基于厚膜技术的血液生物化学传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高性能、低成本、微小型医疗仪器不断向传统医疗仪器发起挑战。一种新的临床检验模式——床边检测应运而生。本课题研究的手持式血液分析传感器是典型的床边检测设备,针对血液生化和电解质这些临床生化检验中最为基础和重要的内容,实现血液样本的即时测量。其快速、廉价和操作简单的特性,特别适合我国社区、农村诊所医疗现状和野外、急救的诊断需求,具有重要的社会价值和现实意义。
     针对目前离子检测仪器体积大、操作复杂、成本昂贵的缺点,本课题研究了一种高性能、低成本的离子敏传感器制备技术。首次提出在丝网印刷碳糊电极基底上,采用厚膜成膜技术制备全固态离子选择性电极及其相应的外参比电极。通过大量实验,对厚膜成膜技术参数进行了优化,成功地实现了采用丝网印刷的方法制备固态导电聚合物PEDOT(PSS)层作为内充电解质、中性载体作为敏感物质、高分子材料聚氯乙烯为支持体的固态敏感膜的平板型全固态离子选择性电极。创新性的将参比电极设计为与工作电极类似的结构,利用干扰电位相减相消的原理提高传感器的抗干扰性能,并且缩短了传感器达到稳态的时间。同传统离子敏传感器相比,这种平板全固态离子敏传感器去除了液态部分,具有体积小易使用、携带保存方便的特点,特别适用于床边检测。对制备的钾、钙、钠、pH四种离子敏传感器进行了大量血清测量实验,考察了电极的灵敏度、一致性、保存期、环境影响等各方面性能,证明该四种离子敏传感器基本可以达到临床诊断的要求。
     针对用于血液生化检测的葡萄糖传感器,研究了静电纺丝法和电聚合导电聚合物法固定葡萄糖氧化酶的技术,对各项制备参数进行了优化。另外进行了碳纳米管对传感器响应增强方面的研究,分别制备了采用新型PQQ-GDH酶作为敏感物质和采用静电纺丝聚丙烯腈/丙烯酸固定葡萄糖氧化酶的碳纳米管修饰的葡萄糖传感器。通过对比实验证明采用碳纳米管修饰的传感器,其灵敏度、电极反应速度都得到了极大改善。
In recent years, micro or small medical devices with high-performance and low-cost have been challenging conventional medical equipments. A new clinical testing mode-the point of care testing (POCT) came into being, because of its portability, easy operation and low cost. POCT is gradually becoming the trend of medical diagnosis. In this thesis, a typical POCT device-- a handheld bio-chemical sensor for blood electrolyte or glucose analysis was studied. It can perform a complete panel of tests, affording facilities for doctors to monitor and diagnose the respiratory status, blood acid-base balance, ion concentration and metabolism of their patients quickly and effectively. The portable blood analyzer has huge social needs and market prospects, particularly suitable for community and rural clinics, field and first aid.
     Planar all-solid-state sensors based on thick film were developed to measure the concentration of K+, Ca2+, Na+ and pH in human serum. Each sensor consists of an ion-selective electrode and one external reference electrode. Experimentally, the parameters for thick film screen-printing were optimized. Successfully, polyvinyl chloride with neutral carries was formed as solid-state ion selective membrane, after conductive polymer PEDOT(PSS) was coated on the screen-printed carbon electrodes as inner solid-state electrolyte. A structure of external reference electrode similar to the working electrode was innovated to improve the anti-interference performance of the sensors based on the principle of interference potential cancellation. The design also speeded up the sensors to reach steady state. Compared with conventional ion selective electrodes, such planar all-solid-state sensors without liquid part, were easy to store and carry, especially suitable for bedside testing. Lots of clinic trials were carried out to test potassium, calcium, sodium, pH in serum using the sensors developed. The sensitivity, repeatability, reproducibility, stability, and environmental impact of the sensors were explored. The results indicated these four kinds of blood ion. sensors could meet the requirement of clinical diagnosis.
     Enzyme immobilization is a crucial technology for biosensors using enzymes as sensitive materials. Electrospinning and electropolymerization methods were studied to immobilize glucose oxidase on Pt electrode and screen-printed carbon electrode, respectively. After the processing parameters were optimized, the resulted glucose sensors had low detection limit, good sensitivity and linear detection range, reached the clinical diagnosis requirement. In addition, the effect of carbon nanotubes on sensor response enhancement was studied. Based on PQQ-GDH, a carbon nanotubes modified glucose biosensor was developed. Based on glucose oxidase immobilized by electrospun PANCAA, another carbon nanotubes modified glucose biosensor was developed as well. Based on the experimental results showing that the sensitivity and the electrode reaction rate of the sensors modified by carbon nanotubes are significantly improved, the mechanism of the carbon nanotubes modification was analyzed.
引文
[1]L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences,1962,102,29-45.
    [2]J. Janata, Principles of Chemical Sensors, ed. D. Hercules.1989, New York:Plenum Press.81.
    [3]黄德培,沈子琛,吴国梁等编著,离子选择电极的原理及应用.1982:新时代出版社.5.
    [4]F. Yalcinkaya, E.T. Powner, Portable battery-operated multi-sensor-array for whole human blood analysis, Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings,1997,6,2350-2353.
    [5]A. Uhlig, E. Lindner, C. Teutloff, U. Schnakenberg, R. Hintsche, Miniaturized Ion-Selective Chip Electrode for Sensor Application, Analytical Chemistry,1997,69(19),4032-4038.
    [6]H. Suzuki, T. Hirakawa, T. Hoshi, H. Toyooka, Micromachined sensing module for pO2, pCO2, and pH and its design optimization for practical use, Sensors and Actuators B:Chemical,2001,76(1-3), 565-572.
    [7]E. Jacobs, E. Vadasdi, L. Sarkozi, N. Colman, Analytical evaluation of i-STAT Portable Clinical Analyzer and use by nonlaboratory health-care professionals, Clinical Chemistry,1993,39(6), 1069-1074.
    [8]I.R. Lauks, Microfabricated Biosensors and Microanalytical Systems for Blood Analysis, Accounts of Chemical Research,1998,31(5),317-324.
