用户名: 密码: 验证码:
从生化水平探讨MC-RR及蓝藻水华粗提物经口染毒对小鼠肝脏的毒性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的快速发展,环境水体的污染已成为全世界各国普遍关注的问题。蓝藻水华的频繁发生是导致水环境恶化的主要因素之一,其释放到水体中的大量毒素对人和动物造成了极大危害。微囊藻毒素(Microcystin,MC)是蓝藻水华产生的一组具有肝脏毒性的单环多肽毒素,由于其氨基酸组成的多变性,迄今已发现80多种毒素的异性体,其中以MC-LR、RR和YR最为常见。MC是一类高急性毒性和强促癌性的毒素,其急性毒性是导致动物肝细胞结构破坏、窦状小管结构降解,最终引起肝出血导致个体死亡;而其慢性毒性则是引起慢性肝损伤。此外,MC对动物心、肺、肾以及生殖系统的毒性作用也有广泛报道。人和动物可能通过饮用和进食被毒素污染的水和水生生物经口途径摄入MC,所以在分子水平研究经口暴露MC的毒性作用及致毒机制具有重要的理论和现实意义。
     目前公认的MC致毒机制之一是抑制体内重要的蛋白磷酸酶1(PP1)和2A(PP2A)的活性,引起体内蛋白的过度磷酸化,导致众多细胞信号传递通路异常,从而产生多种毒性效应。大量研究发现,MC可诱导多种类型的细胞和动物肝组织发生细胞凋亡,提示MC的凋亡诱导作用可能与其毒性作用密切相关,但具体的凋亡诱导机制还不清楚。研究发现不同浓度的MC暴露在体内引起细胞凋亡的机制存在差异,而氧化应激和线粒体损伤可能是MC诱导细胞凋亡主要原因,线粒体途径可能是MC诱导凋亡的主要通路。
     内质网途径是近年才被证明的内源性细胞凋亡通路,由过度的内质网应激引起。当多种因素引起内质网应激发生,且强度超过细胞内质网自稳定范围时,细胞凋亡的内质网通路被开启。目前关于内质网凋亡通路是否参与MC诱导的细胞凋亡还未见报道。
     MC家族成员众多,各个成员由于结构的不同,其毒性作用及致毒机制存在差异。MC-RR是蓝藻藻水华释放到水体中主要MC之一,其对生物的毒性作用不可忽视,但目前在活体水平对其经口途径的毒性研究,尤其在哺乳动物中的报道还不多。此外,生活在蓝藻水体爆发水体中生物,并非处于单一毒素的暴露之中,水华释放到水体中的众多有害成分对它们有着复杂的毒性作用。基于此,本研究对MC家族中的重要成员MC-RR以及蓝藻水华粗提物经口途径暴露的毒性作用及致毒机制进行了探讨。
     本研究中,MC-RR和蓝藻水华粗提物分别以4.6,23,46,93,186μg/kg和4.6,23,46,93μg/kg·MC(RR+LR)的剂量经灌胃方式连续7天染毒小鼠,第八天处死小鼠后摘取肝脏对MC-RR和蓝藻水华粗提物对肝脏的毒性作用及其凋亡机制进行研究:采用TUNEL法测定MC-RR诱导肝组织细胞的凋亡率,通过检测各种凋亡相关(蛋白因子)在染毒小鼠肝脏中的表达或活性变化来探究它们在细胞凋亡过程中的作用,包括用普通显微镜直接观察MC-RR染毒后小鼠肝组织HE染色的结构变化,通过ROS底物DCFH-DA测定染毒后小鼠肝脏ROS的改变,通过测定MDA的含量来检测毒素暴露小鼠脂质过氧化程度,用calpain和PP2A活性检测试剂盒测定MC-RR染毒小鼠肝组织calpain和PP2A酶活性的变化,用免疫印迹法(western blot)检测PP2A-A和C亚基、Bax、Bcl-2、p53、HSP70以及与内质网应激相关蛋白GRP78和CHOP的表达变化。
     实验结果如下:
     1.MC-RR染毒小鼠后,小鼠肝组织切片的TUNEL检测结果表明,从46μg/kg染毒组开始,小鼠肝脏细胞的凋亡率出现显著升高并与剂量相关。
     2.MC-RR染毒小鼠后,在93μg/kg染毒组小鼠肝脏出现ROS显著升高,但所有染毒组未见MDA的明显改变。
     3.MC-RR染毒小鼠后,所有染毒组均未发现小鼠肝组织PP2A活性和其A、C亚基表达的明显改变。
     4.MC-RR染毒小鼠后,与对照相比,染毒小鼠肝组织中Bcl-2表达出现下降,并从23μg/kg染毒组开始下降具有显著性;Bax表达在46μg/kg和93μg/kg染毒组出现显著上升;同时Bax/Bcl-2比值从23μg/kg染毒组开始也显著性升高;此外,p53蛋白表达在93μg/kg染毒组出现显著上升。
     5.MC-RR染毒小鼠后,与对照组相比,小鼠肝组织GRP78和HSP70均在93μg/染毒组表达显著升高,但在所有染毒组CHOP的表达未见明显变化。
     6.MC-RR染毒小鼠后,所有染毒组小鼠肝组织的calpain活性与对照组相比未见明显改变。
     7.蓝藻水华粗提物染毒小鼠后,与对照相比,染毒组小鼠肝组织PP2A A亚基表达从23μg/kg染毒组开始出现剂量依赖性显著升高,同时Bax表达呈现明显上升趋势,从23μg/kg染毒组开始表达显著上升;相反,所有染毒组Bcl-2表达改变不明显,但Bax/Bcl-2比值出现显著上升。
     8.蓝藻水华粗提物染毒小鼠后,与对照组相比,所有染毒组小鼠肝组织均未发现ROS和MDA的显著变化。
     9.蓝藻水华粗提物染毒小鼠后,与对照组相比,小鼠肝组织GRP78和HSP70均在93μg/kg染毒组表达显著升高,但在所有染毒组CHOP的表达未见明显变化。
     结论:
     MC-RR经口染毒7天未发现明显的氧化损伤及PP2A活性的抑制表明它们可能不是MC-RR对小鼠肝组织产生的主要毒性效应;毒素可诱导小鼠肝组织发生细胞凋亡,诱导效应与染毒剂量相关,而与之同时发生的p53水平升高、促凋亡蛋白Bax的升高、抗凋亡蛋白Bcl-2的下降表明毒素诱导凋亡的机理与线粒体途径密切相关;毒素引起了轻度的内质网应激但内质网凋亡信号通路尚未启动。
     蓝藻水华粗提物经口染毒7天可引起小鼠肝组织发生轻度内质网应激并引起Bax、HSP70表达的显著改变;对PP2A A亚基蛋白水平的明显影响表明其毒性作用可能与干扰了PP2A介导的众多细胞信号通路的调节有关。
     无论是纯毒素RR还是蓝藻水华粗提物,即使是低剂量经口染毒都可以对小鼠产生影响,预示经口摄入的毒素对动物的毒性是不容忽视的;而蓝藻水华粗提物对同类指标产生的影响与纯毒素相比有类似也有不同,提示对于天然水体水华产生的潜在危害需要进一步全面评价。
The frequent occurrences of the toxic cyanobacterial (specifically Microcystisaeruginosa) bloom are becoming a global environmental issue. Microcystin produced bycyanobacteria in diverse water systems is a potent specific hepatotoxin and has beendocumented to induce hepatotoxicity and tumor promotion. There are more than eightyreported microcystins and microcystin-RR (MC-RR) is one of the most widelydistributed variants among the MC family. One of the mechanisms of toxicity of thesetoxins is their inhibition on protein phosphatases 1 and 2A, leading to increased proteinphosphorylation, which is directly related to their cytotoxicity and tumor-promotingactivity. Acute microcystin poisoning in mammals is characterized by disruption ofhepatic architecture due to phosphorylation of cytoskeletal proteins leading to massiveintrahepatic haemorrhage and death in few hours and chronic uptake of microcystinsresults in generalized hepatocyte degeneration with necrosis, progressive fibrosis andmononuclear leukocyte infiltration. At present, the exact mechanisms by which MCinduce hepatotoxicity have not been fully elucidated. Several pieces of evidencesstrongly suggest that apoptosis induced by MC may play a significant role in thepathogenesis of MCs-induced toxicity in mammals, but its detailed mechanism is notclarified so far. It has been documented that oxidative stress and mitochondrial injure are the main elements involved in MC-triggered apoptosis, which means mitochondrialpathway may play a key role in the apoptosis induced by MCs. Nowadays anotherapoptotic pathway, which is iniated by the extress ER stress exceeding the homeostasisof ER, has been proposed by some researchers, however there is little knowledge aboutthe role of ER pathway in the MC- induced apoptosis.
