用户名: 密码: 验证码:
PI3K/AKT信号通路在AD发病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分PI3K/AKT信号通路对Aβ诱导细胞凋亡影响
     【背景】
     β淀粉样蛋白(β-amyloid, Aβ)的过度产生和聚集是引起阿尔茨海默病(Alzheimer's disease, AD)的重要发病启动因素。AKT是调节神经元再生和维持神经元存活的重要分子之一,然而对于上调AKT是否能对抗Aβ诱导的神经元凋亡,至今仍未见报道。
     【目的】
     探讨上调PI3K/AKT通路对Aβ诱导细胞凋亡的保护作用和机制
     【方法】
     在转染AKT、非转染AKT及用或不用Wortmanin (AKT特异性抑制剂)的条件下,同时用20uM Aβ处理HEK293细胞。AnnexinV- PI双染和流式细胞仪检测HEK293细胞活性和细胞凋亡,RT-PCR检测AKTmRNA表达变化。免疫印迹法(western blot)检测HEK293细胞内凋亡相关蛋白caspase-3和bcl-2家族(包括Bcl-xL, Bcl-w, Bad, and Bax)和AKT、JNK、ERK的表达变化。
     【结果】
     Aβ(1-42)在不同的浓度(10 uM,20uM,50uM)作用24h后,AnnexinV-PI双染和流式结果显示Aβ(1-42)可以明显的增加HEK293细胞活性降低和细胞凋亡;瞬转高表达AKT可以有效的减少Aβ(1-42)引起的细胞毒性和促凋亡作用;AKT高表达能显著降低HEK293细胞中caspase-3表达量;高表达AKT的HEK293细胞中Bad和Bax表达量显著低于Aβ(1-42)处理组,而且AKT组Bcl-xL,Bcl-w表达量较Aβ(1-42)处理组显著增加;HEK293细胞高表达AKT后JNK活性明显增加;Wortmanine抑制AKT活性后,消除了高表达AKT对抗Ap诱导的HEK293细胞凋亡。
     【结论】
     高表达AKT可以有效的对抗AB诱导的细胞毒性,减少细胞凋亡,其机制是通过JNK激酶,促使抗凋亡蛋白Bcl-xL, Bcl-w表达减少和促凋亡Bad和Bax蛋白表达增加来实现的。
     第二部分上调PI3K/AKT信号通路对Aβ诱导的tau磷酸化的影响
     【背景】
     神经原纤维缠结(neurofibrillary tangles, NFTs)是阿尔茨海默病(Alzheimer's disease, AD)的主要病理学特征,NFTs的主要成分是异常过度磷酸化的微管相关蛋白tau,尽管一些研究报道β-淀粉样蛋白(β-amyloid, Aβ)可以通过抑制PI3K/AKT通路激活糖原合成激酶-3(Glycogen synthase kinase 3. GSK3),增加tau磷酸化,但上调AKT表达是否可以保护Aβ诱导的tau磷酸化,仍未见报道。
     【目的】
     本实验通过在HEK293/tau细胞株中上调PI3K/AKT通路观察神经元中tau磷酸化相关位点的改变及探讨其机制。
     【方法】
     本实验在HEK293/tau细胞上稳转野生型AKT后,在培养液中加入Aβ1-4220 uM,免疫印迹法检测tau磷酸化位点S396, S214, S404的改变,p-GSK3β-Ser9, m-PP2A-Leu309, PTP1B,表达的变化。
     【结果】
     (1)在IIEK293/tau细胞中瞬时高表达AKT24小时后,用Aβ处理HEK293/tau细胞,结果显示AKT明显逆转了Aβ诱导的tau多个位点(S396、S214、S404、S198、199、202)磷酸化,总tau含量没有明显改变。(2)转染AKT+Aβ处理组p-GSK3β-Ser9的水平和m-PP2A-Leu309水平比单独Aβ处理组显著升高,而dm-PP2A-Leu309水平明显降低(3)PTPIB表达在AKT+Aβ处理组比单独Aβ处理组明显升高。
     【结论】
     过表达AKT可以明显的逆转Aβ诱导的tau蛋白磷酸化,其机制是通过PTP1B增加PP2A活性和降低GSK3β活性水平。
Background
     Overproduction and accumulation ofβ-amyloid (AP) have been proposed to be an initiating factor of neuron loss in Alzheimer's disease (AD). AKT is a pivotal molecule in regulating neuronal survival; however, it is still not known whether upregulation of AKT can protect the cells from the Aβ-induced apoptosis.