    [9]S.J. Updike, G.P. Hicks, The Enzyme Electrode, Nature,1967,214(5092),986-988.
    [10]W.J. Sung, Y.H. Bae, A glucose oxidase electrode based on polypyrrole with polyanion PEG/enzyme conjugate dopant, Biosensors and Bioelectronics,2003,18,1231-1239.
    [11]T. Yao, K. Takashima, Amperometric biosensor with a composite membrane of sol-gel derived enzyme film and electrochemically generated poly(1,2-diaminobenzene) film, Biosensors and Bioelectronics,1998,13,67-73.
    [12]G. Li, Y. Wang, H. Xu, A hydrogen peroxide sensor prepared by electropolymerization of pyrrole based on screen-printed carbon paste electrodes, Sensors,2007,7,239-250.
    [13]A. Rahman, P. Kumar, D.S. Park, Y.B. Shim, Electrochemical Sensors Based on Organic Conjugated Polymers, Sensors,2008,8,118-141.
    [14]H. Ohnuki, T. Saiki, A. Kusakari, H. Endo, M. Ichihara, M. Izumi, Incorporation of glucose oxidase into langmuir-blodgett films based on prussian blue applied to amperometric glucose biosensor, Langmuir,2007,23(8),4675-4681.
    [15]L. Caseli, D.S. dos Santos Jr, M. Foschini, D. Goncalves, O.N. Oliveira Jr, The effect of the layer structure on the activity of immobilized enzymes in ultrathin films, Journal of Colloid and Interface Science,2006,303(1),326-331.
    [16]P.N. Mashazi, K.I. Ozoemena, T. Nyokong, Tetracarboxylic acid cobalt phthalocyanine SAM on gold:Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor, Electrochimica Acta,2006,52(1),177-186.
    [17]G. Liu, Y. Lin, Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes, Electrochemistry Communications,2006,8(2),251-256.
    [18]Y. Sun, F. Yan, W. Yang, C. Sun, Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment, Biomaterials,2006, 27(21),4042-4049.
    [19]S. Zhang, W. Yang, Y. Niu, Y. Li, M. Zhang, C. Sun, Construction of glucose biosensor based on sorption of glucose oxidase onto multilayers of polyelectrolyte/nanoparticles, Analytical and Bioanalytical Chemistry,2006,384(3),736-741.
    [201 P.C. Chen, B.C. Hsieh, R.L.C. Chen, T.Y. Wang, H.Y. Hsiao, T.J. Cheng, Characterization of natural chitosan membranes from the carapace of the soldier crab Mictyris brevidactylus and its application to immobilize glucose oxidase in amperometric flow-injection biosensing system, Bioelectrochemistry,2006,68(1),72-80.
    [21]M. Florescu, M. Barsan, R. Pauliukaite, C.M.A. Brett, Development and application of oxysilane sol-gel electrochemical glucose biosensors based on cobalt hexacyanoferrate modified carbon film electrodes, Electroanalysis,2007,19(2-3),220-226.
    [22]J. Li, J. Yu, F. Zhao, B. Zeng, Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing, Analytica Chimica Acta,2007,587(1),33-40.
    [23]J. Kan, S. Mu, H. Xue, H. Chen, Effects of conducting polymers on immobilized galactose oxidase, Synthetic Metals,1997,87(3),205-209.
    [24]M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors, Biosensors and Bioelectronics,2002,17,345-359.
    [25]P.D.T.d. Poet, S. Miyamoto, T. Murakami, J. Kimura, I. Karube, Direct electron transfer with glucose oxidase immobilized in an electropolymerized poly-N-methylpyrrole film on a gold microelectrode, Analytica Chimica Acta,1990,235,255-264.
    [26]G. Li, J. Zheng, X. Ma, Y. Sun, J. Fu, G. Wu, Development of QCM trimethylamine sensor based on water soluble polyaniline, Sensors,2007,7,2378-2388.
    [27]M. Tsujimoto, T. Yabutani, A. Sano, Y. Tani, H. Murotani, Y. Mishima, K. Maruyama, M. Yasuzawa, J. Motonaka, Characterization of a glucose sensor prepared by electropolymerization of pyrroles containing a tris-bipyridine osmium complex, Analytical Sciences,2007,23(1),59-63.
    [28]D.D. Borole, U.R. Kapadi, P.P. Mahulikar, D.G. Hundiwale, Glucose oxidase electrodes of polyaniline, poly(o-anisidine) and their co-polymer as a biosensor:A comparative study, Journal of Materials Science,2007,42(13),4947-4953.
    [29]C. Deng, M. Li, Q. Xie, M. Liu, Q. Yang, C. Xiang, S. Yao, Construction as well as EQCM and SECM characterizations of a novel Nafion/glucose oxidase-glutaraldehyde/poly(thionine)/Au enzyme electrode for glucose sensing, Sensors and Actuators B:Chemical,2007,122(1),148-157.
    [30]S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review, Biosensors and Bioelectronics,1999,14,443-456.
    [31]X. Pan, J. Kan, L. Yuan, Polyaniline glucose oxidase biosensor prepared with template process, Sensors and Actuators B:Chemical,2004,102,325-330.
    [32]L. Marcinkevicien, I. Bachmatova, R. Semenaite, R. Rudomanskis, G. Brazenas, R. Meskiene, R. Meskys, Purification and characterisation of PQQ-dependent glucose dehydrogenase from Erwinia sp.34-1, Biotechnology Letters,1999,21,187-192.
    [33]J. Razumiene, V. Gureviciene, A. Vilkanauskyte, L. Marcinkeviciene, I. Bachmatova, R. Meskys, V. Laurinavicius, Improvement of screen-printed carbon electrodes by modification with ferrocene derivative, Sens. Actuators, B, Chem.,2003,95(1-3),378-383.
    [34]J. Razumiene, R. Meskys, V. Gureviciene, V. Laurinavicius, M.D. Reshetova, A.D. Ryabov, 4-Ferrocenylphenol as an electron transfer mediator in PQQ-dependent alcohol and glucose dehydrogenase-catalyzed reactions, Electrochemistry Communications,2000,2,307-311.
    [35]M. Alkasrawi, I.C. Popescu, V. Laurinavicius, B. Mattiassona, E. Csoregi, A redox hydrogel integrated PQQ-glucose dehydrogenase based glucose electrode, Analytical Communications, 1999,36,395-398.
