用户名: 密码: 验证码:
离子液体改性聚合物/石墨复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合型导电高分子材料由于保留了高分子的优良加工特性、质量轻、电阻率范围可调及成本低廉等特点,在光电子器件、信息、传感器、电磁屏蔽等领域有着广泛诱人的应用前景,从而具有重要的研究意义和实际价值。石墨烯具有独特的导电性和导热性,其与聚合物组成的复合材料具有优良的导电性质、导热性能和力学性能,具有重要的研究意义。但是,为了获得具有优异性能的复合型导电高分子,必须将石墨剥离成石墨烯并在聚合物中获得良好的分散。本研究为了获得具有优异导电性能的复合型导电高分子,在如下两方面进行了研究:
     (1)离子液体与石墨烯存在潜在的相互作用,同时离子液体本身具有导电性质且化学性质稳定,因此,可望与石墨复合改性高分子材料以获得高性能的复合材料。本部分研究选择环氧树脂为聚合物基体,研究了离子液体及石墨对环氧树脂固化行为的影响,从而为这类材料的性能优化提供技术基础。主要得到的结论如下:
     在低含量膨胀石墨(EG)体系中,活化能(Eα)在凝胶点前比纯环氧树脂体系要低;但EG含量相对较高时,其Eα反而比纯环氧树脂体系的Eα高。在含有[BMIm]PF6的体系中,[BMIm]PF6和Jeffamine之间易形成氢键,从而降低Jeffamine胺基的反应活性,使Eα随着转化率的增加而增大。研究还发现,[BMIm]PF6咪唑阳离子和EG之间存在特殊相互作用,有助于石墨微片在环氧树脂中的分散。同时,分散良好的石墨微片对[BMIm]PF6形成屏蔽作用,从而抑制[BMIm]PF6和Jeffamine之间氢键的形成,导致Eα比只含有[BMIm]PF6的体系低。
     (2)通过化学氧化法可制备聚合物/石墨烯导电复合材料,但是在制备过程中由于石墨烯的π-π相互作用很容易聚集,从而出现还原石墨的二次团聚,为了克服这一问题,本部分研究采用羟丙基纤维素(HPC)为基体,利用其最低临界溶解温度行为(LCST)有效阻止了氧化石墨烯在还原过程中的团聚。同时,基于第一部分研究证实的石墨烯-离子液体相互作用,在HPC/石墨烯导电复合材料体系中引入离子液体进一步改善复合材料的导电性能,获得了性能优异的HPC/石墨烯/离子液体复合材料。主要得到的结论如下:
     超声处理可以将氧化石墨烯剥离为仅1~2层厚度的石墨烯片层,从而在HPC溶液中形成稳定均一的分散体系。离子液体[BMIm]Cl可以显著提高复合材料的电导率:在相同RGO含量下,20phr [BMIm]Cl可以将材料电导率提高2~3个数量级。当石墨烯体积分数为0.57%时,其电导率可达5.66×10-4 S/m;当RGO含量增加到10.45 vol%时,其电导率高达10.5 S/m。同时,研究表明石墨烯可以有效地抑制HPC的结晶,而且随着RGO含量的增加,HPC结晶相(2θ=8.2o)对应的衍射强度会逐渐减弱。此外,在添加20phr [BMIm]PF6的样品中,HPC的结晶相被破坏程度最高。
Owing to retaining excellent processing characteristics of polymer, light weight, adjustable resistance and low cost, conductive polymer based composites have attractive prospects in such applications as optoelectronic devices, information, sensors, electromagnetic shielding and so on. Consequently, the research of conductive polymer based composites has important practical value. Graphene has a unique electrical conductivity and thermal conductivity. Composites filled with graphene have extraordinary conductivity and mechanical properties, so the study on graphene-polymer composites is of scientific importance. Both delaminating graphite into single graphene and dispersing uniformly the graphene into polymer matrix are crucial to the realization the potential performance of the conductive composites. In this study, in order to obtain composites with excellent conductive properties, the following two aspects were researched.
     (1) Due to the presence of potential interaction between ionic liquids and graphene and the attractive characteristics of the ionic liquids such as conductity and stable chemical properties, it is expected that the combination of graphene and ionic liquid will render better conductive performance to the polymer composites. In this part, we chose epoxy resin as the matrix of the composite, the effects of the ionic liquids and graphite on the curing behavior of epoxy resin were discolosed. These results provided technical basis for optimizing the performance of such materials. Mainly conclusions were illustrated as follows.