     Object
     Study on the role of upregulation akt against the Aβ-induced apoptosis in the HEK293 cells.
     Methods
     We divided the cells into five groups.including control group, AP(1-42) group,vector group,AKTwt group,AKTwt+wortmanine group,and treated the HEK293 cells with 20uM AP(1-42) besides control group.By using AnnexinV- PI double-colouring and flow cytometry,cell viability and cell apoptosis was assayed,the AKTmRNA was detected by RT-PCR. Western blot investigates AKT,caspase-3 bad,bax, Bcl-xL, Bcl-w expression and JNK phosphorylation.
     Results
     In the present study that upregulation AKT could significantly attenuate the cell apoptosis induced by Aβ(1-42),we also find that the caspase-3,bad,bax expressed in the Aβgroup obviously higher than in the akt group through western blot,moreover the results show that the expression level of Bcl-xL, Bcl-w is significantly decreased in the Aβgroup. Upregulation AKT reduced JNK phosphorylation, and the wortmanine eliminated the effects of overexpressed akt.
     Conclusion
     these results moreoverly suggest that upregulation AKT attenuate Aβinduced apoptosis mainly through reduced JNK phosphorylation,which regulated the gene balance of acceleration and inhibition apoptosis. the signaling of PI3K/AKT could be a promising therapeutic strategy for arresting AP toxicity in AD patients
     Background
     Alzheimer's disease is a neurodegenerative disease characterized by the accumulation of beta amyloid into amyloid deposits and by the hyperphosphorylation of the protein tau,leading to neurofibrillary tangles. In addition to tau, abnormally hyperphosphorylated neurofilament is also the protein component of NFTs.β-amyloid peptide could increased the phosphorylation of tau by activating the Gsk-3β. it is still not known whether upregulation of AKT can attenuates the Aβ-induced tau hyperphosphorylation.
     Object
     Study the changes and mechanism of upregulation akt on the Aβinduced tau phosphorylation.
     Methods
     After transiently transfected AKTwt in the HEK293 cells, which treated with 20uM Aβ(1-42). Western blot detects the phosphorylation sites of S396, S214, S404, tau-1, tau-5 and pSer9-Gsk3βT-Gsk3β, mL309PP2A, dmLeu309PP2A, PTP1B.
     Results
     the results shows that:(1) S396,S214,S404 sites obviously decreased in the cells of upregulation AKT. (2) p-GSK3β-Ser9 increased, m-PP2A-Leu309 increased. (3) upregulation AKT increased PTP1B expression
     Conclusion
     These results indicated that upregulation AKT attenuates the Aβinduced tau phosphorylation.which mainly through increased the activity of PP2A through the signaling of PTP1B.
引文
[1]Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Muller WE Mitochondrial dysfunction in sporadic and genetic Alzheimer's disease. Exp Gerontol 41, (2006) 668-673.
    [2]Morris JC The challenge of characterizing normal brain aging in relation to Alzheimer's disease. Neurobiol Aging 18, (1997)388-389.
    [3]Selkoe DJ The molecular pathology of Alzheimer's disease. Neuron 6, (1991) 487-498.
    [4]Resende R, Pereira C, Agostinho P, Vieira AP, Malva JO, Oliveira CR Susceptibility of hippocampal neurons to A(3 peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res 1143, (2007)11-21.