    [36]V. Laurinavicius, B. Kurtinaitiene, V. Liauksminas, A. Jankauskaite, R. Simkus, R. Meskys, L. Boguslavsky, T. Skotheim, S. Tanenbaum, Reagentless biosensor based on PQQ-depended glucose dehydrogenase and partially hydrolyzed polyarbutin, Talanta,2000,52,485-493.
    [37]J. Okuda, J. Wakai, N. Yuhashi, K. Sode, Glucose enzyme electrode using cytochrome b562 as an electron mediator, Biosensors and Bioelectronics,2003,18(5-6),699-704.
    [38]M. Zayats, E. Katz, R. Baron, I. Willner, Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted biocatalyst, Journal of the American Chemical Society,2005,127(35),12400-12406.
    [39]K. Habermuller, A. Ramanavicius, V. Laurinavicius, W. Schuhmann, An Oxygen-Insensitive Reagentless Glucose Biosensor Based on Osmium-Complex Modified Polypyrrole, Electroanalysis,2000,12(17),1383-1389.
    [40]A. Vilkanauskyte, T. Erichsen, L. Marcinkeviciene, V. Laurinavicius, W. Schuhmann, Reagentless biosensors based on co-entrapment of a soluble redox polymer and an enzyme within an electrochemically deposited polymer film, Biosensors and Bioelectronics,2002,17,1025-1031.
    [41]J. Huang, Y. Yang, H. Shi, Z. Song, Z. Zhao, J.I. Anzai, T. Osa, Q. Chen, Multi-walled carbon nanotubes-based glucose biosensor prepared by a layer-by-layer technique, Materials Science and Engineering:B,2006,26(1),113-117.
    [42]Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix, Biosensors and Bioelectronics, 2005,21(6),984-988.
    [43]M.D. Rubianes, GA. Rivas, Dispersion of multi-wall carbon nanotubes in polyethylenimine:A new alternative for preparing electrochemical sensors, Electrochemistry Communications,2007, 9(3),480-484.
    [44]B. Sljukic, C.E. Banks, C. Salter, A. Crossley, R.G. Compton, Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes:Application to glucose sensing, Analyst,2006,131(5),670-677.
    [45]S. Timur, U. Anik, D. Odaci, L. Gorton, Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes, Electrochemistry Communications,2007,9(7),1810-1815.
    [46]U. Yogeswaran, S.M. Chen, A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material, Sensors,2008,8,290-313.
    [47]Q. Zhou, Q. Xie, Y. Fu, Z. Su, X. Jia, S. Yao, Electrodeposition of carbon nanotubes-Chitosan-Glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2, The Journal of Physical Chemistry B,2007,111(38),11276-11284.
    [48]C. Shin, W. Shin, H.G. Hong, Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor, Electrochimica Acta,2007,53(2),720-728.
    [49]Y. Sun, Y. Bai, W. Yang, C. Sun, Controlled multilayer films of sulfonate-capped gold nanoparticles/thionine used for construction of a reagentless bienzymatic glucose biosensor, Electrochimica Acta,2007,52(25),7352-7361.
    [50]W. Zhao, J.J. Xu, C.G. Shi, H.Y. Chen, Fabrication, characterization and application of gold nano-structured film, Electrochemistry Communications,2006,8(5),773-778.
    [51]X. Chu, D. Duan, G. Shen, R. Yu, Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode, Talanta,2007, 71(5),2040-2047.
    [52]H.F. Cui, J.S. Ye, W.D. Zhang, C.M. Li, J.H.T. Luong, F.S. Sheu, Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites, Analytica Chimica Acta,2007,594(2),175-183.
    [53]J. Li, X. Lin, Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode, Biosensors and Bioelectronics,2007,22(12),2898-2905.
    [54]K.B. Male, S. Hrapovic, J.H.T. Luong, Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes, Analyst,2007,132(12), 1254-1261.
    [55]F. Qu, M. Yang, G. Shen, R. Yu, Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis, Biosensors and Bioelectronics, 2007,22(8),1749-1755.
    [56]E. Scavetta, S. Stipa, D. Tonelli, Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing, Electrochemistry Communications,2007,9(12), 2838-2842.
    [57]J. Xie, S. Wang, L. Aryasomayajula, V.K. Varadan, Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing, Nanotechnology,2007,18(6),
    [58]M. Yang, Y. Yang, Y. Liu, G. Shen, R. Yu, Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors, Biosensors and Bioelectronics,2006,21(7), 1125-1131.
    [59]S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors, Analytica Chimica Acta,2006,556(1),46-57.
    [60]B.K. Jena, C.R. Raj, Enzyme-free amperometric sensing of glucose by using gold nanoparticles, Chemistry-A European Journal,2006,12(10),2702-2708.
    [611 X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode, Analytical Biochemistry,2007,363(1),143-150.
    [62]F. Kurniawan, V. Tsakova, V.M. Mirsky, Gold nanoparticles in nonenzymatic electrochemical detection of sugars, Electroanalysis,2006,18(19-20),1937-1942.
    [63]Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose, Electrochemistry Communications,2007, 9(5),981-988.
    [64]P. Glikfeld, R.S. Hinz, R.H. Guy, Noninvasive Sampling of Biological Fluids by Iontophoresis, Pharmaceutical Research,1989,6(11),988-990.
    [65]B. Leboulanger, R.H. Guy, M.B. Delgado-Charro, Reverse iontophoresis for non-invasive transdermal monitoring, Physiological Measurement,2004,25(3), R35-R50.
    [66]V. Kondepati, H. Heise, Recent progress in analytical instrumentation for glycemic control in diabetic and critically ill patients, Analytical and Bioanalytical Chemistry,2007,388(3),545-563.
    [67]D.S. Fredrickson, R.I. Levy, The metabolic basis of inherited disease., ed. J.B. Stanbury, J.B. Wyngaarden, and D. S. Fredrickson.1972, New York:McGraw-Hill.545.
    [68]S. Aravamudhan, A. Kumar, S. Mohapatra, S. Bhansali, Sensitive estimation of total cholesterol in blood using Au nanowires based micro-fluidic platform, Biosensors and Bioelectronics,2007, 22(9-10),2289-2294.