     At lower concertration of eapanded graphite (EG), compared with the curing activation energy (Eα) of the neat epoxy resin, the composite with EG has a lower Eαbefore the gelation, but a higher Eαafter the gelation. However, at higher concertrations of EG, in the whole conversion range, the composite with EG shows a higher Eαcompared with the neat epoxy resin. Besides, as the curing proceeded, a peculiar increase of Eαis found in systems containing [BMIm]PF6. Due to the formation of hydrogen bonding between [BMIm]PF6 and the harder (Jeffamine),the reactivity of Jeffamine is considerably decreased, leading to a much higher Eαin [BMIm]PF6-containing systems, especially at higher conversion. In systems containing a combination of [BMIm]PF6 and EG, due to the unique interactions between EG and [BMIm]PF6, the shielding effect provided by the well-dispersed EG sheets constrains the formation of hydeogen bonding between [BMIm]PF6 and Jeffamine, leading to lowered Eαcompared with that for the system containing [BMIm]PF6 only.
     (2) Conductive polymer/graphene composites could be prepared by chemical oxidation and reduction process. However, during the reduction process, graphene is easy to stack together because ofπ-πinteraction. In order to overcome this problem, we chose hydropropyl cellouse (HPC) as the matrix for its low critical solution temperature (LCST) behavior. The reduction of oxidized graphene above LCST could effectively prevent the reuniting of the graphene into stacked structure. Meanwhile, based on the confirmed interaction between graphene and ionic liquids in the first part, incorporation of ionic liquids into the HPC/graphene systems further improved the conductivity of composites. The main results were concluded as follows.
     Oxidized graphene can be delaminated into only 1~2 layers via ultrasound treatment, which can form a stable and uniform dispersion in the HPC. [BMIm]Cl can significantly improve the electrical conductivity of composites. Under the same content of reduced graphite oxide (RGO), the conductivity of composite can be increased by 2~3 orders of magnitude with the help of 20 phr [BMIm]Cl. When the volume fraction of graphene was only 0.57%, the conductivity of composite reached 5.66×10-4 S/ m, while the content of RGO increased to 10.45 vol%, its electrical conductivity reached up to as high as 10.5 S/m. Besides, it was showed that graphene can effectively restrain the crystallization of HPC, and the corresponding diffraction intensity of crystalline phase (2θ= 8.2o) gradually decreased along with the increasing of the content of RGO. The crystallization of HPC was further suppressed when 20 phr of [BMIm] PF6 was included.
引文
[1]付东升,张康助,张强.导电高分子材料研究进展[J].现代塑料加工应用, 2004, 16(1): 55-59
    [2]张雄伟,黄锐.高分子复合导电材料及其发展趋势[J].功能材料,1994, 25(6): 492-499
    [3]王东周,李光,江建明.导电高分子研究概述[J].合成技术及应用, 2001, 16(3): 36-39
    [4]郑国禹.导电高分子在隐身材料中的应用[J].工程塑料应用, 2007, 35(2): 70-73
    [5]杨永芳,刘敏江.导电高分子材料的应用和进展[J].广州化学, 2002, 27(4): 57-60
    [6]王彦红,王景慧,岳建霞,等.导电高分子纳米复合材料研究进展[J].化工时刊, 2007, 21(1): 73-77
    [7]宫兆合,梁国正,卢婷利,等.导电聚合物的研究进展[J].玻璃钢/复合材料, 2003, (1): 45-47
    [8]张福强.复合型导电高分子材料技术进展[J].塑料, 1995, 24(2): 7-13
    [9] Scheer H., Zallen R. Critical density in percolation processes [J]. Journal of Chemical Physics, 1970, 53(9): 3759-3762
    [10] Stauffer D, Aharnoy A. Introduction to percolation theory [M]. London: Taylor & Francis, 1991
    [11] Sumita M., Sakata K., Asai S., et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black [J]. Polymer Bulletin, 1991, 25(2): 265-271
    [12] Miyasaka K., Watanabe K., Jojima E., et al. Electrical conductivity of carbon-polymer composites as a function of carbon content[J]. Journal of Material Science, 1982, 17(6): 1610-1616
    [13] Mclachlan D.S., Blaszkiewicz M., Newnham R.E. Electrical resistivity of composites [J]. Journal of the American Ceramic Society, 1990, 73(8): 2187-2203
    [14] Mclachlan D.S. Evaluating the microstructure of conductor-insulator composites using effective media and percolation theories [J]. Materials Research Society Symposium, 1996, 41: 309-320
