用户名: 密码: 验证码:
胶体电泳技术制备多酸基有序复合膜的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属氧酸盐(简称POMs),是由前过渡金属元素特别是钒、钼、钨等经氧连接而成的单分子簇合物。它具有多样的化学组成与结构,并在催化、药用、磁性、荧光、非线性光学和高质子导体等方面展现出优异性质。
     多金属氧酸盐一直被认为是良好的无机构筑块,多金属氧酸盐组装形成特定结构可被有效应用于各个领域。直接利用包含多金属氧酸盐的两性物质构建基于多金属氧酸盐的自组装已经引起人们的广泛关注。在本论文中我们首先使用表面活性剂对多金属氧簇进行静电包覆,获得了无机/有机杂化的超分子复合物(SEC),然后利用电泳技术获得了复合物薄膜。
     电泳沉积作为一种简单可控的方法一直被广泛的应用于无机材料膜的制备和组装各种各样纳米材料,是一种方便而通用的技术,并且具有制备大面积超薄膜的应用潜力。本文提供了一种新的方法即电泳方法来制备基于多酸的无机有机杂化材料并拓展了其应用探索的可能。电泳技术包括溶胶的制备、电泳沉积和膜的成长三个阶段。研究结果表明,我们首次采用电泳沉积方法制备了基于多酸的无机有机杂化薄膜,此薄膜尺寸均一,具有球状组装结构,薄膜的表面很平滑。这为多金属氧酸盐在电催化电极和薄膜分子电器设备的发展和应用拓展了新的思路。
Polyoxometalates (POMs) are the molecular clusters of the early transition metaloxides, especially for the elements of vanadium, molybdenum and tungsten. POMs have the variety in composition and structure, which makes them have great potential in catalyst, medicine, magnetism, luminescence, nonlinear optics, proton conductivity etc.
     Polyoxometalates are generally considered as promising inorganic building blocks and to assemble POMs into defined structures can be effectively applied in many fields. The direct use of POM-containing amphiphiles to construct POM-based self-assembly has attracted much attentionin in recent years. In this thesis, firstly, we encapsulated POMs with the cationic surfactants and prepared the organic/inorganic supramolecular complexes, then we fabricated thin films by Electrophoretic deposition (EPD) method.
     EPD method was well used for preparation of inorganic film materials many years ago. Because of its simplicity and controllability, the electrophoretic method has become a favorable way to assemble various interesting nanometer materials. The EPD method is a facile and versatile technique that has lately emerged as a viable approach to prepare large area ultra-thin films. Herein, we provides a new route to explore the possibility of application to polyoxometalate-based hybrid inorganic–organic materials by the EPD method. It is the first report that the POM-based thin films are fabricated using this method. This approach combines several processing methods together: including sol-gel processing, electrophoretic deposition, and template-based growth. The film obtained by EPD is of a spherical assembly with uniform size. the surface of the thin film is very flat. The facile electrochemistry of the composite film will probably be used to prepare a sensitive conductometric catalytic electrode and to construct thin film molecular electronic devices based on POMs in future work.
引文
[1]江龙.胶体化学概论[M].北京:科学出版社,2002.1-5.
    [2]李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998.1-44.
    [3]и.C.拉甫罗夫著,赵振国译,胶体化学实验[M].北京:高等教育出版社,1992.88-99.
    [4]沈中,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997.7-11.
    [5]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001.103-104.
    [6]Cao G Z. Growth of Oxide Nanorod Arrays through Sol Electrophoretic Deposition[J]. J. Phys. Chem. B, 2004, 108(52): 19921-19931.
    [7] Reed, J. S. Introduction to the Principles of Ceramic Processing[M]. New York: John Wiley & Sons, 1988.
    [8] Hunter R. J. Zeta Potential in Colloid Science: Principles and Applications[M].London : Academic Press, 1981.
    [9] Li G F, Martinez C, et al. Controlled Electrophoretic Patterning of Polyaniline from a Colloidal Suspension[J]. J. Am. Chem. Soc, 2005, 127 (13): 4903-4909.