    [69]C. Bongiovanni, T. Ferri, A. Poscia, M. Varalli, R. Santucci, A. Desideri, An electrochemical multienzymatic biosensor for determination of cholesterol, Bioelectrochemistry,2001,54(1), 17-22.
    [70]G. Li, J.M. Liao, GQ. Hu, N.Z. Ma, P.J. Wu, Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood, Biosensors and Bioelectronics,2005,20(10),2140-2144.
    [71]J. Li, T. Peng, Y. Peng, A Cholesterol Biosensor Based on Entrapment of Cholesterol Oxidase in a Silicic Sol-Gel Matrix at a Prussian Blue Modified Electrode, Electroanalysis,2003,15(12), 1031-1037.
    [72]J.C. Vidal, J. Espuelas, E. Garcia-Ruiz, J.-R. Castillo, Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers, Talanta,2004,64(3),655-664.
    [73]S. Roy, H. Vedala, W. Choi, Vertically aligned carbon nanotube probes for monitoring blood cholesterol, Nanotechnology,2006,17(4), S14-S18.
    [74]J.C. Chen, H.H. Chung, C.T. Hsu, D.M. Tsai, A.S. Kumar, J.M. Zen, A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood, Sensors and Actuators B:Chemical,2005,110(2),364-369.
    [75]S. Cete, A. Yasar, F. Arslan, An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film, Artificial Cells, Blood Substitutes, and Immobilization Biotechnology,2006,34(3),367-380.
    [76]R. Dobay, G. Harsa?nyi, C. Visy, Detection of uric acid with a new type of conducting polymer-based enzymatic sensor by bipotentiostatic technique, Analytica Chimica Acta,1999, 385(1-3),187-194.
    [77]T. Nakaminami, S.I. Ito, S. Kuwabata, H. Yoneyama, A biomimetic phospholipid/alkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid, Analytical Chemistry,1999,71(19),4278-4283.
    [78]T. Nakaminami, S.I. Ito, S. Kuwabata, H. Yoneyama, Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer, Analytical Chemistry,1999,71(10),1928-1934.
    [79]J.B. He, G.P. Jin, Q.Z. Chen, Y. Wang, A quercetin-modified biosensor for amperometric determination of uric acid in the presence of ascorbic acid, Analytica Chimica Acta,2007,585(2), 337-343.
    [80]J. Li, X.Q. Lin, Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid, Analytica Chimica Acta,2007,596(2),222-230.
    [81]P. Wang, Y. Li, X. Huang, L. Wang, Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid, Talanta,2007,73(3),431-437.
    [82]J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, GQ. Xu, F.S. Sheu, Selective Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at Well-Aligned Carbon Nanotube Electrode, Electroanalysis,2003,15(21),1693-1698.
    [83]C. Wang, Q. Liu, X. Shao, G. Yang, H. Xue, X. Hu, One step fabrication of nanoelectrode ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content, Talanta,2007,71(1),178-185.
    [84]O. Smutok, G. Gayda, M. Gonchar, W. Schuhmann, A novel L-lactate-selective biosensor based on flavocytochrome b2 from methylotrophic yeast Hansenula polymorpha, Biosensors and Bioelectronics,2005,20(7),1285-1290.
    [85]N. Sato, H. Okuma, Amperometric simultaneous sensing system for D-glucose and L-lactate based on enzyme-modified bilayer electrodes, Analytica Chimica Acta,2006,565(2),250-254.
    [86]C.L. Lin, C.L. Shih, L.K. Chau, Amperometric L-lactate sensor based on sol-gel processing of an enzyme-linked silicon alkoxide, Analytical Chemistry,2007,79(10),3757-3763.
    [87]S. Suman, R. Singhal, A.L. Sharma, B.D. Malthotra, C.S. Pundir, Development of a lactate biosensor based on conducting copolymer bound lactate oxidase, Sensors and Actuators B: Chemical,2005,107(2),768-772.
    [88]J. Haccoun, B. Piro, L.D. Tran, L.A. Dang, M.C. Pham, Reagentless amperometric detection of L-lactate on an enzyme-modified conducting copolymer poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-3-thioacetic acid-1,4-naphthoquinone), Biosensors and Bioelectronics,2004,19(10),1325-1329.
    [89]X. Cui, C.M. Li, J. Zang, S. Yu, Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite, Biosensors and Bioelectronics,2007,22(12), 3288-3292.
    [90]Y.Z. Lam, J.K. Atkinson, Biomedical sensor using thick film technology for transcutaneous oxygen measurement, Med. Eng. Phys.,2007,29(3),291-297.
    [91]S. Helali, C. Martelet, A. Abdelghani, M.A. Maaref, N. Jaffrezic-Renault, A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads on gold surface for the detection of atrazine, Electrochimica Acta,2006,51(24),5182-5186.
    [92]T. Balkenhohl, F. Lisdat, An impedimetric immunosensor for the detection of autoantibodies directed against gliadins, Analyst,2007,132(4),314-322.
    [93]M.A. Rahman, M.J.A. Shiddiky, J.S. Park, Y.B. Shim, An impedimetric immunosensor for the label-free detection of bisphenol A, Biosensors and Bioelectronics,2007,22(11),2464-2470.
    [94]朱辰,胡旭姣,夏燕,检验医学的新领域——床边检验(POCT), Chin J Convalescent Med 2008,17(11),685-686.
    [95]Point-of-Care Testing:U.S. Markets and Progress, http://www.mindbranch.com/Point-Care-Testing-R151-152/.
    [96]S. Li-Xian, T. Okada, J.P. Collin, H. Sugihara, PVC membrane lithium-selective electrodes based on oligomethylene-bridged bis-1,10-phenanthroline derivatives, Analytica Chimica Acta,1996, 329(1-2),57-64.
    [97]T.K. Malongo, B. Blankert, O. Kambu, K. Amighi, J. Nsangu, J.M. Kauffmann, Amodiaquine polymeric membrane electrode, Journal of Pharmaceutical and Biomedical Analysis,2006,41(1), 70-76.