    [5]Fu H, Li W, Lao Y, Luo J, Lee NT, Kan KK, Tsang HW, Tsim KW, Pang Y, Li Z, Chang DC, Li M, Han Y Bis(7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels. J Neurochem 98, (2006)1400-1410
    [6]Qiao HJ, Koya RC, Nakagawa K, Tanaka H, Fujita H, Takitmoto M, Kuzamaki N Inhibition of Alzheimer's amyloid-peptide-induced reduction ofmitochondrial membrane potential and neurotoxicity by gelsolin. Neurobiol Aging 26, (2005)849-855.
    [7]Petrosillo G, Matera M, Casanova G, Ruggiero FM, Paradies G Mito-chondrial dysfunction in rat brainwith aging involvement of complex I, reactiveoxygen species and cardiolipin. Neurochem Int 53, (2008) 126-131.
    [8]Allen JW, Eeldadah BA, Huang XL, Knoblach SM, Faden AI Multiple caspases are involved in b-amyloid-induced neuronal apoptosis. J Neurosci Res 65, (2001)45-53.
    [9]Markus GG Caspase:key players in programmed cell death. Curr Opin Struct Biol 10,(2000)649-655.
    [10]Antonsson B, Martinou JC The Bcl-2 protein family. Exp Cell Res 256, (2000)50-57.Forloni G, Bugiani O, Tagliavini F, Salmona M Apoptosis- mediatedneurotoxicity induced by beta-amyloid and PrP fragments. Mol ChemNeuropathol 28, (1996) 163-171.
    [11]Forloni G, Bugiani O, Tagliavini F, SalmonaM Apoptosis-mediated neurotoxicity induced by beta-amyloid and PrP fragments. Mol Chem Neuropathol 28,(1996)163-171.
    [12]Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A Amyloid-peptide of Alzheimer's disease downregulates Bcl-2 and up-regulates bax expression in human neurons. J Neurosci 16, (1996)7533-7539.
    [13]Wei H, Leeds PR, Qian Y, Wei W, Chen R, Chuang D Beta-amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-termlithiumtreatment. Eur J Pharmacol 392, (2000) 117-123.
    [14]Tamagno E, Parola M, Guglielmotto M, Santoro G, Bardini P, Marra L,Tabaton M, Danni OMultiple signaling events in amyloid beta-induced, oxidative stress-dependent neuronal apoptosis. Free Radic Biol Med 35, (2003) 45-58.
    [15]Saille C,Marin P,Martinou JC, Nicole A, London J, Ceballos-Picot Ⅰ Transgenic murine cortical neurons expressing human Bcl-2 exhibit in-creased resistance to amyloid beta-peptide neurotoxicity. Neuroscience 92, (1999) 1455-1463.
    [16]Song YS, Park HJ, Kim SY, Lee SH, Yoo HS, Lee HS, Lee MK, Oh KW, Kang SK, Lee SE, Hong JT Protective role of Bcl-2 on beta-amyloid-induced cell death of differentiated PC 12 cells:reduction of NF-kappaB and p38 MAP kinase activation. Neurosci Res 49, (2004)69-80.
    [17]Tan J, Town T, Placzek A, Kundtz A, Yu H, Mullan M.Bcl-X(L) inhibits apoptosis and necrosis produced by Alzheimer's beta-amy-loid1-40 peptide in PC 12 cells. Neurosci Lett 272, (1999)5-8.
    [18]Bae MA, Song BJ.Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of humanHepG2 hepatoma cells. Mol Pharmacol 63, (2003)401-408.
    [19]Tamagno E, Parola M, Guglielmotto M, Santoro G, Bardini P, Marra L,Tabaton M, Danni O.Multiple signaling events in amyloid beta-induced, oxidative stress-dependent neuronal apoptosis. Free Radic Biol。Med 35, (2003)45-58.
    [20]Bozyczko-Coyne D, O'Kane TM, Wu ZL, Dobrzanski P, Murthy S, Vaught JL, Scott RW CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associatedwith Abeta-induced cortical neuron apoptosis. J Neurochem 77, (2001)849-863.
    [21]Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME β-Amyloid induces neuronal apoptosis via amechanismthat involves the c-JunN-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21, (2001)7551-7560.
    [22]Troy CM, Rabacchi SA, Xu Z, Maroney AC, Connors TJ, Shelanski ML,Greene LA Beta-amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem 77, (2001)157-164.