     Among the study on MC variants, the toxic effects of MC-RR have not beenstudied extensively, especially in mammals and via oral exposure. Though the toxicityof MC-RR is less than MC-LR, but its toxic effect should be paid attention to sinceaccumulated evidences have shown that MC-RR is the dominant toxin produced bycyanobacterial bloom in some water bodies, especially in China.
     Until now, there are varieties of researches related to the toxicity of purifiedmicrocystins, but little is reported on the toxic effects of cyanobacteria crude extract,whose components are most similar to the natural environment water bodies (wherecyanobacteria bloom occurred), but all the organisms are living in a complexcircumstance where multiple effect factors exist. To study the complicated toxic effectof cyanobacteria is very important for us to evaluate the risk of human and animalsexposed to these toxins.
     In this work, an in vivo approach was applied to administrate MC-RR andcyanobacterial bloom extract orally to mice and multiple indicators were measured. Theaim of this work is to investigate the toxic effect of MC-RR and cyanobacteria bloomextract on mice liver. In current work, the two kinds of preparation of microcystinhave been administered orally to ICR mice for 7 days with different dosages. In MC-RRtreated mice, apoptotie cell death in liver was detected by TUNEL assay, and theexpression levels of Bcl-2, Bax and p53, GRP 78 and CHOP which have been reportedto be related to apoptosis and ER stress were determined via western-blot. The activityof PP2A was measured using the serine-threonine phosphatase assay system, and PP2AA subunit and C subunit expression is measured by western blot, the oxidative stress isdetermined by ROS and MDA assay, and the calpain activity is investigated todetermine its role in MC-RR induced apoptosis. In cyanobacteria bloom extract-treatedmice, the expression levels of Bcl-2, Bax, GRP 78 and CHOP, HSP 70, PP2A-A subunit were determined via western-blot ; the oxidative stress is determined by ROS and MDAassay.
     The results were showed as below:
     1. MC-RR exposure has induced significant apoptosis in mice liver.
     2. MC-RR exposure has no significant effect on ROS lever in mice liver, except for93μg/kg treated group. There is no distinct change on MDA content in anyMC-RR treated group.
     3. MC-RR exposure has no distinct effect on PP2A activity or its A/C subunitexpression level in mice livers.
     4. MC-RR exposure significantly increased the expression level of p53 and Bax anddecreased the level of Bcl-2 in mice livers. The ratio of Bax/Bcl-2 was increaseddistinctly.
     5. MC-RR exposure significantly increased the expression level of liSP70 and GRP78,and the level of CHOP had not changed obviously..
     6. MC-RR exposure has no distinct effect on calpain activity in mice livers.
     7. Cyanobacteria bloom extract exposure significantly increased the expression levelof Bax and PP2A A subunit in a dose-dependent manner, but there was no distincteffect on Bcl-2 level in mice liver. However, the ratio of Bax/Bcl-2 was increasedobviously.
     8. Cyanobacteria bloom extract exposure has no obviously effect on oxidative stresssystem in mice livers, based on ROS level and MDA content in mice liver.
     9. Cyanobacteria bloom extract exposure obviously increased the expression level ofHSP70 and GRP78, but there was no distinct effect on CHOP expression level inmice livers.
     Conclusions:
     There is no significant change in PP2A activity or subunit expression level after themice were orally exposed to MC-RR for 7 days. In this study, the inhibition of PP2Aand the induced oxidative stress is not a major mechanism of the MC-RR toxic effect.The apoptosis in MC-RR treated mouse livers is proportional to MC-RR dosage, andaccompanied with increased expression level of p53 and Bax and decreased level ofBcl-2. This suggests that the apoptosis is closely related to the mitochondrial pathway.MC-RR exposure can induced moderate ER stress and the ER apoptotic pathway hasnot initiated.
     Cyanobacteria bloom extract can induce moderate ER stress and increase theexpression level of Bax, and HSP70. The obvious change of PP2A A subunit indicatedthat the toxic effects exerted by cyanobacteria bloom may be related with its interferingon signal pathways regulated by PP2A.
     This study concludes that both pure MC and cyanobacteria bloom have negativerole on mice, even at a low dosage. The toxicity of oral exposure to MC can not benegligible. The toxic effect of cyanobacteria bloom is not exactly the same with puretoxin. A comprehensive assessment of its toxicity is necessary and will be our futurework.