    [98]R.K. Mahajan, R.K. Puri, A. Marwaha, I. Kaur, M.P. Mahajan, Highly selective potentiometric determination of mercury(II) ions using 1-furan-2-yl-4-(4-nitrophenyl)-2-phenyl-5H-imidazole-3-oxide based membrane electrodes, Journal of Hazardous Materials,2009,167(1-3),237-243.
    [99]A. Demirel, A. Dogan, E. Canel, S. Memon, M. Yilmaz, E. Kili, Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a p-tert-butylcalix[4]arene-oxacrown-4, Talanta, 2004,62,123-129.
    [100]A. Akbari, M.F. Mousavi, M. Shamsipur, M.S. Rahmanifar, A PVC-based 1,8-diaminonaphthalen electrode for selective determination of vanadyl ion, Talanta,2003,60(4),853-859.
    [101]I.H.A. Badr, J. Feiler, L.G. Bachas, Response behavior of sodium-selective electrodes modified by surface attachment of the anticoagulant polysaccharides heparin and chondroitin sulfate, Talanta,2005,65(1),261-266.
    [102]F. Deyhimi, R. Salamat-Ahangari, Z. Karimzadeh, Thermodynamic investigation of KCl in the ternary KCl/LiCl/H2O mixed electrolyte system based on potentiometric method, Calphad,2007, 31(4),522-528.
    [103]E. Bakker, D. Diamond, A. Lewenstam, E. Pretsch, Ion sensors:current limits and new trends, Analytica Chimica Acta,1999,393,11-18.
    [104]A.I. Johan Bobacka, Andrzej Lewenstam, Potentiometric Ion Sensors Based on Conducting Polymers, Electroanalysis,2003,15(5),366-374.
    [105]H. Shirakawa, The discovery of polyacetylene film:The dawning of an era of conducting polymers, Synthetic Metals,2001,125(1,2),3-10.
    [106]A.G. MacDiarmid, Synthetic metals:a novel role for organic polymers, Synthetic Metals,2001, 125(1,2),11-22.
    [107]A.J. Heeger, Semiconducting and metallic polymers:the fourth generation of polymeric materials, Synthetic Metals,2001,125(1,2),23-42.
    [108]N. Zine, J. Bausells, A. Ivorra, J. Aguilo, M. Zabala, F. Teixidor, C. Masalles, C. Vinas, A. Errachid, Hydrogen-selective microelectrodes based on silicon needles, Sensors and Actuators B: Chemical,2006,91,76-82.
    [109]N. Zine, J. Bausells, F. Teixidor, C. Vinas, C. Masalles, J. Samitier, A. Errachid, All-solid-state hydrogen sensing microelectrodes based on novel PPy[3,3'-Co(1,2-C2B9H11)2] as a solid internal contact, Materials Science and Engineering:C,2006,26,399-404.
    [110]N. Zine, J. Bausells, F. Vocanson, R. Lamartine, Z. Asfari, F. Teixidor, E. Crespo, I.A.M.d. Oliveira, J. Samitier, A. Errachid, Potassium-ion selective solid contact microelectrode based on a novel 1,3-(di-4-oxabutanol)-calix[4]arene-crown-5 neutral carrier, Electrochimica Acta,2006, 2006,5075-5079.
    [111]M. Vazquez, P. Danielsson, J. Bobacka, A. Lewenstam, A. Ivaska, Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes, Sensors and Actuators B:Chemical,2004,97,182-189.
    [112]F. Sundfors, R.b. Bereczki, J. Bobacka, K. Toth, A. Ivaska, R.b. E, Gyurcsanyi, Microcavity Based Solid-Contact Ion-Selective Microelectrodes, Electroanalysis,2006,18(13-14),1372-1378.
    [113]J. Bobacka, A. Ivaska, A. Lewenstam, Potentiometric ion sensors based on conducting polymers, Electroanalysis,2003,15(5-6),366-374.
    [114]J. Bobacka, Conducting Polymer-Based Solid-State Ion-Selective Electrodes, Electroanalysis, 2006,18(1),7-18.
    [115]R.W. Cattrall, H. Freiser, Coated wire ion-selective electrodes, Analytical Chemistry,1971,43, 1905-1906.
    [116]V.V. Cosofret, M. Erdosy, T.A. Johnson, R.P. Buck, R.B. Ash, M.R. Neuman, Microfabricated Sensor Arrays Sensitive to pH and K+ for Ionic Distribution Measurements in the Beating Heart, Analytical Chemistry,1995,67(10),1647-1653.
    [117]S.P. Kounaves, Electrochemical Approaches for Chemical and Biological Analysis on Mars, ChemPhysChem,2003,4(2),162-168.
    [118]J. Bobacka, Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers, Analytical Chemistry,1999,71,4932-4937.
    [119]A. Cadogan, H. Gao, A. Lewenstam, A. Ivaska, D. Diamond, All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact, Analytical Chemistry,1992,64(21),2496-2501.
    [120]E. Bakker, P. Buhlmann, E. Pretsch, Carrier-Based Ion-Selective Electrodes and Bulk Optodes.1. General Characteristics, Chemical Reviews,1997,97(8),3083-3132.
    [121]P. Buhlmann, E. Pretsch, E. Bakker, Carrier-Based Ion-Selective Electrodes and Bulk Optodes.2. Ionophores for Potentiometric and Optical Sensors, Chemical Reviews,1998,98(4),1593-1688.
    [122]J. Bobacka, T. Lindfors, M. McCarrick, A. Ivaska, A. Lewenstam, Single-piece all-solid-state ion-selective electrode, Analytical Chemistry,1995,67(20),3819-3823.
    [123]C. Gabrielli, P. Hemery, P. Liatsi, M. Masure, H. Perrot, ac-Electrogravimetry study of an all solid state potassium selective electrode with polypyrrole as the solid internal contact, Electrochimica Acta,2006,51(8-9),1704-1712.
    [124]T. Lindfors, A. Ivaska, All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl)phosphate with ETH1001 as neutral carrier, Analytica Chimica Acta,2000,404(1),101-110.
    [125]T. Momma, S. Komaba, M. Yamamoto, T. Osaka, S. Yamauchi, All-solid-state potassium-selective electrode using double-layer film of polypyrrole/polyanion composite and plasticized poly(vinyl chloride) containing valinomycin, Sensors and Actuators B:Chemical,1995, 25(1-3),724-728.