    [23]Pap M, Cooper GM Role of glycogen synthase kinase-3 in thephosphatidylinositol 3-kinase/AKT cell survival pathway. J Biol Chem 273, (1998)19929-19932.
    [24]Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME AKT promotes cell survival by phosphorylating and inhibiting a Fork head transcription factor. Cell 19, (1999) 857-868
    [25]Downward J How BAD phosphorylation is good for survival. Nat Cell Biol 1, (1999)E33-35
    [26]Kim D, Chung J AKT:versatile mediator of cell survival and beyond. J Biochem Mol Biol 35, (2001)106-115.
    [27]Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW The insulin/AKT signaling pathway is targeted by intracellular beta-amyloid. Mol Biol Cell 20, (2009)1533-1544.
    [28]Song G, Ouyang G, and Bao SThe activation of AKT/PKB signaling pathway and cell survival. J Cell Mol Med 9, (2005) 59-71.
    [29]Ma R, Xiong N, Huang C, Tang Q, Hu B, Xiang J, Li G Erythropoietin protects PC12 cells from beta-amyloid (25-35)-induced apoptosis via PI3K/AKT signaling pathway Neuropharmacology.56, (2009)1027-1034.
    [30]Abbott JJ Howlett DR, Francis PT, Williams RJ Aβ1-42 modulation of AKT phosphorylation via a7 nAChR and NMDA receptors. Neurobiol Aging 29, (2008) 992-1001.
    [31]Watson K, Fan GH.Macrophage inflammatory protein 2 inhibits beta-amyloid peptide (1-42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol 67, (2005)757-765
    [32]Zheng Z, Zhao H, Steinberg GK, Yenari MA Cellular and molecular events underlying ischemia-induced neuronal apoptosis. Drug News Perspect 16, (2003) 497-503.
    [33]Cui H, Li T, Ding HF Linking of N-Myc to death receptor machinery in neuroblastoma cells. J Biol Chem 280, (2005) 9474-9481.
    [34]May MJ, Madge LA Caspase inhibition sensitizes inhibitor of NF-kappaB kinase beta-deficient fibroblasts to caspase-independent cell death via the generation of reactive oxygen species. J Biol Chem 282, (2007)16105-16116.
    [35]Wai MS, Liang Y, Shi C, Cho EY, Kung HF, Yew DT Co-localization of hyperphosphorylated tau and caspases in the brainstem of Alzheimer's disease patients. Biogerontology 10, (2009)457-469.
    [36]Nie BM, Jiang XY, Cai JX, Fu SL, Yang LM, Lin L, Hang Q, Lu PL, Lu Y Panaxydol and panaxynol protect cultured cortical neurons against Abeta25-35-induced toxicity. Neuropharmacology 54, (2008)845-853.
    [37]Satoi H, Tomimoto H, Ohtani R, Kitano T, Kondo T,Watanabe M, Oka N, Akiguchi I, Furuya S, Hirabayashi Y, Okazaki T Astroglial expression of ceramide in Alzheimer's disease brains:a role during neuronal apoptosis. Neuroscience 130, (2005)657-666.
    [38]Hamner S, Skoglosa Y, Lindholm D Differential expression of bcl-w and bcl-x messenger RNA in the developing and adult rat nervous system. Neuroscience 91,(1999)673-684.
    [39]Akcali KC, Sahiner M, Sahiner T The role of bcl-2 family of genes during kindling. Epilepsia 46, (2005) 217-223.
    [40]Yin KJ, Lee JM, Chen SD, Xu J, Hsu CY Amyloid-beta induces Smac release via AP-1/Bim activation in cerebral endothelial cells. J Neurosci 22, (2002) 9764-9770.
    [41]Wei Z, Mousseau DD, Richardson JS, Dyck LE, Li XM Atypical antipsychotics attenuate neurotoxicity of beta-amyloid (25-35) by modulating Bax and Bcl-X(1/s) expression and localization. J. Neurosci Res 74, (2003) 942-947
    [42]Junttila MR, Li SP, Westermarck J Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22, (2008) 954-965.