引文
周伦,鱼达,于海等.2000.饮用水源中的微囊藻毒素与大肠癌发病的关系.中华预防医学杂志,34(4):37-39
    吴和岩,郑力行,苏瑾,等.2005,上海市供水系统微囊藻毒素LR含量调查.卫生研究.34(2):152-15
    傅文宇,陈加平,徐立红.2004a.Caspase-3在微囊藻毒素诱导的细胞凋亡中的作用.中国环境科学.24(1):6-8
    傅文宇,王咪咪,徐立红.2004b.微囊藻毒素对大鼠肝细胞Caspase-3酶活性的影响.水生生物学报.28(4):452-453
    Arrigo AP. 1998. Small stress protein: Chaperones that acts as regulators of intracelluar redox state and programmed cell death. Biol Chem. 379:19-26
    Beere HM, Green DR. 2001. Stress management heat shock proteino70 and the regulation of apotosis. Trends Cell Biol. 11(1): 6-10
    Berridge MJ. 2002. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32:235-249
    Botha N, Gehringer MM, Downing TG, van de Venter M, Shephard EG. 2004. The role of microcystin-LR in the induction of apoptosis and oxidative stress in CaCo2 cells. Toxicon 43:85-92
    Boua(i|¨) cha, N., Maatouk, I. 2004. Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes. Toxicol. Lett. 148:53-63
    Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem. 72:248-254
    Carafoli, E., and Molinari, M. 1998. Calpain a protease in search of a function?. Biochem. Biophys. Res. Commun. 247:193-203 Cazenave J, Bistoni MA, Pesce SF, Wunderlin DA. 2006. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus exposed to Microcystin-RR. Aquat. Toxicol. 76:1-12
    Chen T, Zhao XY, Liu Y, Shi Q, Hua ZC, and Shen PP. 2004. Analysis of immunomodulating nitric oxide, iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR. Toxicology 197: 67-77
    Chen T, Wang Q, Cui, J., Yang W, Shi Q, Hua Z, Ji J, Shen PP. 2005. Induction of apoptosis in mouse liver by microcystin-LR: a combined transcriptomic, proteomic, and simulation strategy.Mol. Cell. Proteom. 4: 958-974
    Chen YM, Lee TH, Lee SJ, Huang HB, Huang R, Chou HN. 2006. Comparison of protein phosphatase inhibition activities and mouse toxicities of microcystins 47(7):742-746
    Chen T, Cui J, Liang Y, Xin XB, Young DO, Chen C, Shen PP. 2006. Identification of human liver mitochondrial aldehyde dehydrogenase as a potential target for microcystin-LR. Toxicology. 220:71-80
    Chipuk J E, Kuwana T, Bouchier-Hayes L, Drain NM, Newmeyer DD, Schuler M, and Green DR. 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303: 1010-1014
    Colella S, Ohgaki H, Ruediger R, Yang F, Nakamura M, Fujisawa H, Kleihues P, Walter G. 2001.Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes.Int J Cancer 93 :798-804
    Corazzari M, Lovat PE, Oliverio S, Di Sano F, Donnorso RP, Redfern CP, Piacentini M. 2005. Fenretinide: a P53-independent way to kill cancer cells. Biochem Biophys Res Commun. 331(3):810-815
    De Magalh(?)es VF, Soares RM, Azevedo SMFO. 2001. Microcystin contamination in fish from the Jacarepagu(?) Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon .39:1077-1085
    Deng X, Ito T, Carr B, Mumby M, May WS Jr. 1998. Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A. J Biol Chem. 273(51): 34157-34163
    Ding WX, Shen HM, Zhu HG, Ong CN, 1998. Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes. Environ. Res. 78: 12-18
    Ding WX, Shen HM, Ong CN .2000. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocyte. Hepatology 32:547-555
    Ding WX, Shen HM, Ong CN. 2001. Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. J. Toxicol. Environ.Health A 64: 507-519
    Ding WX, Shen HM, Ong CN. 2002. Calpain activation after mitochondrial permeability transition in microcystin-induced cell death in rat hepatocytes. Biochem. Biophys. Res. 291:321-331
    Ding WX, Ong CN. 2003. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol. Lett. 220: 1-7
    Droge W. 2002. Free radicals in the physiological control of cell function. Physiol Rev. 82: 47-95
    Dyble J, Fahnenstiel GL, Litaker RW, Millie DF, Tester PA. 2008 .Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes.Environ Toxicol. 23(4):507-16
    Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM. 2006. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta 1757: 1301-1311
    Fehrenbach E, Northoff H. 2001. Free radicals exercise apoptosis and heat shock proteins. Immunol. Rev. 7: 66-89
    Fladmark KE, Brustugun OT, Hovland R, Boe R, Gjertsen BT, Zhivotovsky B, Deskeland SO, 1999. Ultrarapid caspase 3 dependant apoptosis induction by serine/threonine phosphatase inhibitors. Cell. Death Diff. 6: 1099-1108
    Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B. 2005. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 203: 257-263
    Fleury C, Mignotte B, Vayssiere JL. 2002. Mitochondrial reactive oxygen species in cell death signaling Biochimie 84: 131-141
    Fu WY, Chen JP, Wang XM, Xu LH. 2005a. Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro . Toxicon 46(2): 171-177
    Fu WY , Xu LH, Yu YN. 2005b. Proteomic analysis of cellular response to Microcystin in human FL cells. Journal of Proteome Research. 4(6): 2207-2215
    Fu WY , Xu LH, Yu YN. 2009. Identification of temporal differentially expressed proteins response to microcystin in human amniotic epithelial Cells.Chemical Research in Toxicology. 22: 179-186
    Gao G, Dou QP 2000. N-termianl cleavage of bax by calpain generates bcl-2-independent cytochrome C release and apoptotic cell death.J.Cell. Biochem, 80 (1):53-72