    [15] Simmons JG. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film [J]. Journal of Applied Physics, 1963, 34: 1793-1803
    [16] Sheng P., Klafter. Hopping conductivity in granular disordered systems[J]. Physical Review B, 1983, 27(4): 2583-2586
    [17] Ezquerra T.A. Charge transport in polyethylene-graphite composite materials [J]. Advanced Materials, 1990, 2(12): 597-600
    [18] Van B., Van P.B. Internal field emission in carbon black-loaded natural rubber vulcanizates [J]. Journal of Applied Polymer Science, 1962, 6(24): 651-655
    [19]翁建新.环氧树脂/石墨微片复合导电材料的研究[D].泉州:华侨大学, 2003
    [20] Stankovich S, Dikin D.A., Dommett G., et al.Graphene-based composite materials [J]. Nature, 2006, 442: 282-286
    [21] Wang W.P., Pan C.Y. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization [J]. Polymer, 2004, 45(12): 3987-3995
    [22] Elmore P.A., Breazeale M.A. Dispersion and frequency dependent nonlinearity parameters in a graphite-epoxy composite [J]. Ultrasonics, 2004, 41(9): 709-718
    [23] Pividori M.I., Merko?i A., Alegret S. Graphite-epoxy composites as a new transducing material for electrochemical genosensing [J]. Biosensors and Bioelectronics, 2003, 19(5): 473-484
    [24] Moreno B.L., Merkoci A., Alegret S. Graphite-epoxy composite as an alternative material to design mercury free working electrodes for stripping voltammetry [J]. Electrochimica Acta, 2003, 48(18): 2599-2605
    [25]蔡熠.聚苯乙烯/石墨导电复合材料的制备与性能[D].南京:南京理工大学, 2007
    [26]吴翠玲,翁文桂,陈国华.膨胀石墨的多层次结构[J].华侨大学学报, 2003, 24: 147-150
    [27] Ramesh P., Bhagyalakshmi S., Sampath S. Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide [J]. Journal of Colloid and Interface Science, 2004, 274(1): 95-102
    [28]张洪艳.电场诱导制备不饱和树脂/纳米石墨微片复合导电材料[D].泉州:华侨大学, 2006
    [29]陈铃.硅橡胶/纳米石墨薄片复合材料在压力场作用下电导非线性研究[D].泉州:华侨大学, 2006
    [30]李侃社.磨盘碾磨固相剪切复合技术及导电导热聚丙烯/石墨纳米复合材料的制备与性能研究[D].重庆:四川大学, 2002
    [31] Hiroyuki F. Graphite nanoreinforcements in polymer nanocomposites[D]. Ann Arbor: Michigan State University, 2003
    [32] Li J. Electrical Conducting Polymer Nanocomposites Containing Graphite Nanoplatelets and Carbon Nanotubes [D]. Hong Kong: The Hong Kong University of Science andTechnology, 2006
    [33]陈国华,吴翠玲,吴大军,等.聚甲基丙烯酸甲酯/石墨薄片纳米复合及其导电性能研究[J].高分子学报, 2003,(5): 742-745
    [34] Shioyama H., Akita T. A new route to carbon nanotubes[J]. Carbon, 2003, 41(1): 179-181
    [35] Viculis L.M., Mack J.J., Kaner R.B., et al. A chemical route to carbon nanoscrolls [J]. Science, 2003, 299(5611): 1361
    [36] Lee C.G., Wei X.D., Kysar J.W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388
    [37] Balandin A.A., Ghosh S., Bao W.Z., et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-907
    [38] Chen J.H., Jang C., Xiao S.D., et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J]. Nature Nanotechnology, 2008, 3(4): 206-209
    [39] Stoller, M.D., Park, S., Zhu, Y., et al. Graphene-based ultracapacitors [J]. Nano Letters. 2008, 8(10): 3498-3502
    [40] Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669
    [41] Zhang Y,B., Tan Y.W., Stomer H.L., et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-204
    [42] Berger C., Song Z.M., Li T.B., et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J]. Journal of Physical Chemistry B, 2004, 108(52): 19912-19916
    [43] Di C.A., Wei D.C., Yu G., et al. Patterned graphene as source/drain electrodes for bottom contact organic field-effect transistors [J]. Advanced Materials, 2008, 20(17): 3289-3293
    [44] Hummers W.S., Ofeman R.E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339
    [45] Staudenmaier. L. Verfahren zur Darstellung der Graphitsaure [J]. Berichte der Deutschen Chemical Gesellschaft, 1898, 31: 1481-1499
    [46] Brodie. B.C. Sur le poids atomique du graphite [J]. Annals of Chim. Physical, 1860, 59: 466-472
    [47] Park S., Ruoff R.S. Chemical methods for the production of graphenes [J]. Nature Nanotechnology, 2009, 4(4): 217-224.