    [43]Yao M, Nguyen TV, Pike CJ.Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 25, (2005) 1149-1158.
    [44]Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM, Zhang GYO.pposing effects of bad phosphorylation at two distinct sites by AKT1 and JNK1/2 on ischemic brain injury. Cell Signal 19, (2007a) 1844-1856.
    [45]Wang Z, Zhang X, Wang H, Qi L, Lou Y.Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway. Neuroscience 145, (2007b)911-922.
    [46]Goruppi S,Chiaruttini C,Ruaro ME,et al.Gas6 inducesgrowth,beta cateninstabi lization,and T cell factor trans-criptional activationin contact inhibited C57 mammary cells.Mol Cell Biol,2001,21(3):902-915
    [47]Appleman LJ,vanPuijenbroek AA,Shu KM,et al.CD28costimulation mediates down regulation of p27 kipl andcell cycle progression by activation of the PI3K/PKBsignaling pathway inprimary human T cells.J Immunol, 2002,168(6):2729-2736
    [48]Iwai M,Sato K,Omori N,et al.Three steps of neural stemcells development in gerbil dentate gyrus after transientischemia.J Cereb Blood Flow Metab,2002,22(4):411-419
    [49]Kruger GM. Morrison SJ. Brain repair by endogenousprogenitors. Cell,2002,110(4):399-402
    [50]Maeda H,Rajesh KG,Maeda H,et al.Epidermal growthfactor and insulin inhibit cell death in pancreatic beta cellsby activation of PI3-kinase/AKT signaling pathway underoxidative stress.Transplant Proc,2004,36(4):1163-1165
    [51]Wudek H,Datta SR,Franke TF,et al.Regulation ofneuronal survival bytheserine-threonineproteinkinase Akt. Science,1997,275 (5300):661-665
    [52]Bommhardt U,Chang KC,Swanson PE,et al.Aktdecreases lymphocyte apoptosis and improves survival insepsis.J Immunol,2004, 172(12):7583-7591
    [1]Mattson MP.Pathways towards and away from Alzheimer's disease. Nature,2004,430:631-639
    [2]Frackowiak J,Mazur-Kolecka B,Kaczmarski W,et al.Deposition ofAlzheimer's vascular amyloid-beta is associated with decreased expression of brain L-3-hydroxyacyl-coenzyme A dehydrogenase(ERAB). Brain Res,2001,907:44-53
    3.Ratnavalli E.,Brayne C.,Dawson K.,Hodges J.R.,The prevalence offrontotenporal dementia[J].Neurology.2002;58(11):1615-1621.
    [4]Hutton, M., Lendon, C.L., Rizzu, P., Baker, M., Froelich, S.,Houlden, H., Pickering-Brown, S..(1998) Nature 393,702-705.
    [5]Lewis, J., Dickson, D.W., Lin, W.L., Chisholm, L., Corral, A.,Jones, G., Yen, S.H., Sahara, N., Skipper, L., Yager, D., Eck-man, C., Hardy, J., Hutton, M. and McGowan, E. (2001) Science293,1487-1491.
    [6]Gotz, J., Chen, F., van Dorpe, J. and Nitsch, R.M. (2001) Sci-ence 293, 1491-1495.
    [7]Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A. andHof, P.R. (2000) Brain Res. Rev.33,95-130.
    [8]Baumann, K., Mandelkow, E.M., Biernat, J., Piwnica-Worms,H. and Mandelkow, E. (1993) FEBS Lett.336,417-424
    [9]Goedert, M., Cohen, E.S., Jakes, R. and Cohen, P. (1992) FEBSLett.312,95-99.
    [10]Planel, E., Yasutake, K., Fujita, S.C. and Ishiguro, K. (2001)J. Biol. Chem.276, 34298-34306
    [11]Jiang, C.H., Tsien, J.Z., Schultz, P.G and Hu, Y. (2001) Proc.Natl. Acad. Sci. USA 98,1930-1934.