    [126]A. Michalska, A. Hulanicki, A. Lewenstam, All-solid-state potentiometric sensors for potassium and sodium based on poly(pyrrole) solid contact, Microchemical Journal,1997,57(1),59-64.
    [127]L.Y. Heng, E.A.H. Hall, Assessing a photocured self-plasticised acrylic membrane recipe for Na+ and K+ ion selective electrodes, Analytica Chimica Acta,2001,443(1),25-40.
    [128]T.A. Bendikov, J. Kim, T.C. Harmon, Development and environmental application of a nitrate selective microsensor based on doped polypyrrole films, Sensors and Actuators B:Chemical,2005, 106,512-517.
    [129]Z. Zhu, J. Zhang, J. Zhu, W. Lu, J. Zi, Fabrication and Characterization of Potassium Ion-Selective Electrode Based on Porous Silicon, IEEE Sensors Journal,2007,7(No1, January),
    [130]A. Konopka, T. Sokalski, A. Michalska, A. Lewenstam, M. Maj-Zurawska, Factors Affecting the Potentiometric Response of All-Solid-State Solvent Polymeric Membrane Calcium-Selective Electrode for Low-Level Measurements, Analytical Chemistry,2004,76(21),6410-6418.
    [131]A.u. Haque, M. Rokkam, A.R.D. Carlo, S.T. Wereley, S.J. Roux, P.P. Irazoqui, D.M. Porterfield, A MEMS fabricated cell electrophysiology biochip for in silico calcium measurements, Sensors and Actuators B:Chemical,2007,123,391-399.
    [132]R. Paciorek, P. Bieganowski, M.M.-. Zurawska, Miniature planar chloride electrodes, Sensors and Actuators B:Chemical,2005,108,840-844.
    [133]J.E. Zachara, R. Toczylowska, R. Pokrop, M. Zagorska, A. Dybko, W. Wroblewski, Miniaturised all-solid-state potentiometric ion sensors based on PVC-membranes containing conducting polymers, Sensors and Actuators B:Chemical,2004,101(1-2),207-212.
    [134]R. Toczylowsk, R. Pokrop, A. Dybko, W. Wroblewski, Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis, Analytica Chimica Acta, 2005,540,167-172.
    [135]M.M. Zareh, E. Malinowska, K. Kasiura, Plasticized poly(vinyl chloride) membrane electrode for the determination of quinine in soft drinks, Analytica Chimica Acta,2001,447(1-2),55-61.
    [136]Z. Mousavi, J. Bobacka, A. Lewenstam, A. Ivaska, Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes, Journal of Electroanalytical Chemistry,2009,633(1),246-252.
    [137]T. Lindfors, S. Ervel, A. Ivaska, Polyaniline as pH-sensitive component in plasticized PVC membranes, Journal of Electroanalytical Chemistry,2003,560(1),69-78.
    [138]T. Masadome, T. Imato, Use of marker ion and cationic surfactant plastic membrane electrode for potentiometric titration of cationic polyelectrolytes, Talanta,2003,60(4),663-668.
    [139]T. Momma, M. Yamamoto, S. Komaba, T. Osaka, Analysis of the long-term potential stability of an all-solid-state potassium-selective electrode with electroactive polypyrrole film, Journal of Electroanalytical Chemistry,1996,407(1-2),91-96.
    [140]R.E. Gyurcsanyi, A.S. Nyback, K. Toth, G. Nagyc, A. Ivaska, Novel polypyrrole based all-solid-state potassium-selective microelectrodes, Analyst,1998,123,1339-1344.
    [141]R.E. Gyurcsanyi, N. Rangisetty, S. Clifton, B.D. Pendley, E. Lindner, Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts, Talanta, 2004,63(1),89-99.
    [142]A.J. Michalska, C. Appaih-Kusi, L.Y. Heng, S. Walkiewicz, E.A.H. Hall, An Experimental Study of Membrane Materials and Inner Contacting Layers for Ion-Selective K+ Electrodes with a Stable Response and Good Dynamic Range, Analytical Chemistry,2004,76(7),2031-2039.
    [143]R. Zielinska, E. Mulik, A. Michalska, S. Achmatowicz, M. Maj-Zurawska, All-solid-state planar miniature ion-selective chloride electrode, Analytica Chimica Acta,2002,451(2),243-249.
    [144]W.S. Han, S.J. Yoo, S.H. Kim, T.K. Hong, K.C. Chung, Behavior of a Polypyrrole Solid Contact pH-Selective Electrode Based on Tertiary Amine Ionophores Containing Different Alkyl Chain Lengths between Nitrogen and a Phenyl Group, Analytical Sciences 2003,19(3),357-360.
    [145]P.C. Pandey, G. Singh, P.K. Srivastava, Electrochemical Synthesis of Tetraphenylborate Doped Polypyrrole and Its Applications in Designing a Novel inc and Potassium Ion Sensor, Electroanalysis,2002,14(6),427-432.
    [146]H. Kaden, H. Jahn, M. Berthold, Study of the glass/polypyrrole interface in an all-solid-state pH sensor, Solid State Ionics,2004,169(1-4),129-133.
    [147]A. Michalska, J. Dumanska, K. Maksymiuk, Lowering the Detection Limit of Ion-Selective Plastic Membrane Electrodes with Conducting Polymer Solid Contact and Conducting Polymer Potentiometric Sensors, Analytical Chemistry,2004,76(19),4964-4974.
    [148]W. Vonau, J. Gabel, H. Jahn, Potentiometric all solid-state pH glass sensors, Electrochimica Acta, 2005,50(25-26),4981-4987.
    [149]J. Bobacka, T. Alaviuhkola, V. Hietapelto, H. Koskinen, A. Lewenstam, M. Lamsa, J. Pursiainen, A. Ivaska, Solid-contact ion-selective electrodes for aromatic cations based on [pi]-coordinating soft carriers, Talanta,2002,58(2),341-349.
    [150]T. Alaviuhkola, J. Bobacka, M. Nissinen, K. Rissanen, A. Ivaska, J. Pursiainen, Synthesis, Characterization, and Complexation of Tetraarylborates with Aromatic Cations and Their Use in Chemical Sensors, Chemistry-A European Journal,2005,11(7),2071-2080.