    [48] Niyogi S., Bekyarova E., Haddon R.C., et al. Solution Properties of Graphite and Graphene [J]. Journal of the American Chemical Society, 2006, 128 (24): 7720-7721
    [49] Si Y.C, Samulski E.T. Synthesis of water soluble graphene [J]. Nano Letters, 2008, 8(6): 1679-1682
    [50] Yang X.Y., Zhang X.Y, Ma Y.F, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted biological applications [J]. Journal of Materials Chemistry, 2009, 19(18): 2710-2714
    [51] Geoffrey D. Properties of a graphene-based nanocomposites and nanopaper [D]. America: Northwestern university, 2007
    [52] Liang J.J., Xu Y.F., Huang Y., et al. Infrared-triggered actuators from graphene-based nanocomposites [J]. Journal of Physical Chemistry C, 2009, 113(22): 9921-9927
    [53] Ramanathan T., Abdala A.A., Stankovich S., et al. Functionalized graphene sheets for polymer nanocomposites [J]. Nature Nanotechnology, 2008, 3(6): 327-331
    [54] Stankovich S., Piner R.D., Chen X.Q., et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry, 2006, 16(2):155-158
    [55] Shen J.F., Hu Y.Z., Li C., et al. Synthesis of amphiphilic graphene nanoplatelets [J]. Small, 2009, 5(1): 82-85
    [56] Takanori F., Atsuko K., Yoji I., et al. Molecular Ording of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes [J]. Science, 2003, 300(27): 2072-2074
    [57]邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社, 2006: 1-2.
    [58] Rogers R.D., Seddon K.R. Ionic Liquids-solvents of the future [J]. Science, 2003, 302(5646): 792 -793
    [59] Blanchard L.A., Hancu D., Beckman E.J, et al. Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399(6731): 28-29
    [60] Wasserscheid P., Keim W. Ionic liquids-New“solutions“for transition metal catalysis [J]. Angewandte Chemie International Edition, 2000, 39(21): 3773-3789
    [61] Wang J.Y., Chu H.B, Li Y. Why Single-Walled Carbon Nanotubes Can be Dispersed in Imidazolium-Based Ionic Liquids [J]. ACS Nano, 2008, 2(12): 2540-2546
    [62] Matsumoto K., Endo T. Confinement of Ionic Liquid by Networked Polymers Based on Multifunctional Epoxy Resins [J]. Macromolecules, 2008, 41(19): 6981-6986.
    [63] Bellayer S., Gilman J.W., Eidelman N., et al. Preparation of Homogeneously Dispersed Multiwalled Carbon Nanotube/Polystyrene Nanocomposites via Melt Extrusion Using Trialkyl Imidazolium Compatibilizer [J]. Advanced Functional Materials, 2005, 15(6), 910-916
    [64] Klingshirm M.A., Spear S.K., Subramanian R., et al. Gelation of Ionic Liquids Using aCross-Linked Poly (Ethylene Glycol)Gel Matrix [J]. Chemistry of Materials, 2004, 16(16), 3091-3097.