    [10]Nirmala Chandrasekharan, Prashant V. Kamat. Assembling Gold Nanoparticles as Nanostructured Films Using an Electrophoretic Approach[J]. Nano Lett., 2001, 1(2): 67-70.
    [11] Amihood D, Katz E, Willner I. Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers[J]. Langmuir , 1995, 11(4): 1313-1317.
    [12] Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers[J]. J. Am. Chem. Soc., 1992, 114(13): 5221-5230.
    [13]Fan H, Lopez G P. Adsorption of Surface-Modified Colloidal Gold Particles onto Self-Assembled Monolayers: A Model System for the Study of Interactions of Colloidal Particles and Organic Surfaces[J]. Langmuir , 1997, 13(2): 119-121.
    [14]Sarathy K V, Raina G, Yadav R T, Kulkarni G U, Rao C N R. Thiol-Derivatized Nanocrystalline Arrays of Gold, Silver, and Platinum[J]. J. Phys. Chem. B, 1997, 101(48): 9876-9880.
    [15]Chen S W. Self-Assembling of Monolayer-Protected Gold Nanoparticles[J]. J. Phys. Chem. B, 2000, 104(4): 663-667.
    [16]Brust M, Bethell D, Schiffrin D J, Kiely C J. Novel gold-dithiol nano-networks with non-metallic electronic properties[J]. AdV. Mater, 1995, 7(9): 795-797.
    [17] Moulson A J, Herbert J M. Electroceramics: Materials, Properties, Applications[M]. London: Chapman and Hall, 1990.
    [18]Katsoulis D E. A survey of Applications of Polyoxometalates[J]. Chem. Rev., 1998, 98: 359-388.
    [19]Berzelius J. J. Pogg Ann[J]. 1826, 6: 369-380.
    [20]Xi Z W, Zhou N, Sun Y, et.al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylen oxide[J]. Science, 2001, 11 (292): 1139-1141.
    [21]Mizuno N, Misono M. Heteropolyanions in catalysis[J]. J. Mol.Catal., 1994, 86 (1-3): 319-342.
    [22]安文佳,多金属氧酸盐催化氧化脂环烃的研究[硕士学位论文].长春:东北师范大学化学学院2006.
    [23]Peng J, Wang E B, Zhou Y S. Synthesis Electrical properties and crystal structure of a new radical-ionsalt based onЛ-extended dis (TTF) and a Keggin heteropolymolybdate[J]. J Chem Soc Dalton Trans, 1998, 22: 3865-3870.
    [24]Keggin J F. The structure and formula of 12-phosphotungstic acid[J]. Proc R Soc Lond, 1934, 144: 75-100.
    [25]Keita B, Nadjo L. High resolution scanning tunneling microscopy imaging of tungstophosphoric acid[J]. Surface Science Letters, 1991, 254 (1-3): L443-L447.
    [26]Galia Maayan, Ronit Popovitz-Biro, Ronny Neumann. Micelle Directed Synthesis of Polyoxometalate Nanoparticles and Their Improved Catalytic Activity for the Aerobic Oxidation of Sulfides [J]. J. Am. Chem. Soc., 2006, 128(15): 4968-4969.
    [27]Kurth D G, Lehmann P, et al. Surfactant-Encapsulated Clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18] [J]. Chem.Eur.J, 2000, 6(2): 385-393.
    [28]Volkmer D, Chesne A D, Kurth D G, et al. Toward Nanodevices: Synthesis and Characterization of the Nanoporous Surfactant-Encapsulated Keplerate (DODA)40(NH4)2[(H2O)nMo132O372(CH3COO)30(H2O)72] [J]. J. Am. Chem. Soc., 2000, 122(9): 1995-1998.
    [29]卜伟锋,通向超分子软材料:表面活性剂包埋的杂多酸复合物[博士学位论文].长春:吉林大学化学学院2004.
    [30]Kurth D G, Lehmann P, et al. Biologically inspired polyoxometalatesurfactant composite materials. Investigations on the structures of discrete, surfactant-encapsulated clusters, monolayers, and Langmuir–Blodgett films of (DODA)40(NH4)2[(H2O)n Mo132O372(CH3CO2)30(H2O)72] [J]. J. Am. Chem. Soc., Dalton Trans., 2000, 3989-3998.
