [52]周春晖,张波,李庆伟等.反应介质对MCM-41介孔分子筛合成的影响研究[J]浙江工业大学学报,2001,29(2):110-114.
    [53] Kim S S, Zhang W, Pinnavaia T J.Ultrastable mesostructured silica vesicles[J].Science, 1998,282(5392): 1302-1305.
    [54] Kloetstra K R, Zandbergen H W, Jansen J C, etc. Overgrowth of mesoporous MCM-41on Faujasite[J]. Micropor Mater,1996, 6(5-6):287-293.
    [55] Huang L,Guo W,Deng P,etc.Investigation of synthesizing MCM-41/ZSM-5 composites[J]. J.Phys.Chem.B.2000,104(1):2817-2823.
    [56] Kloetstra K R,Van Bekkum H, Jansen J C etc.Mesoporous material containing framework tectosilicate by pore–wall recrystallization[J]. J.Chem.Soc., Chem.Commun. 1997 (23): 2281-2282.
    [57]申宝剑,黄海燕,李海丽等.一种中微孔复合分子筛组合物的分步晶化合成方法[P].中国专利:CN 1393403 A,2003-1-29.
    [58]申宝剑,陈洪林,潘惠芳.一种组合分子筛及其制备方法[P].中国专利:CN 1435374 A,2003-8-13.
    [59] Karlsson A, Stocker M, Schmidt R. Composites of micro- and mesoporous materials:simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Micropor.Mesopor.Mater., 1999, 27(2-3):181-192.
    [60] Prokesova P,Mintova S,Cejka J,etc.Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases[J].Micropor Mesopor Mater, 2003, 64 (1-3): 165-174.
    [61] Liu Yu,Zhang Wenzhong,Pinnavaia T J. Steam-stable Aluminosilicate mesostructures assembled from zeolite type Y seeds[J].J. Am. Chem. Soc., 2000,122 (36) :8791-8792.
    [62] Liu Yu., Zhang Wenzhong ,Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite Beta seeds[J]. Angew. Chem. Int. Ed.,2001,40 (7):1255-1258.
    [63] Di Yan,Yu Yi,Sun Yingyong.Synhesis,characterization,and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors[J]. Micropor.mesopor.mater., 2003,62(3) :221-228.
    [64] Guo W P, Huang L M, Deng P, etc. Characterization of Beta/MCM-41 Composite Molecular Sieve Compared with the Mechanical Mixture[J]. Micropor. Mesoporous. Mater., 2001, 44-45:427-434.
    [65]郭万平,黄立民,陈海鹰等.新型MCM-41-β-沸石介孔-微孔复合分子筛[J].高等学校化学学报, 1999, 20(3):356-357.
    [66] Guo W P, Xiong C R, Huang L M, etc. Synthesis and Characterization of Composite Molecular Sieves Comprising Zeolite Beta with MCM-41 Stuctures[J]. J. Mater. Chem., 2001,11(7):1886-1890.
    [67]李福祥,吴岚,窦涛等.介孔MCM-41分子筛在微孔沸石ZSM-5上附晶生长的研究[J].燃料化学学报, 1998, 26(2):102-106.
    [68] Sonwane C G, Li Q.Molecular simulation of RMM:ordered mesoporous SBA-15 type material having microporous ZSM-5 walls[J]. J.Phys.Chem.B., 2005,109(38): 17993-17997.
    [69] Goto Y, Fukushima Y, Ogura M, etc. Mesoporous material from zeolite[J]. J. Porous. Mater., 2001, 9(1): 43-48.
    [70] Trong On D.,Kaliaguine S.Ultrastable and highly acidic,zeolite-coated mesoporous aluminosilicates[J]. Angew.Chem.Int.Ed.,2002,41(6):1036-1040.
    [71] Tanaka S,Okada H,Nakatani N,etc Mesoporous aluminosilicates assembled from dissolved LTA zeolite and triblock copolymer in the presence of tetramethylammonium hydroxide[J] J.Colloid.Interface.Sci., 2009,333:491–496.
    [72] Janssen A H ,Koster A J, de Jong K P. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y[J]. Angew. Chem. Int. Ed., 2001, 40(6):1102-1104.
    [73] Vandonk S, Janssen A H, Bitter J H, etc. Generation, Characterization, and Impact of Mesopores in Zeolite[J]. Catalysts. Catal. Rev., 2003, 45(2): 297-319.
    [74] Groen J C, Peffer L A A, Moulijn J A, etc.Mechanism of hierarchical porosity development in MFI zeolites by Desilication: The role of aluminium as a pore-directing agent[J]. Chem. Eur. J., 2005, 11(17): 4983– 4994.
    [75] Jacobsen C J H,Madsen C, Houzvicka J ,etc Mesoporous Zeolite Single Crystals[J]. J.Am.Chem.Soc., 2000,122(29):7116-7117.
    [76] Tao Y, Kanoh H ,Kaneko K.ZSM-5 monolith of uniform mesoporous channels[J], J.Am Chem.Soc., 2003,125(20):6044-6045.