    [65] Marwanta E., Mizumo T., Nobuhumi N., et al. Improved ionic conductivity of nitrile rubber/ionic liquid composites [J]. Polymer, 2005, 46(11): 3795-3800
    [66] Kohler S., Liebert T.,Schobitz M., et al. Interactions of ionic liquids with polysaccharides 1.Unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate [J]. Macromolecular Rapid Communications, 2007, 28(24): 2311-2317
    [67] Kosan B., Michels C., Meister F. Dissolution and forming of cellulose with ionic liquids [J]. Cellulose, 2008, 15(1): 59-66
    [68] Xie H.B., King A., Kilpelainen I.,et al. Thorough Chemical Modification of Wood-Based Lignocellulosic Materials in Ionic Liquids[J].Biomacromolecules,2007,8(12): 3740-3748
    [69] Byrne C., McNally T. Ionic Liquid Modification of Layered Silicates for Enhanced Thermal Stability [J]. Macromolecular Rapid Communications, 2007, 28(6):780-784
    [70] Ding Y.S., Guo C.Y., Dong J.Y., et al. Novel organic modification of montmorillonite in hydrocarbon solvent using ionic liquid-type surfactant for the preparation of polyolefin-clay nanocomposites [J]. Journal of Applied Polymer Science, 2006, 102(5): 4314-4320
    [71] Letaief S., Detellier C. Nanohybrid materials from the intercalation of imidazolium ionic liquids in kaolinite [J]. Journal of Materials Chemistry, 2007, 17(15):1476 -1484
    [72] Li N.J., Lu J.M., Xu Q.F., et al. Reverse atom transfer radical polymerization of MMA via immobilized catalysts in imidazolium ionic liquids [J]. Journal of Applied Polymer Science, 2007, 103(6): 3915-3919
    [73] Di W.,Kvarnstrom C.,Lindfors T., et al. Polyaniline nanotubules obtained in room-temperature ionic liquids [J]. Electrochemistry Communication, 2006, 8(10): 1563-1566
    [74] Mallakpour S., Rafiee Z. Efficient combination of ionic liquids and microwave irradiation as a green protocol for polycondensation of 4-(3-hydroxynaphthalene)-1,2,4- triazolidine-3,5-dione with diisocyanates [J]. Polymer, 2007, 48(19): 5530-5540
    [75] Yousefi A., Lafleur P.G.. Kinetic Studies of Thermoset Cure Reactions: A Review [J]. Polymer Composites, 1997, 18(2): 157-168.
    [76] Panagiotis I., Karkanas, Ivana K., et al. Modeling and Monitoring of Epoxy/Amine Resin System. I. Cure Kinetics Modeling [J].Journal of Applied Polymer Science, 2000, 77(7):1419-1431
    [77] Skordos A.A., Partidge I.K. Cure Kinetics Modeling of Epoxy Resin Using aNon-Parametric Numerical Procedure [J].Polymer Engineering and Science,2001,41(5): 793-805
    [78] Abdalla M., Dean D., Robinson P., et al. Cure behavior of epoxy/MWCNT nanocomposites: The effect of nanotube surface modification [J]. Polymer, 2008, 49(15): 3310-3317
    [79] Puglia D., Valentini L., Kenny J.M.. Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy[J]. Journal of Applied Polymer Science, 2003, 88(2): 452-458
    [80] Kenny J.M. Determination of autocatalytic kinetic model parameters describing thermoset cure[J]. Journal of Applied Polymer Science, 1994, 51(4): 761-764
    [81] Peyser P., Bascom W.D.. Kinetics of epoxy resin polymerization using differential scanning calorimetry [J]. Journal of Applied Polymer Science, 1977, 21(9): 2359-2373
    [82] Vyazovkin S., Sbirrazzuoli N.. Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U* and K-g) from the overall rates of nonisothermal crystallization [J]. Macromolecular Rapid Communications, 2004, 25(6): 733-738
    [83] Vyazovkin S., Dollimore D.. Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids [J]. Journal of Chemical Information and Computer Sciences, 1996, 36(1): 42-45
    [84] Vyazovkin S. Evaluation of activation energy of thermally stimulated solid- state reactions under arbitrary variation of temperature [J]. Journal of Computational Chemistry, 1997, 18(3): 393-402
    [85] Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy [J]. Journal of Computational Chemistry, 2001, 22(2): 178-183
    [86] Doyle C.D. Estimating isothermal life from thermogravimetric data [J]. Journal of Applied Polymer Science, 1962, 6(24): 639-642