    [151]J. Bobacka, T. Lahtinen, H. Koskinen, K. Rissanen, A. Lewenstam, A. Ivaska, Silver Ion-Selective Electrodes Based on Coordinating Ionophores Without Heteroatoms, Electroanalysis, 2002,14(19),1353-1357.
    [152]J. Bobacka, V. Vaanaen, A. Lewenstam, A. Ivaska, Influence of anionic additive on Hg2+ interference on Ag+-ISEs based on [2.2.2]p,p,p-cyclophane as neutral carrier, Talanta,2004,63(1), 135-138.
    [153]M. Vazquez, J. Bobacka, A. Ivaska, A. Lewenstam, Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes, Sensors and Actuators B:Chemical,2002, 82(1),7-13.
    [154]A. Michalska, K. Maksymiuk, All-plastic, disposable, low detection limit ion-selective electrodes, Analytica Chimica Acta,2004,523(1),97-105.
    [155]M. Vazquez, J. Bobacka, A. Ivaska, A. Lewenstam, Small-volume radial flow cell for all-solid-state ion-selective electrodes, Talanta,2004,62(1),57-63.
    [156]A. Michalska, A. Konopka, M. Maj-Zurawska, All-Solid-State Calcium Solvent Polymeric Membrane Electrode for Low-Level Concentration Measurements, Analytical Chemistry,2003, 75(1),141-144.
    [157]A. Michalska, M. Ocypa, K. Maksymiuk, Highly Selective All-Plastic, Disposable, Cu2+-Selective Electrodes, Electroanalysis,2005,17(4),327-333.
    [158]R. Paciorek, P.D.v.d. Wal, N.F.d. Rooij, M. Maj-Zurawska, Optimization of the Composition of Interfaces in Miniature Planar Chloride Electrodes, Electroanalysis,2003,15(15),1314-1318.
    [159]J. Sutter, A. Radu, S. Peper, E. Bakker, E. Pretsch, Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range, Analytica Chimica Acta,2004,523(1),53-59.
    [160]T. Lindfors, A. Ivaska, Stability of the Inner Polyaniline Solid Contact Layer in All-Solid-State K+-Selective Electrodes Based on Plasticized Poly(vinyl chloride), Analytical Chemistry,2004, 76(15),4387-4394.
    [161]O.T. Guenat, S. Generelli, N.F.d. Rooij, M. Koudelka-Hep, F.O. Berthiaume, M.L. Yarmush, Development of an Array of Ion-Selective Microelectrodes Aimed for the Monitoring of Extracellular Ionic Activities, Analytical Chemistry,2006,78,7453-7460.
    [162]P. Ciosek, R. Maminsk, A. Dybko, W. Wroblewski, Potentiometric electronic tongue based on integrated array of microelectrodes, Sensors and Actuators B:Chemical,2007,127,8-14.
    [163]A. Formhals, Process and apparatus for preparing artificial threads, in US Patent.1934:US.
    [164]P.K. Baumgarten, Electrostatic spinning of acrylic microfibers, Journal of Colloid and Interface Science,1971,36,71-79.
    [165]J. Dishi, G. Srinivasan, D.H. Reneker, A novel electrospinning process, Polymer News,1995,20, 206-207.
    [166]D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology,1996,7,216-223.
    [167]A. Frenot, I.S. Chronakis, Polymer nanofibers assembled by electrospinning, Current Opinion in Colloid and Interface Science,2003,8(1),64-75.
    [168]K.M. Manesh, P. Santhosh, A. Gopalan, K.P. Lee, Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor, Analytical Biochemistry,2007,360(2),189-195.
    [169]G. Ren, X. Xu, Q. Liu, J. Cheng, X. Yuan, L. Wu, Y. Wan, Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications, Reactive and Functional Polymers,2006,66(12),1559-1564.
    [170]K. Sawicka, P. Gouma, S. Simon, Electrospun biocomposite nanofibers for urea biosensing, Sensors and Actuators B:Chemical,2005,108,585-588.
    [171]K.M. Manesh, H.T. Kim, P. Santhosh, A.I. Gopalan, K.P. Lee, A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane, Biosensors and Bioelectronics,2008,23,771-779.
    [172]J. Kim, H.F. Jia, P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnology Advances,2006,24,296-308.
    [173]A.C. Patel, S. Li, J.-M. Yuan, Y. Wei, In Situ Encapsulation of Horseradish Peroxidase in Electrospun Porous Silica Fibers for Potential Biosensor Applications, Nano Letters,2006,6(5), 1042-1046.
    [174]董绍俊,化学修饰电极,科学出版社,1995,
    [175]M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors, Biosensors and Bioelectronics,2002,17,345-359.
    [176]A. Rajesh, S.S. Pandey, W. Takashima, K. Kaneto, Simultaneous co-immobilization of enzyme and a redox mediator in polypyrrole film for the fabrication of a amperometric phenol biosensor, Current Applied Physics,2005,5(2),184-188.
    [177]C.W. Chuang, J.S. Shih, Preparation and application of immobilized C60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor, Sensors and Actuators B:Chemical,2001,81,1-8.
    [178]J.H. Kim, B.G. Kim, J.B. Yoon, E. Yoon, C.H. Han, A new monolithic microbiosensor for whole blood analysis, Sensors and Actuators A:Physics,2002,95(2-3),108-113.
    [179]J.C. Vidal, E. Garcia, J.R. Castillo, Development of a platinized and ferrocene-mediated cholesterol amperometric biosensor based on electropolymerization of polypyrrole in a flow system, Analytical Sciences,2002,18(5),537-542.
    [180]H. Olivia, B.V. Sarada, K. Honda, A. Fujishima, Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes, Electrochimica Acta,2004,49(13), 2069-2076.
    [181]J. Wang, M. Musameh, Carbon-nanotubes doped polypyrrole glucose biosensor, Analytica Chimica Acta,2005,539(1-2),209-213.
    [182]L. Qu, P. He, L. Li, M. Gao, G. Wallace, L. Dai, Aligned/micropatterned carbon nanotube arrays: Surface functionalization and electrochemical sensing, Progress in Biomedical Optics and Imaging-Proceedings of SPIE,2005,5732,84-92.