    [31]Bu W F, Wu L X, et al. Investigation on Solvent Casting Films of Surfactant Encapsulated Clusters[J]. Colloid Interface Sci., 2002, 251: 120-124.
    [32]Bu W F, Fan H L, et al. Surfactant-encapsulated polyoxoanion:structural characterization of its Langmuir films and Langmuir-Blodgett films[J]. Langmuir, 2002, 18: 6398-6403.
    [33] Bu W F, Zhang J, et al. Synthesis and Characterization of Surfactant-Encapsulated Polyoxoanions: [(CnH2n+1)2N(CH3)2]12[Mo36(NO)4O108(H2O)16] (n=12,18) [J]. Chin.J.Chem., 2002, 20: 1514-1518.
    [34]Bu W F, Wu L X, et al. Surfactant-Encapsulated Europium-Substituted Heteropolyoxotungatate:the Structural Characterization and Photophysical Properties of Its Solid State, Solvent-Casting Film,and Langmuir-Blodgett Film[J]. J. Phys. Chem. B, 2003, 107: 13425-13431.
    [35]Bu W F, Wu L X, et al. Polyoxometalates Matrixed into Surfactants: Synthesis, Characterizations, and Conformations of Surfactants[J]. J.Colloid Interface Sci., 2004, 269: 472-475.
    [36]Bu W F, Li H L, Sun H, et al. Polyoxometalate-Based Vesicle and Its Honeycomb Architectures on Solid Surfaces[J]. J Am Chem Soc, 2004, 127: 8016-8017.
    [37]Li W, Bu W F, et al. Surfactant-Encapsulated Polyoxometalate Complexes:toward Thermotropic Liquid Crystal[J]. Chem.Commun., 2005, 3785-3787.
    [38]Li W, Yin S Y, et al. Tuning Mesophase of Ammonium Amphiphile-Encapsulated Polyoxometalate Complexes through Changing Component Structure[J]. Chem. Mater., 2008, 20(2): 514.
    [39]Sun H, Li H L, et al. Self-Organized Microporous Structure Based on Surfactant-Encapsulated Polyoxometalate Complexes[J]. J. Phys. Chem. B, 2006, 110: 24847-24854.
    [40]李昊龙,多金属氧簇超分子复合物的组装及聚合物功能材料[博士学位论文].长春:吉林大学化学学院2008.
    [41] Li H L, Sun H, et al. Onionlike Hybrid Assemblies Based on Surfactant-Encapsulated Polyoxometalates[J]. Angew. Chem. Int. Ed., 2007, 46: 1300-1303.
    [42]Li H L, Qi W, et al. Novel Polymerizable Pigment Based on Surfactant-Encapsulated Polyoxometalates and Their Application in Polymer Coloration[J]. Dyes Pigments, 2008, 79: 105-110.
    [43]Li H L, Li P, et al. Incorporation of Polyoxometalates into Polystyrene Latex by Supramolecular Encapsulation and Miniemulsion Polymerization[J]. Macromol. Rapid Commun., 2008, 29: 431-436.
    [44]Li H L, Qi W, et al. A High Transparent and Luminescent Hybrid Based on The copolymerization of Surfactant-Encapsulated Polyoxometalate and Methyl Methacrylate[J]. Adv.Mater., 2005, 17: 2688-2692.
    [45]Xu M, Liu C L, et al. In Situ Photopolymerization and Photophysical Properties of A Surfactant-encapsulated Polyoxometalate in Casting Film[J]. J. Colloid Interface Sci., 2008, 323: 176-181.
    [46]Sun H, Bu W F, et al. Self-Assembled Monolayers of CH3COS-Terminated Surfactant-Encapsulated Polyoxometalate Complexes[J]. Langmuir, 2008, 24: 4693-4699.
    [47]Qi W, Li H L, et al. A Novel, Luminescent, Silica-Sol-Gel Hybrid Based on Surfactant-Encapsulated Polyoxometalates[J]. Adv.Mater., 2007, 19: 1983-1987.