    Gehringher MM, Shephard EG, Downing TG, Wiegand C, Neilan BA. 2004. An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice. Int. J. Biochem. Cell Biol. 36:931-941
    Gordon SA, Hoffman RA,Simmons RL, Ford HR. 1997. Induction of heat shock protein 70 protects thymocytes against radiation-induced apoptosis. Arch Surg. 132:1277-1282
    Groenendyk J, Michalak M.2005.Endoplasmic reticulum quality control and apoptosis. Acta Biochim Pol 52: 381-395
    Gross A, Jockel J, Wei MC, Korsmeyer SJ. 1998. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 17:3878-3885
    Gupta N, Pant SC, Vijayaraghavan R, Lakshmana RPV. 2003. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology. 188(23): 285-296
    Harada K, Suzuki M, Dahlem AM, Beasley VR , Carmichael WW, Rinehart KL Jr . 1988. Improved method for purification of toxic peptides produced by cyanobacteria. Toxicon. 26 (5): 433-439
    Hemmings BA, Adams-Pearson C, Maurer F. 1990. alpha.- And beta.-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29(13) :3166-3173
    Herfindal L, Selheim F. 2006. Microcystin produces disparate effects on liver cells in a dose dependent manner. Mini Rev Med Chem. 6 (3): 279-285
    Hooser SB. 2000. Fulminant hepatocyte apoptosis in vivo following microcystin-LR administration to rats. Toxicol Pathol 28: 726-733
    Humpage AR, Falconer IR. 1999. Microcystin-LR and liver tumorpromotion: effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environ. Toxicol. 14: 61-75
    Huang DC and Strasser A. 2000. BH3-only proteins-essential initiators of apoptotic cell death. Cell 103: 839-842
    Hu P, Han Z, Couvillon AD, Exton JH. 2004. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279:49420-49429
    Huang P, Yi-Fan Zheng, Li-Hong Xu. 2008. Oral Administration of Cyanobacterial Bloom Extract Induced the Altered Expression of the PP2A, Bax and Bcl-2 in mice. Environmental Toxicology. 23: 688-693
    Ito E, Takai A, Kondo F, Masui H, Imanishi S, Harada K. 2002. Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon 40:1017-1025
    Jochimsen EM, Carmichael WW, An J, Cardo DM, Cookson ST, Holmes CEM, Antunes BC, Liho DAM, Lyra TM, Barreto VST, Azevedo SMFO, Jarvis WR. 1998. Liver failure and death after exposure to microcystins at a hemodialisis center in Brazil. N. Eng. J. Med. 338: 873-878
    Jayaraj M, Anand T, Rao PVL. 2006. Activity and gene expression profile of certain antioxidant enzymes to microcystin-LR induced oxidative stress in mice.Toxicology.220: 136-146
    Kowaltowski AJ, Castilho RF, Vercesi AE. 1996. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett 378: 150-152
    Kaufman RJ and Rutkowski DT. 2004. A trip to the ERxoping with stress . Trends Cell Biol 14(1):20-28
    Kamibayash C, Lickteig RL, Estes R, Walter G, Mumby MC. 1992. Expression of the A subunit of protein phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits. J. Biol. Chem. 267: 21864-21872.
    Kobayashi S, Yamashita K, Takeoka T, Ohtsuki T, Suzuki Y, Takahashi R, Yamamoto K, Kaufmann SH, Uchiyama T, Sasada M, Takahashi A. 2002. Calpain-mediated X-linked Inhibitor of Apoptosis Degradation in Neutrophil Apoptosis and Its Impairment in Chronic Neutrophilic Leukemia. J Biol Chem. 277: 33968-33977
    Knepper-Nicolai B, Savill J, Brown SB. 1998. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem. 273:30530-30536
    Kim JC, Choi SH, Kim JK, Kim Y, Kim HJ, Im JS, Lee SY, Choi JM, Lee HM, Ahn JK. 2008. Herpes simplex virus type 1 ICP27 induces apoptotic cell death by increasing intracellular reactive oxygen species. Mol Biol (Mosk). 42(3): 470-477
    Lawler JM, Song W, Demaree SR . 2003 Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med .35(1):9-16
    Lakin ND, Jackson SP. 1999. Regulation of p53 in response to DNA damage. Oncogene 18:7644-7655
    Li X, Chung I, Kim J, Lee J. 2005. Oral exposure to Microcystis increases activity -augmented antioxidant enzymes in the liver of loach (Misgurnus mizolepis) and has no effect on lipid peroxidation. Comp. Biochem. Physiol. C 141: 292-296
    Li G, Li L, Yin D. 2005. A novel observation: melatonin's interaction with malondiadehyde.Neuro Endocrinol Lett.26: 61-66
    Li X, Liu Y, Song L, Liu J. 2003. Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio) to the toxicity of microcystin-LR. Toxicon 42: 85-89
    Li XY, Liu YD, Song LR. 2001. Cytological alterations in isolated hepatocytes exposed to microcystin-LR. Environ. Toxicol. 16: 517-522
    Maatouk I, Bouaicha N, Plessis MJ, Perin F. 2004. Detection by ~32P postlabelling of 8-oxo-7,8-dihydro-2'-deoxyguanosine in DNA as biomarker of microcystin-LR- and nodularin-induced DNA damage in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Mutat. Res. 564: 9-20
    MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA. 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2 A from both mammals and higher plants. FEBS Lett. 264 (2): 187-192
    MacKintosh RW, Dalby KN, Campbell DG, Cohen PT, Cohen P, MacKintosh C. 1995. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on proteinphosphatase. FEBS Lett. 371(3): 236-240
    Martindale JL, Holbrook NJ. 2002. Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 192: 1-15.