    [87] Lu M.G., Shim M.J., Kim S.W. Curing reaction and phase change in a liquid crystalline monomer [J]. Macromolecular Chemistry and Physics, 2001, 202(2): 223-230
    [88] Flory P.J. Principle of Polymer Chemistry, Ithaca, NY: Cornell University Press, 1953
    [89] Karayannidou E.G, Achilias D.S., Sideridou I.D. Cure kinetics of epoxy-amine resins used in the restoration of works of art from glass or ceramic [J]. European Polymer Journal, 2006, 42(12): 3311-3323
    [90] Zhou T.L, Wang X., Liu X.H., et al. Influence of multi-walled carbon nanotubes on the cure behavior of epoxy-imidazole system [J].Carbon, 2009,47(4):1112-1118
    [91] Tao K., Yang S., Grunlan J.C., et al. Effects of carbon nanotube fillers on the curing processes of epoxy resin-based composites [J]. Journal of Applied Polymer Science, 2006,102(6): 5248-5254
    [92] Sanctuary R., Baller J., Zielinski B., et al. Influence of Al2O3 nanoparticles on the isothermal cure of an epoxy resin [J]. Journal of Physics: Condensed Matter, 2009, 21(3): 035118
    [93] Horvath A., Skoda-Foldes R., Maho S., et al. Facile ring opening of 2,3-epoxy-steroids with aromatic amines in ionic liquids [J]. Steroids, 2006, 71(8): 706-711
    [94] Francesca D., Vincenzo F., Vitalba P., et al. Effect of ionic liquid organizing ability and amine structure on the rate and mechanism of base induced elimination of 1,1,1-tribromo-2,2-bis(phenyl-substituted)ethanes[J].Tetrahedron,2006, 62(8):1690-1698
    [95] Sarker A., Trivedi S., Baker A.B., et al. Multiprobe Spectroscopic Evidence for“Hyperpolarity”within 1-Butyl-3-methylimidazolium Hexafluorophosphate Mixtures with Tetraethylene Glycol [J]. Journal of Physical Chemistry B, 2008, 112(47): 14927-14936
    [96] Erach R.T., Sidhartha R., Vincent J.S., et al. Raman and Infrared Spectra and ab Initio Calculations of C2-4MIM Imidazolium Hexafluorophosphate Ionic Liquids [J]. Journal of Physical Chemistry B, 2004, 108(35): 13177-13184
    [97] Gao Y.A, Li N., Zheng L.Q., et al. Role of Solubilized Water in the Reverse Ionic Liquid Microemulsion of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/Benzene [J]. Journal of Physical Chemistry B, 2007, 111(10): 2506-2513
    [98] Zhang L.Q., Wang Y.,, Xu Z., et al. Comparison of the Blue-Shifted C?D Stretching Vibrations for DMSO-d6 in Imidazolium-Based Room Temperature Ionic Liquids and in Water [J]. Journal of Physical Chemistry B, 2009, 113(17): 5978-5984
    [99] Fumino K., Wulf A., Ludwig R. The cation-anion interaction in ionic liquids probed by far-infrared spectroscopy [J]. Angewandte Chemie International Edition, 2008, 47(20): 3830-3834
    [100] Suarez P.A.Z., Dullius J.E.L., Einloft S., et al. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes [J]. Polyhedron, 1996, 15(7): 1217-1219
    [101] Andrew S., Andrey V. T., Ulrih O., et al. Synthesis and ionic interactions of a proton donor terminated polyalkylene ether [J]. Macromolecular Rapid Communications, 2007, 28(5): 641-645
    [102] Ferrari A.C., Robertson J.. Interpretation of Raman spectra of disordered andamorphous carbon [J]. Physical Review B, 2000, 61(20): 14095-14107
    [103] Gao J., Haidar G.., Lu X.H., et al. Self-association of hydroxypropylcellulose in water [J]. Macromolecules, 2001, 34(7): 2242-2247
    [104] Raschip I.E., Vasile C., Macocinschi D.. Compatibility and biocompatibility study of new HPC/PU blends [J]. Polymer International, 2009, 58(1): 4-16
    [105] Szabo T., Berkesi O., Dekany I.. DRIFT study of deuterium-exchanged graphite oxide [J]. Carbon, 2005, 43(15): 3186-3189
    [106] Lerf A., He H., Forster M., et al. Structure of graphite oxide revisited [J]. Journal of Physical Chemistry B, 1998, 102(23): 4477-4482
    [107] Wang G., Yang Z., Li X., et al. Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method [J]. Carbon, 2005, 43(12): 2564-70
    [108] Tuinstra F., Koenig J.L. Raman spectrum of graphite [J]. Journal of Chemical Physics, 1970, 53(3): 1126-1130