    [48]Zhang H, Li H L, et al. Self-assembly of a Surfactant-encapsulated Polyoxometalate Mediated by Coordination of Metal Ions[J]. Chem.Lett., 2006, 35: 706-707.
    [49]Li W, Li H L, et al. Structural Characterization of Dimethyldioctadecylammonium-Encapsulated Terbium-Substituted Heteropolyoxotungatates in Solid, Langmuir-Blodgett and Solvent-Casting Films[J]. Colloid Surface A, 2006, 272: 176-181.
    [50]Bu W F, Li H L, et al. Polyoxometalate-Based Vesicles and Its Honeycomb Architectures on Solid Surfaces[J]. J. Am. Chem. Soc., 2005, 127: 8016-8017.
    [51]Bu W F, Li H L, et al. Surfactant-Encapsulated Europium-Substituted Heteropolyoxotungstates: Structural Characterizations and Photophysical Properties[J]. J. Phys. Chem. B, 2004, 108: 12776-12782.
    [52]Bu W F, Li W, et al. Surfactant-Encapsulated Polyoxometalloeuropate:Polarized Eu3+ Emission in the Highly Ordered Self-Organizing Film[J]. J.Colloid Interface Sci., 2004, 274: 200-203.
    [53]Blodgett K A. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface[J]. J Am Chem Soc, 1935, 57: 1007-1022.
    [54]Lesslauer W, Slotboom A J, de Haas G H. The Interaction of Phospholipase a with Lipids. I.Structure of The Bimolecular Leaflet of aLecithin Analogue Substance, 1-Oleoyl-2-N-Hexadecyl-2-Deoxy-Glycero-3-Phosphorylcholine[J]. Chem Phys Lipids, 1973, 11: 181-195.
    [55]Pockrand I, Brillante A, Mobius D. Exciton-surface Plasmon Coupling:an Experimental Investigation[J]. J Chem Phys, 1982, 77: 6289-6295.
    [56]Moriizumi T. Langmuir-Blodgett Films as Chemical Sensors[J], Thin Solid Films, 1988, 160: 413-429.
    [57]Larkins J, Fung C D, Rickert S E. Integrated Metal Langmuir Semiconductor Field Effect Transistors[J]. Thin Solid Films, 1989, 180: 217-225.
    [58]Sakai K, Matsuda H, Kawada H, et al. Switching and Memory Phenomena in Langmuir-Blodgett Films[J]. Appl Phys Lett., 1988, 53.
    [59]Iler R K. Multilayers of Colloidal Particles, Multilayers of Colloidal Particles. 2. P Fromherz, in Electron Microscopy at Molecular Dimensions[J]. J Colloid Interface Sci, 1966, 21: 569-594.
    [60]Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites[J]. Science, 1997, 277: 1232-1237.
    [61]Decher G, Hong J D, Schmitt J. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: III.Consecutively Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces[J]. Thin Solid Film, 1992, 210-211: 831-835.
    [62]Lvov Y, Ariga K, Kunitake T. Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption[J]. J Am Chem Soc, 1995, 117: 6117-6123.
    [63]Lvov Y, Decher G, Sukhorukov G. Assembly of Thin Films by Means of Successive Deposition of Alternate Layers of DNA and Poly (allylamine)[J]. Macromolecules, 1993, 26: 5396-5399.
    [64]Cooper T, Campbell A, Crane R.Formation of Polypeptide-dye Multilayers by Electrostatic Self-Assembly Technique[J]. Langmuir, 1989, 11: 2713-2718.
    [65]Lvov Y, Ariga K. Alternate Assembly of Ordered Multilayers of SiO2 and Other Nanoparticles and Polyions[J]. Langmuir, 1997, 13: 6195-6203.
    [66]Ariga K, Lvov Y, Kunitake T. Assembling Alternate Dye-Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption[J]. J Am Chem Soc, 1997, 119: 2224-2231.
    [67]Rouse J H, Lillehei P T. Electrostatic Assembly of Polymer/Single Walled Carbon Nanotube Multilayer Films[J]. Nano Lett, 2003, 3(1): 59-62.