    [77] Tao Y.,Kanoh H.,Kaneko K..Uniform mesopore-donated zeolite Y using carbon aerogel Templating[J]. J.Phys.Chem.B,2003,107(40):10974-10976.
    [78] Tao Y.,Kanoh H.,Kaneko K.Synthesis of mesoporous zeolite A by Resorcinol–Formaldehyde Aerogel Templating[J].Langmuir,2005,21(2):504-507.
    [79] Kim S S, Shah J, Pinnavaia T J, etc. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite[J]. Chem. Mater., 2003, 15(8): 1664-1668.
    [80] Xiao Fengshou,Wang lifeng,Yin chengyang,etc.Catalytic properties of hierarchical mesoporous zeolites template with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angew.Chem.Int.Ed,2006, 45,3090-3093.
    [81] Choi M, Cho H S ,Ryoo R,etc. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nat. Mater.,2006,5:718-723.
    [82] Choi M, Cho H S ,Ryoo R,etc. Generation of mesoporosity in LTA zeolite by organosilane surfactant for rapid molecular transport in catalytic application[J].Chem.Mater.2009,21(23):5664-5673.
    [83] Choi M, Cho H S,Ryoo R,etc. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks[J]. Chem.Commun., 2006:4380-4382.
    [84] Le Van Mao R, Lavigne J, Sjiariel A B, et al. Mesoporous aluminosilicates prepared from zeolites by treatment ammonium fluorosilicate[J]. J.Mater.Chem., 1993, 3: 679-683.
    [1]徐如人,庞文琴等著.分子筛与多孔材料化学[M].北京:科学出版社,2004:130-144.
    [2]安德森等.催化剂的表征与测试[M]北京:烃加工出版社,1985:211-217
    [3] Reed T B,Breck D W. Crystalline Zeolites.Ⅱ. Crystal Structure of Synthetic Zeolite, Type A[J]. J. Am. Chem. Soc.,1956, 78 (23):5972–5977.
    [1] Yang Hong, Chen Honglin,Du Hongbin,etc. Incorporating platinum precursors into a NaA-zeolite synthesis mixture promoting the formation of nanosized zeolite[J]. Micropor.Mesopor.Mater.,2009, 117 :33–40.
    [2] Camblor M A,Corma A, Pariente J P,etc. Catalytic cracking of gasoil: Benefits in activity and selectivity of small Y zeolite crystallites stabilized by a higher silicon-to-aluminium ratio by synthesis[J].Appl. Catal., 1989, 55(1):65-74.
    [3] Gorring R L.Catalytic Hydrodewaxing[P].,US Patent:3968,024, 1976-7-6.
    [4] Izumi J, Suzuki M.Oxygen selectivity on partially K exchanged Na-A type zeolite at low temperature[J].Adsorption,2001,7(1):27-39.
    [5] Inui T,Shibata M, Tanakulrungsank W, etc.Performance of iron-incorporated A-type zeolites for O2/N2 separation from air by pressure swing adsorption[J]. Gas.Sep.Purif., 1992,6:185-189.
    [6] Ruthven D M, Farooq S.Air separartion by pressure swing adsorption[J].Gas Sep. Purif.1990,4 (3):141-148.
    [7] Jafar J J, Budd P M, Hughes R.Enhancement of esterification reaction yield using zeolite A vapor permeation membrane[J].J. Membr. Sci. 2002,199(1-2):117-123.
    [8] Moron F, Pina M P, Urriolabeitia E etc.Preparation and characterization of Pd-zeolite composite membranes for hydrogen separation[J].Desalination,2002,147 :425-431.
    [9] Thompson R W,Huber M J.Analysis of the growth of molecular sieve zeolite NaA in a batch precipitation system[J].J.Cryst.Growth.,1982,56:711-722.
    [10] Pope C G., Nucleation and growth theory in zeolite synthesis[J].Micropor. Mesopor. Mater.,1998,21(4-6):333-336.
    [11] Jarman R H, Melchior M T. Resolving sites of occupancy of tetramethylammonium ions in zeolites using 13C n.m.r. spectroscopy[J].J.Chem.Soc.,Chem.Commun., 1984 :414-416.
    [1] Kloetstra K R, Zandbergen H W, Jansen J C, etc. Overgrowth of Mesoporous MCM-41on Faujasite[J]. Micropor.Mater. 1996, 6(5-6):287-293.
    [2] Karlsson A, Stocker M, Schmidt R. Composites of micro-and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Micropor. Mesopor.Mater., 1999, 27(2-3):181-192.
    [3]李福祥,吴岚,窦涛等.介孔MCM-41分子筛在微孔沸石ZSM-5上附晶生长的研究[J].燃料化学学报, 1998, 26(2):102-106.
    [4] Prokesova P,Mintova S,Bein T,etc. Preparation of nanosized micro/mesoporous composites[J].Mater.Sci.Eng.C, 2003 ,23:1001-1005.
    [5] Prokesova P,Mintova S,Bein T,etc. Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases[J]. Micropor.Mesopor. Mater.,2003,64:165-174.