    Maver MP, Bukau B.2005.Hsp-70 chaperonesxellular function and molecular mechanism. Cell Mol Life Sci. 64(6):670-684
    McDermott CM, Nho CW, Howard W, Holton B. 1998. The cyanobacterial toxin, microcystin-LR, can induce apoptosis in a variety of cell types. Toxicon 36:1981-1996
    McGinnis KM, Whitton MM, Gnegy ME, Wang KKW 1998 Calcium/Calmodulin-dependent Protein Kinase IV Is Cleaved by Caspase-3 and Calpain in SH-SY5Y Human Neuroblastoma Cells Undergoing Apoptosis.J. Biol. Chem. 273: 19993-20000
    Meki AR, Esmail E, Hussein AA, Hassanein HM. 2004. Caspase-3 and heat shock protein-70 in rat liver treated with aflatoxin Bl: effect of melatonin. Toxicon 43: 93-100
    Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. 2001. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J. Biol. Chem. 276:18361-18374
    Mikhailov A, Harmala-Brasken AS, Helhnan A, Meriluoto J, Eriksson JE. 2003. Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chem. Biol. Interact. 142:223-237
    Milutinovic A, Zivin M, Zorc-Pleskovic R, Sedmak B, Suput D. 2003. Nephrotoxic effects of chronic administration of microcystins-LR and-YR. Toxicon 42: 281-288
    Miyake H, Hara I, Arakawa S, Kamidono S, Stress protein. 2000. GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells. J Cell Biochem. 77: 396-408
    MiyashitaT, Reed JC. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80 (2): 293-299
    Moll UM, Zaika A. 2001. Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett. 493:65-69
    Moreno I, Mate A, Repetto G, Vazquez CM, Came'an AM. 2003. Influence of Microcystin-LR on the activity of membrane enzymes in rat intestinal mucosa. J. Physiol. Biochem. 59 (4): 293-300
    Moreno I, Pichardo S, Jos A, Go'mez-Amores L, Mate A, Vazquez CM, Camean AM. 2005. Antioxidant enzyme activity and lipid peroxidation in liverand kidney of rats exposed to microcystin-LR administered intraperitoneally.Toxicon 45:395-402
    Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. 1997. Role of the Human Heat Shock Protein hsp70 in Protection against Stress-Induced Apoptosis. Mol Cell Biol.17:5317-5327
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. 2000. Caspase-12 mediates endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid-p. Nature 403: 98-103
    Nakano K, Vousden KH. 2001. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7:683-694
    Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishiwaka T, Carmichael WW, Fujiki H. 1992. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J. Cancer Res. Clin. Oncol. 118(6) : 420-424
    Nobre ACL, Coe'lho G.R, Coutinho MCM, Silva MMM, Angelim EV, Menezes DB, Fonteles MC, Monteiro HSA. 2001. The role of phospholipase a2 and cyclooxygenase in renal toxicity induced by microcystin-LR. Toxicon 39: 721-724
    Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N, 2000. Noxa, a BH3-onlymember of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053-1058
    Ohkawa H, Ohishi N, Yagi K.1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem.95(2):351-8
    Ohta S, Ohsawa I, Kamino K, Ando F, Shimokata H. 2004. Mitochondrial ALDH2 deficiency as an oxidative stress. Ann. N. Y. Acad. Sci. 1011: 36-44
    Oltvai ZN, Milliman CL, Korsmeyer SJ. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 74(4): 609-619
    Oudra B, Loudiki M, Sbiyyaa B, Martins R, Vasconcelos V, Namikoshi N. 2001. Isolation, characterization and quantifi-cation of microcystins (heptapeptides hepatotoxins) in Microcystisaeruginosa dominated bloom of LallacTakerkoust lakereservoir (Morocco). Toxicon 39: 1375-1381
    Oyadomari S, Araki E. Mori M. 2002. Endoplasmic reticulum stress-mediated apoptosis in pancreatic β-cells .Apoptosis . 7: 335-345
    Oyadomari S, Mori M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11: 381-389
    Oren M. 1999. Regulation of the p53 tumor suppressor proteinJ. Biol. Chem. 274: 36031 -36034.
    Pavlova V, Babica P, Todorova D, Bratanova Z, Marsalek B. 2006. Contamination of some reservoirs and lakes in Republic of Bulgaria by microcystins. Acta hydrochimica et hydrobiologica. 34 (5) :437-441
    Peng J, Graham J, Kenneth W. 2000. Stress proteins as biomarkers of oxidative stress: effects of antioxidant supplements. Free Rad. Biol. Med. 28: 1598-1606
    Pike BR, Zhao X, Newcomb JK, Wang KKW, Posmantur RM, Hayes RL. 1998. Temporal relationships between de novo protein synthesis, calpain and caspase 3-like protease activation, and DNA fragmentation during apoptosis in septo-hippocampal cultures. J. Neurosci. Res. 52:505-520
    Polla BS, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A. 1996. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA, 93: 6458-6463
    Qiu W, Kohen-Avramoglu R, Mhapsekar S, Tsai J, AustinRC, Adeli K. 2005. Glucosamine-induced endoplasmic reticulum stress promotes ApoB 100 degradation: evidence for Grp78-mediated targeting to proteasomal degradation.Arterioscler Thromb Vase Biol 25: 571-577
    Robinson NA, Pace JG, Matson CF, Miura GA, Lawrence WB. 1991. Tissue distribution, excretion and hepatic biotransformation of microcystin-LR in mice. J Pharmacol Exp Then 256: 176-182
    Rao PV, Gupta N, Jayaraj R, Bhaskar AS, Jatav PC. 2005. Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice. Comp Biochem Physiol C Toxicol Pharmacol. 140(1):11-9
    Ray S, Lu Y, Kaufnann SH, Gustafson WC, Karp J E, Boldogh I, Fields AP, Brasier AR. 2004. Genomic mechanisms of p210 BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis.J Biol Chem. 279(34):35604-35615
    Reed JC. 1998. Bcl-2 family proteins. Oncogene 17:3225-3236
    Ressom R, et al., 1994. Health Effects of Toxic Cyanobacteria.National Health and Medical Research Council, Commonwealth of Australia, Canberra (ISBN 0 644 32908 4).
    Runnegar M, Berndt N, Kaplowitz N. 1995. Microcystin uptake and inhibition of protein phosphatases:effects of chemoprotectants and self-inhibition in relationto known hepatic transporters. Toxicol Aopl Pharmacol, 134(2) :264-272
    Santoro MF, Annand RR, Robertson MM, Peng YW, Brady MJ, Mankovich JA, Hackett MC, Ghayuri T. 1998. Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis. J Biol Chem. 273(21) : 13119-13128
    Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El- Deiry WS. 2002. BID regulation by p53 contributes to chemosensitivity. Nat. Cell Biol. 4: 842-849
    Shen PP, Zhao SW, Zheng WJ, Hua ZC, Shi Q, Liu ZT. 2003. Effects of cyanobacteria bloom extract on some parameters of immune function in mice. Toxicol. Lett. 143: 27-36
    Sharpe JC, Arnoult D, Youle RJ. 2004. Control of mitochondrial permeability by Bcl-2 family members. Biochim. Biophys. Acta 1644: 107-113
    Sivonen K, Jones G. 2003. Cyanobacterial toxins. In: Chorus, I., Bartram,J. (Eds.), Toxic Cyanobacteria in Water-A Guide to Their Public Health Consequences, Monitoring and Management. Spon Press, London, pp. 41-111
    Squier MKT, Miller ACK, Malkinson AM, Cohen J J. 1994. Calpain activation in apoptosis. J. Cell. Physiol. 159: 229-237
    Solter PF, Wollenberg GK, Huang X, Chu FS, Runnegar MT. 1998. Prolonged sublethal exposure to the protein phosphatase inhibitor microcystin: LR results in multiple dose-dependent hepatotoxic effects. Toxicol Sci 44: 87-96