    [68]He J A, Valluzzi R.Electrostatic Multilayer Deposition of a Gold-Dendrimer Nanocomposite [J]. Chem Mater, 1999, 11: 3268-3274.
    [69]Serizawa T, Yamaguchi M, Akashi M.Enzymatic Hydrolysis of a Layer-by-Layer Assembly Prepared from Chitosan and Dextran Sulfate[J]. Macromolecules, 2002, 35(23): 8656-8658.
    [70]Wang L Y, Fu Y, Wang Z, et al. Investigation into an Alternating Multilayer Film of Poly (4-Vinylpyridine) and Poly (acrylic acid) Based on Hydrogen Bonding[J]. Langmuir, 1999, 15: 1360-1363.
    [71]Kim J, Wang H-C, Kumar J, et al. Novel Layer-by-layer Complexation Technique and Properties of the Fabricated Films[J]. Chem Mater, 1999, 11: 2250-2256.
    [72]Shimazaki Y, Mitsuishi M, Ito S, et al. Preparation and Characterization of the Layer-by-Layer Deposited Ultrathin Film Based on the Charge-Transfer Interaction in Organic Solvents[J]. Langmuir, 1998, 14: 2768-2773.
    [73]Decher G. New Nanocomposite Filmsfor Biosensors: Layer-by-Layer Adsorbed Films of Polyelectrolytes, Proteins or DNA[J]. Biosens, Biosensors Bioelectron, 1994, 9: 677-684.
    [74]Taton T A, Mucic R C, Mirkin C A, et al. The DNA-Mediated Formation of Supramolecular Mono-and Multilayered Naoparticle Structures[J]. J Am Chem Soc, 2000, 122(26): 6305-6306.
    [75]Brust M, Blass P M, Bard A J.Self-Assembly of Photoluminescent Copper (I)-Dithiol Multilauer Thin Films and Bulk Materials[J]. Langmuir, 1997, 13(21): 5602-5607.
    [76]Kohli P, Taylor K K, Harris J J, et al. Assembly of Covalently-Coupled Disulfide Multilayers on Gold[J]. J Am Chem Soc, 1998, 120(46): 11962-11968.
    [77]Kohli P, Blanchard G J. Applying Polymer Chemistry to Unterfaces:Layer-by-Layer and Spontaneous Growth of Covalently Bound Multilayers[J]. Langmuir, 2000, 16(10): 4655-4661.
    [78]He J, Samuelson L, Li L, et al. Oriented Bacteriorhodopsin/Polycation Multilayers by Electrostatic Layer-by-Layer Assembly[J]. Langmuir, 1998, 14(7): 1674-1679.
    [79]Lvov Y, Munge B, Giraldo O, et al. Films of Manganese Oxide Nanopartices with Polycations or Myoglobin from Alternate-Layer Adsorption[J]. Langmuir, 2000, 16(23): 8850-8857.
    [80]Anzai J, Nakamura N. Preparation of Active Avidin Films by a Layer-by-Layer Deposition of Poly (Viny Sulfate) and Avidin on a Solid Surface[J]. J Chem Soc, Perkin Trans, 1999, 2: 2413-2414.
    [81]Lehn, J. M. Supramolecular Chemistry[M].VCH: New York, 1995.
    [82]V?gtle, F. Supramolecular Chemistry[M].Wiley: New York, 1991.中文版,张希,林志宏,高倩译.长春:吉林大学出版社, 1995.
    [83]Whitesides G, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures.[J]. Science, 1991, 254: 1312-1319.
    [84]Desiraju G R. Supramolecular Synthons in Crystal Engineering - A New Organic Synthesis[J]. Angew.Chem.Int.Ed.Engl., 1995, 34(21): 2311-2327.
    [85]Philp D, Stoddart J F. Self-Assembly in Natural and Unnatural Systems[J]. Angew. Chem. Int. Ed. Engl., 1996,35(11): 1154-1196.
    [86]Müller A, Reuter H, Dillinger S. Supramolecular Inorganic Chemistry: Small Guests in Small and Large Hosts[J]. Angew. Chem. Int. Ed. Engl., 1995, 34(21): 2328-2361.