    [183]J.C. Vidal, J. Espuelas, E. Garcia-Ruiz, J.R. Castillo, Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers, Talanta,2004,64(3),655-664.
    [184]P.C. Pandey, A.P. Mishra, Novel potentiometric sensing of creatinine, Sensors and Actuators B: Chemical,2004,99(2-3),230-235.
    [185]H. Xue, Z. Shen, C. Li, Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline-polyacrylonitrile composite film, Biosensors and Bioelectronics, 2005,20(11),2330-2334.
    [186]H. Xue, Z. Shen, A highly stable biosensor for phenols prepared by immobilizing polyphenol oxidase into polyaniline-polyacrylonitrile composite matrix, Talanta,2002,57(2),289-295.
    [187]A. Eftekhari, Electropolymerization of aniline onto passivated substrate and its application for preparation of enzyme-modified electrode, Synthetic Metals,2004,145(2-3),211-216.
    [188]S. Fabiano, C. Tran-Minh, B. Piro, L.A. Dang, M.C. Pham,O. Vittori, Poly 3,4-ethylenedioxythiophene as an entrapment support for amperometric enzyme sensor, Materials Science and Engineering:C,2002,21(1-2),61-67.
    [189]C. Vedrine, S. Fabiano, C. Tran-Minh, Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support, Talanta,2003,59(3),535-544.
    [190]S. Iijima, Helical microtubules of graphitic carbon, Nature,1991,354,56-58.
    [191]J.M. Zen, A.S. Kumar, D.M. Tsai, Recent updates of chemically modified electrodes in analytical chemistry, Electroanalysis,2003,15(13),1073-1087.
    [192]J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Fullerene Pipes, Science,1998,280,1253-1256.
    [193]P.J. Britto, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochemistry and Bioenergetics,1996,41(1),121-125.
    [194]V.G. Gavalas, S.A. Law, J.C. Ball, R. Andrews, L.G. Bachas, Carbon nanotube aqueous sol-gel composites:enzyme-friendly platforms for the development of stable biosensors, Analytical Biochemistry,2004,329,247-252.
    [195]K.P. Loh, S.L. Zhao, W.D. Zhang, Diamond and carbon nanotube glucose sensors based on electropolymerization, Diamond and Related Materials,2004,13,1075-1079.
    [196]S. Fei, J. Chen, S. Yao, G. Deng, D. He, Y. Kuang, Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum, Analytical Biochemistry,2005, 339,29-35.
    [197]A. Salimia, R.G. Compton, R. Hallaj, Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode, Analytical Biochemistry,2004,333,49-56.
    [198]J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes, Electrochemistry Communications,2004,6, 66-70.
    [199]S.H. Lim, J. Wei, J. Lin, Q. Li, J. KuaYou, A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode, Biosensors and Bioelectronics,2005,20,2341-2346.
    [200]S. Takeda, A. Sbagyo, Y. Sakoda, A. Ishii, Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen-antibody interaction, Biosensors and Bioelectronics,2005, 21,201-205.
    [201]Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection, Sensors and Actuators B:Chemical,2003,92, 279-285.
    [202]H.F. Cui, J.S. Ye, W.D. Zhang, o. Wang, F.S. Sheu, Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode, Journal of Electroanalytical Chemistry,2005,577,295-302.
    [203]N.S. Lawrence, R.P. Deo, J. Wang, Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes, Analytica Chimica Acta,2004,517,131-137.
    [204]G. Bremle, B. Persson, L. Gorton, An amperometric glucose electrode based on carbon paste, chemically modified with glucose dehydrogenase, nicotinamide adenine dinucleotide, and a phenoxazine mediator, coated with a poly(ester sulfonic acid) cation exchanger, Electroanalysis, 1991,3,77-86.
    [205]J.Razumiene, V. Gureviciene, V. Laurinavicius, J.V. Grazulevicius, Amperometric detection of glucose and ethanol in beverages using flow cell and immobilised on screen-printed carbon electrode PQQ-dependent glucose or alcohol dehydrogenases, Sensors and Actuators B:Chemical, 2001,78,243-248.
    [206]J.A. Duine, The PQQ story-Review, Journal of Bioscience and Bioengineering,1999,88(3), 231-236.
    [207]V. Laurinavicius, J. Razumiene, B. Kurtinaitiene, I. Lapenaite, I. Bachmatova, L. Marcinkeviciene, R. Meskys, A. Ramanavicius, Bioelectrochemical application of some PQQ-dependent enzymes, Bioelectrochemistry,2002,55,29-32.
    [208]O.A. Raitman, F. Patolsky, E. Katz, I. Willner, Electrical contacting of glucose dehydrogenase by the reconstitution of a pyrroloquinoline quinone-functionalized polyaniline film associated with an Au-electrode:an in situ electrochemical SPR study, Chemical communications (Cambridge, England),2002, (17),1936-1937.
    [209]K. Habermuller, S. Reiter, H. Buck, T. Meier, J. Staepels, W. Schuhmann, Conducting Redoxpolymer-Based Reagentless Biosensors Using Modified PQQ-Dependent Glucose Dehydrogenase, Microchimica Acta,2003,143(2-3),113-121.
    [210]A. Malinauskas, J. Kuzmarskyte, R. Meskys, A. Ramanavicius, Bioelectrochemical sensor based on PQQ-dependent glucose dehydrogenase, Sensors and Actuators, B:Chemical,2004,100(3), 387-394.
    [211]W.J. Jin, X.F. Sun, Y. Wang, Solubilizatin and functionalization of carbon nanotubes, New Carbon Materials,2004,19(4),312-318.
    [212]M.J. O'Connell, P. Boul, L.M. Ericson, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chemical Physics Letters,2001,342,265-271.
    [213]X. Luo, A.J. Killard, M.R. Smyth, Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes, Electroanalysis, 2006,18(11),1131-1134.
    [214]K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes, Analytical and Bioanalytical Chemistry,2006,385,452-468.
    [215]N.A. Chaniotakis, Enzyme stabilization strategies based on electrolytes and polyelectrolytes for biosensor applications, Analytical and Bioanalytical Chemistry,2004,378,89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700