    Soaresa RM, Cagidob VR, Ferraroc RB. Meyer-Fernandes JR, Rocco PR, Zin WA, Azevedo SM. 2007. Effects of microcystin-LR on mouse lungs Toxicon 50: 330-338
    Squier M.K. T, Cohen JJ. 1997. Calpain,an upstream regulator of thymocyte apoptosis J. Immunol. 158: 3690-3697
    Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD. 1999. Cell transformation by the superoxide-generating oxidase Moxl. Nature. 401:79-82
    Sitia R, Braakman I. 2003. Quality control in the endoplasmic reticulum protein factory. Nature 426:891-894
    Suzuki K, Takahashi K. 2003. Reduced expression of the regulatory A subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. Int J Oncol 23:1263-1268
    Tang JR, Nakamura M, Okura T, Takata Y, Watanabe S, Yang ZH, Liu J, Kitami Y, Hiwada K. 2002. Mechanism of oxidative stress-induced GADD153 gene exoressio in vascular smooth muscle cells. Biochem Biophys Res Commum. 290(4): 1255-1259
    Towner RA, Sturgeon SA, Hore KE. 2002. Assessment of in vivo oxidative lipid metabolism following acute microcystin-LR-induced hepatotoxicity in rats. Free Radical Res. 36: 63-71
    Turowski P, Favre B, Campbell KS, Lamb NJ, Hemmings BA. 1997. Modulation of the enzymatic properties of protein phosphatase 2A catalytic subunit by the recombinant 65-kDa regulatory subunit PR65alpha. Eur. J. Biochem. 248: 200-208
    Ubeda M, Habener JF. 2000. CHOP gene expression in respose to endoplasmic-reticular stress requires NFY interaction with different domains of a conserverd DNA-binding element. Nucleic Acids Res. 28(24): 4987-4997
    US EPA. 2006. Toxicological Reviews of Cyanobacterial Toxins: Microcystins LR, RR, YR and LA (External Review Draft). US Environmental Protection Agency, Washington, DC EPA/600/R-06/139
    Vousden KH. 2000. p53: death star. Cell. 103: 691-694
    Wang, X. 2001. The expanding role of mitochondria in apoptosis. Genes Dev. 15: 2922-2933
    Wei YN, Weng D, Li F, Zou X, Young DO, Ji JG, Shen PP. 2008. Involvement of JNK regulation in oxidative stress-mediated murine liver injury by microcystin-LR. Apoptosis 13:1031-1042
    Wera S, Hemmings BA. 1995. Serine/threonine protein phosphatases. Biochem J. 311: 17-29
    Weng D, Lu Y, Wei YN, Liu Y, Shen PP. 2007. The role of ROS in microcystin- LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology 232:15-23
    WHO, 1998. Guidelines for Drinking Water Quality, second ed.,Addendum to vol. 2, Health criteria and other supporting information,World Health Organization, Geneva.
    WHO, 1999. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. WHO, Geneva.
    WHO, 2004. Guidelines for Drinking-Water Quality. Recommendations. Chemical Fact Sheets, vol. 1., third ed. World Health Organization, Geneva, Switzerland, pp. 407-408
    Winston GW, Di Giulio RT. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19: 137-161
    Wright RM, McManaman JL, Repine JE. 1999. Alcohol-induced breast cancer: a proposed mechanism Free Radic. Biol. Med. 26 (3-4): 348-354
    Wood DE, Thomas A, Devi LA, Berman Y, Beavis RC, Reed JC, Newcomb EW. 1998. Bax cleavage is mediated by calpain during drug-induced apoptosis.Oncogene. 17 (9): 1069-1078
    Wood DE, Newcomb EW. 2000. Cleavage of Bax enhances its cell death function. Exp Cell Res. 256 (2):375-382
    Wong HR, Mannix RJ, Rusnak JM, Boota A, Zar H, Watkins SC, Lazo JS, Pitt BR. 1996. The heat shock response attenuates lipopolysa-ccharide-mediated apopotosis in culture sheep plumonary artery endothelial cells. Am J Repair Cell Mol Biol. 15:745-751
    Xin MG, Deng XM. 2006. Protein Phosphatase 2A Enhances the Proapoptotic Function of Bax through Dephosphorylation. J Biol Chem. 281(27): 18859-18867
    Xing ML, Wang XF, Xu LH. 2008. Alteration of proteins expression in apoptotic FL cells induced by MC-LR. Environ Toxicol.23(4): 451-458
    Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG. 2005. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection .Ann N Y Acad Sci, 1053:74-83
    Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, Tamura S, Ueno Y. 1997. Acute oral toxicity of microcystin-LR,a cyanobacterial hepatotoxin, in mice .Nat Toxins. 5 (3):91-95
    Yoshizawa S, Matsushima R,Watanabe MF, Harada K, Ichihara A, Carmichael WW, Fujiki H. 1990. Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J. Cancer Res. Clin. Oncol. 116 (6): 609-614
    Yu SZ. 1995. Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol. 10: 674-682
    Zhang H, Zhang J, Chen Y, Zhu Y. 2007. Influence of Intracellular Ca21, Mitochondria Membrane Potential, Reactive Oxygen Species,and Intracellular ATP on the Mechanism of Microcystin-LR Induced Apoptosis in Carassius auratus Lymphocytes In Vitro.. Environ Toxicol 22: 559-564
    Zhang H, Zhang J, Zhu Y. 2008. Identification of microcystins in waters used for daily life by people who live on Tai Lake during a serious cyanobacteria dominated bloom with risk analysis to human health. Environ Toxicol 24: 82-86
    Zegura B, Lah TT, Filipic M. 2004. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200(1): 59-68.
    Zegura B, Lah TT, Filipic M. 2006. Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells. Mutat. Res. 611: 25-33
    Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. 1998. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12: 982-995
    Zylicz M, King FW, Wawrzynow A. 2001. Hsp 70 interactions with the p53 tumour suppressor protein EMBO J. 20 (17): 4634-4638
    Arnold HK, Sears RC. 2006. Protein Phosphatase 2A Regulatory Subunit B56a Associates with c-Myc and Negatively Regulates c-Myc Accumulation. Mol. Cell. Biol. 26: 2832-2844
    Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC. 2004. Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell. 5(2): 127-136
    Chen W, Arroyo JD, Timmons JC, Possemato R, Hahn WC. 2005. Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res. 65(18): 8183-8192
    Cho US, and Xu W. 2007. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature. 445: 53-57
    #12
    Hrimech M, Yao XJ, Branton PE, Cohen EA. 2000. Human immunodeficiency virus type 1 Vpr-mediated G(2) cell cycle arrest : Vpr interferes with cell cycle signaling cascades by interacting with the B subunit of serine/threonine protein phosphatase 2A. EMBO J. 19: 3956-3967
    Ito A, Kataoka TR, Watanabe M, Nishiyama K, Mazaki Y, Sabe H, Kitamura Y, Nojima H. 2000. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation . EMBO J.19 (4): 562-571
    Janssens V, Goris J. 2001. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353: 417-439
    Janssens V, Goris J, Van Hoof C. 2005. PP2A: The expected tumor suppressor. Curr Opin Genet Dev.15 (1):34-41
    Janssens V, Longin S, Goris J. 2008. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem. Sci. 33(3): 113-121
    Kong M, Fox CJ, Mu J, Solt L, Xu A, Cinalli RM, Birnbaum MJ, Lindsten T, Thompson CB. 2004. The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science 306: 695-698
    Li X, Yost HJ, Virshup DM, Seeling JM. 2001. Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J. 20: 4122-4131.