    [87]Piguet C, Bernardinelli G, Hopfgartner G. Helicates as Versatile Supramolecular Complexes[J]. Chem.Rev.,1997,97(6): 2005-2062.
    [88]Reinhoudt D N, Crego-Calama M. Synthesis Beyond the Molecule[J]. Science, 2002, 295: 2403-2407.
    [89]Brunsveld L, Folmer J B B, Meijer E W, Sijbesma R P. Supramolecular Polymers[J]. Chem.Rev., 2001,101(12): 4071-4098.
    [90]Prins L J, Reinhoult D N, Timmerman P. Noncovalent Synthesis Using Hydrogen Bonding[J]. Angew. Chem. Int. Ed. Engl., 2001, 40(13): 2382-2426.
    [91]Schubert U S, Eschbaumer C. Macromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers[J]. Angew. Chem. Int. Ed. Engl., 2002, 41(16): 2892-2926.
    [92]Daniel M-C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chem.Rev., 2004, 104(1): 293-346.
    [93]Faul C F J, Antonietti M. Ionic Self-Assembly: Facile Synthesis of Supramolecular Materials[J]. Adv.Mater., 2003, 15(9): 673-683.
    [94]Branytska O V, Neumann R. An Efficient, Catalytic, Aerobic, Oxidative Iodination of Arenes Using the H5PV2Mo10O40 Polyoxometalate as Catalyst[J]. J. Org. Chem., 2003,68 (24): 9510-9512.
    [95]Coronado E, Galán-Mascarós J R, et al. Metallic Conductivity in a Polyoxovanadate Radical Salt of Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF): Synthesis, Structure, and Physical Characterization of -(BEDT-TTF)5[H3V10O28]·4H2O[J]. Adv. Mater., 2004, 16(4): 324-327.
    [96]Coronado E, Clemente-León M, et al. Design of molecular materials combining magnetic, electrical and optical properties[J]. J. Chem. Soc., Dalton Trans., 2000: 3955-3961.
    [97]Booth H S (Ed), Inorganic Synthesis, vol.1, McGraw-Hill, New York, 1939: 127.
    [98]George A, Tsigdinos, Hallada C J, Molybdovanadophosphoric acids and their salts[J]. Inorg Chem. 1968, 7: 437-440.
    [99]Pope M T著,王恩波等译.杂多和同多金属氧酸盐[M].长春:吉林大学出版社, 1991.
    [100]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社. 1998, 1.
    [111]Hill C L. Introduction: Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems[J]. Chem.Rev., 1998,98(1): 1-2.
    [112]Pope M T, Müller A. Polyoxometalate Chemistry from Topology via Self-Assembly to Application, Kluwer Academic Publishers: The Netherlands, 2001.
    [113]R.G. Snyder. Vibrational spectra of crystalline n-paraffins : Part I. Methylene rocking and wagging modes [J]. J. Mol. Spectrosc., 1960, 4: 411-434.
    [114]Schlotler N E, Porter M D, et al. Formation and structure of a spontaneously adsorbed monolayer of arachidic on silver[J]. Chem. Phys. Lett., 1986, 132 (1): 93-98.
    [115]Mantsch H H, Mcelhany R N. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy[J]. Chem. Phys. Lipids, 1991, 57 : 213-226.
    [116]Zhang T R, Feng W, et al. Self-assembled organic–inorganic composite superlattice thin films incorporating photo- and electro-chemically active phosphomolybdate anion[J]. J. Mater. Chem., 2002, 12: 1453-1458.
    [117]Clemente-León M, Agricole B, et al. Toward New Organic/Inorganic Superlattices: Keggin Polyoxometalates in Langmuir and Langmuir?Blodgett Films[J]. Langmuir, 1997, 13(8): 2340-2347.
    [118]Peng J, Wang E B, et al. The structure and properties of 12-heteropolyacid of molybdenum and tungsten (H3PMo6W6O40) solvated by dimethyl ether[J]. J. Mol. Struct., 1998, 444: 213-219.
    [119]Trau M, Saville D A, Aksay I A. Assembly of Colloidal Crystals at Electrode Interfaces[J]. Langmuir, 1997, 13(24): 6375-6381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700