    [12]Vogelsberg-Ragaglia, V., Schuck, T., Trojanowski, J.Q. and Lee,V.M. (2001) Exp.Neurol.168,402-412.
    [13]Merrick, S.E., Trojanowski, J.Q. and Lee, V.M. (1997) J. Neurosci.17, 5726-5737.
    [14]Janssens, V. and Goris, J. (2001) Biochem. J.353,417-439
    [15]Mattson, M.P.,2003. Methylation and acetylation in nervous system development andneurodegenerative disorders. Ageing Res. Rev.2,329-342. Review.
    [16]Sontag, E., Hladik, C., Montgomery, L., Luangpirom, A., Mudrak, I., Ogris, E., White 3rd,C.L.,2004. Downregulation of protein phosphatase 2A carboxyl methylation andmethyltransferase may contribute to Alzheimer disease pathogenesis. J. Neuropathol. Exp. Neurol.63,1080-1091
    [17]Xin-Wen Zhoua, Jan-Ake Gustafssonb, Heikki Tanila c, Cecilia Bjorkdahla, Rong Liu aBengt Winblada, Jin-Jing Pei,2008Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A。Neurobiology of Disease 31 (2008) 386-394
    [18]Tolstykh, T., Lee, J., Vafai, S., Stock, J.B.,2000. Carboxyl methylation regulates Phosphorprotein phosphatase 2A by controlling the association of regulatory Bsubunits. EMBO J.19,5682-5691.
    [19]Lee, J. and Stock, J. (1993) J. Biol. Chem.268,19192^19195.
    [20]Lee, J., Chen, Y., Tolstykh, T. and Stock, J. (1996) Proc. Natl.Acad. Sci. USA 93,6043-6047.
    [21]Sontag, E., Nunbhakdi-Craig, V., Lee, G, Brandt, R., Kamibayashi, C., Kuret, J., White, C.L., Mumby III, M.C. andBloom, G.S. (1999) J. Biol. Chem.274, 25490^25498.
    [22]Tolstykh, T., Lee, J., Vafai, S. and Stock, J.B. (2000) EMBO J.19,5682-5691.
    [24]Y.Q. Luo, H. Hirashima, Y.H. Li, D.L. Alkon, T. Sunderland, R.Etcheberrigaray, B. Wolozin, Physiological levels of h-amyloidincrease tyrosine phosphorylation and cytosolic calcium, Brain Res.681 (1995) 65-74.
    [25]R. Williamson, T. Scales, B.R. Clark, G. Gibb, C.H. Reynolds, S.Kellie, I.N. Bird, I.M. Varndell, P.W. Sheppard, I. Everall, B.H.Anderton, Rapid tyrosine phosphorylation of neuronal proteinsincluding tau and focal adhesion kinase in response to amyloid-hpeptide exposure:involvement of src family protein kinases, J.Neurosci.22 (2002) 10-20.
    [26]E.A. Grace, J. Busciglio, Aberrant activation of focal adhesionproteins mediates fibrillar amyloid beta-induced neuronal dystrophy,J. Neurosci.23 (2003) 493-502.
    [27]M.E. Bamberger, M.E. Harris, D.R. McDonald, J. Husemann, G.E.Landreth, A cell surface receptor complex for fibrillar beta-amyloidmediates microglial activation, J. Neurosci.23 (2003) 2665-2674.
    [28]K.J. Moore, J. El Khoury, L.A. Medeiros, K. Terada, C. Geula, A.D.Luster, M.W. Freeman, A CD36-initiated signaling cascade mediatesinflammatory effects of beta-amyloid, J. Biol. Chem.277 (2002)47373-47379.
    [29]C. Zhang, H.E. Qiu, G.A. Krafft, W.L. Klein, A beta peptideenhances focal adhesion kinase/fyn association in a rat CNS nervecell line, Neurosci. Lett.211 (1996)187-190.