    [109] Ferrari A.C., Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J]. Physical Review B, 2001, 64(7):075414
    [110] Beamson G., Briggs D. High resolution XPS of organic polymers: The scienta ESCA300 database [M]. New York: John Wiley and Sons, 1992
    [111] Waltman R.J., Pacansky J., Bates Jr C.W. X-ray photoelectron spectroscopic studies on organic photoconductors: Evaluation of atomic charges on chlorodiane blue and p-(diethylamino)benzalde-hyde diphenylhydrazone [J]. Chemistry of Materials 1993, 5(12):1799-1804
    [112] He H., Riedl T., Lerf A., et al. Solid-state NMR studies of the structure of graphite oxide [J]. Journal of Physical Chemistry, 1996, 100(51):19954-19958
    [113] He H., Klinowski J., Forster M., et al. A new structural model for graphite oxide [J]. Chemical Physics Letters, 1998, 287(1-2): 53-56
    [114] Lerf A., He H., Riedl T., et al. 13C and 1HMAS NMR studies of graphite oxide and its chemically modified derivatives [J]. Solid State Ionics, 1997, 101-103(Part 2): 857-862
    [115] Neidlein R., Dao T.V., Gieren A., et al. Syntheses, structures, X-ray structure analyses, and electrical properties of polychalcogen diimides[J]. Chemische Berichte, 1982, 115(8): 2898-2904
    [116] Wharton P.S., Bohlen D.H.. Communications-Hydrazine reduction ofα,β-epoxy ketones to allylic alcohols[J]. Journal of Organic Chemistry, 1961, 26(9): 3615-3616
    [117] Zalan Z., Lazar L., Fueloep F.. Chemistry of hydrazinoalcohols and their heterocyclicderivatives. Part 1. Synthesis of hydrazine alcohols[J].Current Organic Chemistry, 2005, 9(4): 357-376
    [118] Stankovich S., Dikin D.A., Piner R.d., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565
    [119] Zheng W., Lu X.H.,Wong S.C.. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene[J]. Journal of Applied Polymer Science, 2004, 91(5): 2781-2788
    [120] Celzarda A., McRaea E., MarêchéJ. F., et al. Composites based on micron-sized exfoliated graphite particles: Electrical conduction, critical exponents and anisotropy[J]. Journal of Physics and Chemistry of Solids, 1996, 57(6): 715-718
    [121] Jovic N., Dudic D., Montone A., et al. Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites[J]. Scripta Materialia, 2008, 58(10): 846-849
    [122] Liang J.J., Wang Y., Huang Y., et al. Electromagnetic interference shielding of graphene/epoxy composites[J]. Carbon, 2009, 47(3): 922-925
    [123] Shen J.W., Chen X.M., Huang W.Y.. Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by Solution Intercalation[J]. Journal of Applied Science, 2003, 88(6):1864-1869
    [124] Bonhote P., Dias A., Papageorgiou N., et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorganic Chemistry, 1996, 35(5): 1168-1178
    [125] Hagiwara R., Yasuhiko I.. Room temperature ionic liquids of alklimidazolium cations and fluoroanions[J]. Journal of Fluorine Chemistry, 2000, 105(2): 221-227
    [126]卢泽湘.咪唑类离子液体的合成、表征及应用的研究[D].湘潭:湘潭大学,2004.
    [127] Veij M.D., Vandenabeele P., Beer T.B., et al. Reference database of Raman spectra of pharmaceutical excipients[J]. Journal of Raman Spectroscopy, 2009, 40(3): 297-307
    [128] Bobowska I., Wojciechowski P., Halamus T.. Organic–inorganic nanocomposites of (2-hydroxypropyl) cellulose as a precursor of nanocrystalline zinc oxide layers[J]. Polymers for Advanced Technologies, 2008, 19(12): 1860-1867
    [129] Alvarez-Lorenzo C., Lorenzo-Ferreira R.A., Gomez-Amoza J.L., et al. A comparison of gas–liquid chromatography, NMR spectroscopy and Raman spectroscopy for determination of the substituent content of general non-ionic cellulose ethers[J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 20(1-2): 373-383
    [130]董炎明.高分子分析手册[M].北京:中国石化出版社, 2004: 296-297
    [131] Wojciechowski P. Thermotropic Mesomorphism of Selected (2-hydroxypropyl)cellulose Derivatives[J]. Journal of Applied Polymer Science, 2000, 76(6): 837-844.
    [132] Winterton N.. Solubilization of polymers by ionic liquids[J]. Journal of Materials Chemistry, 2006, 16(44): 4281-4293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700