    [6] Tanaka S,Okada H,Nakatani N,etc. Mesoporous aluminosilicates assembled from dissolved LTA zeolite and triblock copolymer in the presence of tetramethylammonium hydroxide[J].J. colloid interface sci,2009,333:491-496.
    [7]沈钟,王果庭编著.胶体与表面化学[M].北京:化工工业出版社,1997:106-108
    [8] Beck J S, Vartuli J C, Roth W J, etc. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J.Am.Chem.Soc., 1992, 114(1):10834-10842.
    [9] Huo Q, David M, Stucky G D,etc.Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994,368(6469):317-321.
    [10]张波,周春晖,卢晗锋等.MCM-41介孔分子筛结构的表征[J].浙江工业大学学报,2001,29(2):185-190.
    [11] Ryoo R,Kim J M.Structural Order in MCM-41 controlled by shifting silicate polymerization equilibrium[J].J.Chem Soc,Chem Commun,1995:711-712.
    [12]张宝吉.钛硅分子筛二元复合物(TS-1/Ti-MCM-41)的制备表征及其在几种精细化学品合成中催化性能的研究[M].北京:石油化工科学研究院, 2002:61-64.
    [13] Choi M,Lee D,Ryoo R.etc.Hign Catalyst Activity of Palladium(Ⅱ)-ExchangedMesoporous Sodalite and NaA Zeolite for Bulky Aryl Coupling Reactions: Reusability under Aerobic Conditions[J].Angew.Chem.Int.Ed.,2009,48:3673-3676.
    [14] Zhang Haijuan,Li Yongdan.Preparation and characterization of Beta/MCM-41 composite zeolite with a stepwise-distributed pore structure[J].Powder Technology ,2008,183(1): 73–78.
    [1] Prokesova P, Mintova S, Cejka J, etc. Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases[J]. Micropor. Mesopor. Mater., 2003, 64:165-174.
    [2] Wang Shan,Dou Tao, Li Yuping ,etc. A novel method for the preparation of MOR/MCM-41 composite molecular sieve[J]. Catal. Commun., 2005, 6:87-91.
    [3] Xu Haiyan, Guan Jingqi, Wu shujie, etc. Synthesis of Beta/MCM-41 composite molecular sieve with high hydrothermal stability in static and stirred condition[J]. J. Colloid. Interface. Sci., 2009, 329:346-350.
    [4] Li Yongsheng, Shi Jianlin, Chen Hangrong, etc. One-step synthesis of hydrothermally stable cubic mesoporous aluminosilicates with a novel particle structure[J]. Micropor. Mesopor. Mater., 2003, 60:51-56.
    [5] Guo Wanping, Xiong Chunrong, Huang Limin etc. Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures journal of chemistry materials[J]. J. Mater. Chem., 2001, 11(7):1886-1890.
    [6] Karlsson A, Stocker M and Schmidt R. Composites of micro-and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Micropor. Mesopor. Mater., 1999, 27(2-3):181-192.
    [7] Liu Yu,Zhang Wenzhong, and Pinnavaia.T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds[J]. J. Am. Chem. Soc., 2000, 122(36):8791-8792.
    [8] Liu Yu, Zhang Wenzhong, and Pinnavaia.T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite Beta seeds[J]. J. Angew. Chem. Int. Edit., 2001, 40(7):1255-1258.
    [9] Christiansen S C, Zhao Dongyuan, Janicke M T,etc. Molecularly ordered inorganic frameworks in layered silicate surfactant mesophases[J]. J. Am. Chem. Soc., 2001, 123(19):4519-4529.
    [10] Choi M, Cho H S, Srivastava R, etc. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature. Mater., 2006, 5(9):718-723.
    [11] Choi M, Cho H S, Srivastava R , etc. Generation of mesoporosity in LTA zeolite by organosilane surfactant for rapid molecular transport in catalytic application[J]. Chem.Mater., 2009, 21(23):5664-5673.
    [12]霍全,窦涛,巩雁军等.纳米晶簇多级孔道L沸石的合成及其脱硫性能[J].物理化学学报, 2010, 26(2):378-384.
    [13] Zhao Dongyuan,Feng Jianglin,Huo Qisheng,etc.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998,279 (5350): 548-552.
    [14] Breck D W, Eversole W G, Milton R M etc. Crystalline Zeolites. I. The Properties of a New Synthetic Zeolite, Type A[J]. J. Am. Chem. Soc.,1956, 78 (23):5963–5972.
    [15] Beck J S, Vartuli J C, Roth W J, etc. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc., 1992, 114(1):10834-10842.
    [16]李玉平,潘瑞丽,窦涛等.一种合成高水热稳定性微孔-介孔复合分子筛β沸石/MCM-41的新方法[J].无机化学学报, 2005, 21(10):1455-1459.
    [17] Choi M, Lee D,Ryoo R, etc. Hign Catalyst Activity of Palladium(Ⅱ)-Exchanged Mesoporous Sodalite and NaA Zeolite for Bulky Aryl Coupling Reactions: Reusability under Aerobic Conditions[J]. J. Angew. Chem. Int. Ed., 2009, 48:3673-3676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700