    [30]M.P. Lambert, A.K. Barlow, B.A. Chromy, C. Edwards, R. Freed, M.Liosatos, T.E.Morgan, I. Rozovsky, B. Trommer, K.L. Viola, P.Wals,C. Zhang, C.E. Finch, GA. Krafft,W.L. Klein, Diffusible, nonfibrillarligands derived from Abetal-42 are potent central nervous systemneurotoxins, Proc. Natl. Acad. Sci. U. S. A.95 (1998) 6448-6453.
    [31]Cheng, A., Bal, G. S., Kennedy, B. P., and Tremblay, M. L. (2001) J. BiolChem. 276,25848-25855
    [32.]Bjorge, J. D., Pang, A., and Fujita, D. J. (2000) J. Biol. Chem. 275,41439-41446
    [33]. Arregui, C. O., Balsamo, J., and Lilien, J. (1998) J. Cell Biol.143,861-873
    1. Hamburger, V.& Levi-Montalcini, R. J. Exp. Zool. 111, (1949) 457-502.
    2. Purves, D. Body and Brain:A Trophic Theory of Neural Connections (Harvard Press, Cambridge,Massachusetts, (1988).
    3. Martin, D. P. et al. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol.106, (1988)829-844.
    4. Metzstein, M. M., Stanfield, G. M.& Horvitz, H. R. Genetics of programmed cell death in C. elegans:past, present and future. Trends Genet.14, (1998)410-416.
    5. Gagliardini, V. et al. Prevention of vertebrate neuronal death by the crmA gene. Science 263, (1994)826-828.
    6. Merry, D. E.& Korsmeyer, S. J. Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci.20, (1997)245-267.
    7. Garcia, I., Martinou, I., Tsujimoto, Y.& Martinou, J. C. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science 258, (1992)302-304.
    8. Martinou, J. C. et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, (1994)1017-1030.
    9. Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., Huarte, J.& Martinou, J. C. Neonatalmotoneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl Acad. Sci. USA 91, (1994)3309-3313.
    10. Sagot, Y. et al. Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J. Neurosci. 15,(1995)7727-7733.
    11. Veis, D. J., Sorenson, C. M., Shutter, J. R.& Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, (1993)229-240
    12. Michaelidis, T. M. et al. Inactivation of bcl-2 results in progressive degeneration of motoneurons,sympathetic and sensory neurons during early postnatal development. Neuron 17, (1996)75-89.
    13. Gonzalez-Garcia, M. et al. bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc. Natl Acad. Sci. USA 92, (1995)4304-4308.
    14. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-xl deficient mice. Science 267, (1995)1506-1510.
    15. Deckwerth, T. L. et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17, (1996)401-411.
    16. Zou, H., Henzel, W. J., Liu, X., Lutschg, A.& Wang, X. Apaf-1, a human protein homologous to C. elegant CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, (1997)405-413.
    17. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A.& Gruss, P. Apafl (CED-4 homolog)regulates programmed cell death in mammalian development. Cell 94, (1998)727-737.
    18. Cryns, V.& Yuan, J. Proteases to die for. Genes Dev.12, (1998) 1551-1570.
    19. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates and apoptotic protease cascade. Cell 91, (1997)479-489.
    20. Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol.149, (2000)613-622.
    21. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-b. Nature 403, (2000)98-103.
    22. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice.Nature 384, (1996)368-372.
    23. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, (1998)325-337.
    24. Barbacid, M. Structural and functional properties of the TRK family of neurotrophin receptors.Ann. NY Acad. Sci.766, (1995)442-458.
    25. Fruman, D. A., Meyers, R. E.& Cantley, L. C. Phosphoinositide kinases. Annu. Rev. Biochem.67, (1998)481-507.
    26. Yao, R.& Cooper, G. M. Regulation of the Ras signaling pathway by GTPase-activating protein in PC 12 cells. Oncogene 11, (1995)1607-1614.
    27. Philpott, K. L. et al. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J. Cell Biol.139, (1997)809-815. 28. Datta, S. R. et al. Cellular survival:a play in three Akts. Genes Dev.13, (1999)2905-2927.
    29. Yang, E. et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, (1995)285-291.
    30. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, (1997) 231-241.
    31. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, (1999)857-868.