    Li HH, Cai X, Shouse GP, Piluso LG, Liu X. 2007. A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J. 26:402-411
    Liu WJ, Jiang JF, Xiao D, Ding J. 2002 .Down-regulation of telomerase activity via protein phosphatase 2A activation in salvicine-induced human leukemia HL-60 cell apoptosis . Biochem Pharmacol. 64 (12): 1677-1687
    Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, Merlevede W, Hofsteenge J, Hemmings BA. 1991. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A:evidence for a neuronal-specific isoform. Biochemistry 30:3589-3597
    Mayo LD, Dornner DB. 2001.A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA. 98 (20 ):11598-11603.
    Meek DW, Knippschild U. 2003. Posttranslational modification of MDM2 molecular. Mol Cancer Res.l (14): 1017-1026
    Meisinger J, Patel S, Vellody K, Bergstrom R, Benefield J, Lozano Y, Young MR. 1997. Protein Phosphatase 2A association with microtubules and its role in restricting the invasiveness of human head and neck squamous cell carcinoma cells. Cancer Lett. 11 l(l):87-95
    Mi J, Bolesta E, Brautigan DL, Larner JM. 2009. PP2A regulates ionizing radiation-induced apoptosis through Ser46 phosphorylation of p53. Mol Cancer Ther. 8 (l):135-140
    Millward TA, Zolnierowicz S, Hemmings BA. 1999. Regulation of protein kinase cascades by Protein phosphatase 2A. Trends Biochem Sci.24 (5): 186-191
    Moule MG, Collins CH, McCormick F, Fried M. 2004. Role for PP2A in ARF signaling to p53 . Proc Natl Acad Sci USA .101 (39): 14063-14066
    Murata K, Wu J, Brautigan DL. 1997. B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A. Proc. Natl. Acad. Sci. USA. 94: 10624-10629
    Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS, Prives C. 2002. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell. 9 (4):761 - 771
    Ruediger R, Pham HT, Walter G. 2001 a. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 20:1892-1899
    Ruediger R, Pham HT, Walter G. 2001b. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 20: 10-15
    Ruvolo PP, Clark W, Mumby M, Gao F, May WS.A. 2002. functional role for the B56 alphasubunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl-2 phosphorylation status and function. J Biol Chem . 277 (25): 22847-22852
    Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE, DeCaprio JA, Hahn WC. 2007. The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell 129: 969-982
    Schonthal AH. 2001. Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett. 170 (1):1-13
    Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. 2000. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14:2501-2514
    Sears RC. 2004.The life cycle of C-Myc from synthesis to degradation. Cell Cycle. 3(9): 1133-1137
    Seeling JM, Miller JR, Gil R, Moon RT, White R, Virshup DM.1999.Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science. 283: 2089-2091
    Sekijima M, Tsutsumi T, Yoshida T, Harada T, Tashiro F, Chen G, Yu SZ, Ueno Y. 1999. Enhancement of glutathione S-transferase placental-form positive liver cell foci development by microcystin-LR in aflatoxin Bl-initiated rats . Carcinogenesis.20 (1):161-165
    Strack S, Chang D, Zaucha JA, Colbran RJ, Wadzinski BE. 1999. Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBSLett. 460: 462-466
    Takagi Y, Futamura M, Yamaguchi K, Aoki S, Takahashi T, Saji S. 2000. Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut. 47: 268-271
    Tamaki M, Goi T, Hirono Y, Katayama K, Yamaguchi A. 2004. PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncol. Rep. 11: 655-659
    Tung HYL, De Rocquigny H, Zhao L-J., Cayla X, Roques B P, Ozon R. 1997. Direct activation of protein phosphatase-2A0 by HIV-1 encoded protein complex NCp7: vpr. FEBS Lett. 401: 197-201
    Wang SS, Esplin ED, Li JL, Huang L, Gazdar A, Minna J, Evans GA. 1998. Alterations of the PPP2R1B gene in human lung and colon cancer. Science. 282: 284-287
    Westermarck J, Hahn WC. 2008 Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med. 14(4): 152-60
    Van Hoof C, Goris J. 2003. Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochim Biophys Acta .1640 (2): 97- 104
    Voorhoeve PM, Hijmans EM, Bernards R. 1999. Functional interaction between a novel rotein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein . Oncogene.8(2):515-524
    Vuocolo S, Purev E, Zhang D, Bartek J, Hansen K, Soprano DR, Soprano KJ. 2003. Protein phosphatase 2A associates with Rb2/p 130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells. Journal of biological chemistry. 278 (43): 41881-41889
    Xu LH, Lam PK S, Chen J, Zhang Y, Harada K. 2000. Comparative study on in vitro inhibition of grass carp (Ctenopharyngodon idellus) and mouse protein phosphatases by microcystins. Environmental Toxicology. 15 (2): 71-75
    Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, and Shi Y (2006). Structure of the protein phosphatase 2A holoenzyme. Cell .127: 1239-1251
    Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida T, Counter CM, Nevins JR, Means AR, Sears R. 2004. A signaling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol. 6(4):308-318
    Zolnierowicz S, Csortos C, Bondor J, Verin A, Mumby MC, DePaoli-Roach AA. 1994. Diversity in the regulatory B-subunits of protein phosphatase 2A: identification of a novel isoform highly expressed in brain. Biochemistry 33:11858-11867
    Adams JM, Cory S. 2007. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324-1337
    Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW. 2005. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis.EMBO J 24:2096-103
    Belzacq AS, Vieira HL, Kroemer G, Brenner C. 2002. The adenine nucleotide translocator in apoptosis. Biochimie 84:167-176
    Bossy WE, Newmeyer DD, Green DR. 1998. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17 : 37-49
    Cartron PF, Priault M, Oliver L, Meflah K, Manon S, Vallette FM. 2003. The N-terminal end of Bax contains a mitochondrialtargeting signal. J Biol Chem .278:11633-1164
    Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P, Meflah K, Vallette FM, Juin P.2004. The first a helix of Bax plays a necessary role in its ligandinduced activation by the BH3-only proteins Bid and PUMA. Mol Cell. 16:807-818
    Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC.2005. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17:393-17403
    Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM. 1997. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science .278: 1966-1968
    Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ. 2001. Bcl-2, BCL-x(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell. 8:705-711.
    Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. 2003. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science.301: 513-517.
    Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM. 1998. Modulation of cell death by Bcl-xL through caspase interaction. Proc Natl Acad Sci USA. 95: 554-559
    Danial N N. 2007. Bcl-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death.Clin Cancer Res.l3(24):7254-7263
    De Giorgi F, Lartigue L, Bauer MK, Schubert A, Grimm S, Hanson GT, Remington SJ, Youle RJ, Ichas F. 2002. The permeability transitionpore signals apoptosis by directing Bax translocation and multimerization. FASEB J. 16 : 607-609.
    De Moissac D, Zheng H, Kirshenbaum LA. 1999. Linkage of the BH4 domain of Bcl-2 and the nuclear factor nB signaling pathway for suppression of apoptosis. J Biol Chem.274: 29505-29509.
    Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, Leber B, Andrews DW. 2006. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J .25: 2287-2296.
    Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM. 2006. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta 1757: 1301-1311.
    Gajkowska B, Wojewodzka U, and Gajda J. 2004. Translocation of Bax and Bid to mitochondria, endoplasmic reticulum and nuclear envelope: possible control points in apoptosis. J Mol Histol 35:11-19
    Gogvadze V, Robertson JD, Zhivotovsky B, Orrenius S. 1996. Cytochrome c release occurs via Ca~(2+)-dependent and Ca~(2+)-independent mechanisms that are regulated by Bax. J Biol Chem. 276:19066-19071
    Gustafsson AB, Gottlieb RA . 2007. Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 292(1):C45-51
    Haldar S, Basu A, Croce CM. 1998. Serine-70 is one of the critical sites for drug-induced Bcl-2 phosphorylation in cancer cells. Cancer Res .58:1609-1615
    Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ. 2004. Survival factor induced extracellular signal-regulated kinase phosphorylates BIM,inhibiting its association with BAX and proapoptotic activity, Proc. Natl. Acad. Sci. U. S. A. 101: 15313-15317
    Jerry E. Chipuka and Douglas R. Green. 2008. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends in Cell Biology. 18(4: 157-164
    Juin P, Cartron PF, Vallette FM. 2005. Activation of Bax by BH3 domains during apoptosis. Cell Cycle .4: 637-642
    Jiirgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC.1998. Bax directly induces release of cytochrome c from isolated mitochondria, Proc. Natl. Acad. Sci. U. S. A. 95:4997-5002.
    Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH. 2006. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol. 8:1348-1358
    Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD. 2002. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 111: 331-342
    Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD. 2005. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell. 17: 525-535.
    Leber B, Lin J, Andrews DW. 2007. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12: 897-911
    Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM. 2007. Bax activation and mitochondrial insertion during apoptosis. Apoptosis. 12: 887-896
    Li H, Zhu H, Xu CJ, Yuan J. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491-501
    Mandic A, Viktorsson K, Strandberg L, Heiden T, Hansson J, Linder S, Shoshan MC. 2002. Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol 22: 3003-3013
    Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. 2006. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1.Mol Cell. 21: 749 -760.
    Mikhailov V, Mikhailova M, Degenhardt K, Venkatachalam MA, White E, Saikumar P. 2003. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem. 278: 5367-5376
    Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW. 1996. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature .381:335-41.
    Nakano K and Vousden KH. 2001. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683-694
    Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ. 2001. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol. 153: 1265-1276
    Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ. 2003. Development and maintenance of B and T lymphocytes requires antiapoptotic Mcl-1. Nature. 426: 671-676
    Pastorino JG, Tafani M, Rothman RJ, Marcinkeviciute A, Hoek JB, Farber JL. 1999. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J Biol Chem. 274: 31734-31739
    Portier BP, Taglialatela G. 2006. Bcl-2 localizedat thenuclear compartment induces apoptosis after transient overexpression. J Biol Chem.281:40493-502
    Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A. 1999. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 3:287-296
    Regula KM, Ens K, and Kirshenbaum LA. 2002. Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res. 91:226-231
    Ruffolo SC, Shore GC. 2003. Bcl-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. J.Biol Chem.278: 25039-25045
    Saito M, Korsmeyer SJ, Schlesinger PH. 2000. BAX-dependent transport of cytochrome c reconstituted in pure liposomes.Nat. Cell Biol. 2: 553-555
    Schendel SL, Montal M, Reed JC. 1998. Bcl-2 family proteins as ion-channels. Cell Death Differ 5:372-380
    Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ. 1997. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA. 94:11357-11362
    Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH, Thompson CB, Korsmeyer SJ. 1995. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci USA 92:7834-7838
    Shimizu S, Narita M., Tsujimoto Y. 1999. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC.Nature. 399: 483-487
    Shibasaki F, Kondo E, Akagi T, McKeon F. 1997. Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2.Nature. 386: 728-731
    Suzuki M, Youle RJ, and Tjandra N. 2000. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. 103: 645-654
    Tan C, Dlugosz PJ, Peng J, Zhang Z, Lapolla SM, Plafker SM, Andrews DW, Lin J. 2006. Autoactivation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. J Biol Chem. 281:14764-14775.
    Terrones O, Antonsson B, Yamaguchi H, Wang HG, Liu J, Lee RM, Herrmann A, Basa(?)ez G. 2004. Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J Biol Chem 279:30081-30091
    Wang X. 2001. The expanding role of mitochondria in apoptosis. Genes Dev. 15: 2922-2933.
    Wang Y, Cao R, Liu D, Chervin A, Yuan J, An J, Huang Z. 2007. Oligomerization of BH4- truncated Bcl-x(L) in solution. Biochem Biophys Res Commun. 361:1006 -1011.
    Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. 2001. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 292: 727-730
    Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC. 2005. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19:1294-191305.
    Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DC. 2007. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science.315: 856-859
    Wong WW, Puthalakath H. 2008. Bcl-2 Family Proteins: The Sentinels of the Mitochondrial. Apoptosis Pathway.IUBMB Life. 60 (6):390-397
    Yamaguchi H, Wang HG. 2002. Bcl-XL protects BimEL-induced Bax conformational change and cytochrome c release independent of interacting with Bax or BimEL. J Biol Chem 277:41604-41612
    Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-xL. Cell 87: 619-628
    Zhong Q, Gao W, Du F, Wang X. 2005. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-land regulates apoptosis. Cell. 121:1085-1095
    Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. 2001. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15: 1481-1486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700