    32. Du, K.& Montminy。et al. M. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem.273, (1998)32377-32379.
    33. Riccio, A. et al.Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, (1999)2358-2361.
    34. Kane, L. P. et al. Induction of NF-kB by the Akt/PKB kinase. Curr.Biol.9, (1999)601-604.
    35. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 286, (1999)1358-1362.
    36. Koike, T. et al. Role of Ca2+channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation:evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc. Natl Acad. Sci. USA 86, (1989)6421-6425.
    37. Mao, Z., Bonni et al.Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, (1999)785-790.
    38. Vaillant, A. R. et al. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol.146, (1999)955-966.
    39. Xia, Z. et al.Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, (1995)1326-1331.
    40. Estus, S. et al. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J. Cell Biol.127, (1994) 1717-1727.
    41. Ham, J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14, (1995) 927-939.
    42. Imaizumi, K. et al. The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J. Biol. Chem.274, (1999)7975-7981.
    43. Putcha, G. V. et al. BAX translocation is a critical event in neuronalapoptosis: regulation by neuroprotectants, BCL-2, and caspases. J. Neurosci.19, (1999) 7476-7485.
    44. Deshmukh, M. et al. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21, (1998)695-705.
    45. Dechant, G. et al. Signalling through the neurotrophin receptor p75NTR. Curr. Opin.Neurobiol.7, (1997)413-418.
    46. Frade, J. M. et al. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383, (1996)166-168.
    47. Casaccia-Bonnefil, et al.Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, (1996)716-719.
    48. Bamji, S. X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol.140, (1998)911-923.
    49. Davey, F. et al. TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons. Curr. Biol.8, (1998)915-918.
    50. Li, Y., Chopp, M. et al. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26,1252-1257; discussion (1995)1257-1258.
    51. Charriaut-Marlangue, C. et al. Apoptosis and necrosis after reversible focal ischemia:an in situ DNA fragmentation analysis. J. Cereb. Blood Flow Metab.16, (1996)186-194.
    52. Namura, S. et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci.18, (1998)3659-3668.
    53. Martin, L. J. et al. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation:a perspective on the contributions of apoptosis and necrosis. Brain Res. Bull.46, (1998)281-309.
    54. Su, J. H., et al.Immunohistochemcial evidence for apoptosis in Alzheimer's disease. Neuroreport 5, (1994)2529-2533.
    55. Troncoso, J. C et al.In situ labeling of dying cortical neurons in normal aging and in Alzheimer's disease:correlations with senile plaques and disease progression. J. Neuropathol. Exp. Med.55, (1996)1134-1142.
    56. Selkoe, D. J. et al. Alzheimer's disease:genotypes, phenotypes and treatments. Science 275, (1997)630-631.
    57. Yankner, B. A. et al.Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16, (1996)921-932.
    58. Geula, G. et al. Aging renders the brain vulnerable to amyloid b-protein neurotoxicity. Nature Med.4, (1998)827-831.
    59. Behl, C. et al.Hydrogen peroxide mediates amyloid b protein toxicity. Cell 77, (1994)817-827.
    60. Mattson, M. P. et al.Calcium-destablizing and neurodegenerative effect of aggregate beta-amyloid peptide are attenuated by basic FGF. Brain Res.621, (1993)35-19.
    61. Loo, D. T. et al. Apoptosis is induced by b-amyloid in cultured central nervous system neurons. Proc.Natl Acad. Sci. USA 90, (1993)7951-7955.
    62. Yan, S. D. et al. RAGE and amyloid-b peptide neurotoxicity in Alzheimer's disease. Nature 382, (1996)685-691.
    63. Yaar, M. et al. Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. Apossible mechanism for Alzheimer's disease. J. Clin. Invest.100, (1997)2333-2340.
    64. Lorenzo, A. et al. Amyloid-b interacts with the amyloid precursor protein:a potential toxic mechansim in Alzheimer's disease. Nature Neurosci.3, (2000)460-464.
    65. Estus, S. et al. Aggegated amyloid-beta protein induces cortical neuronal apoptosis and concomitant'apoptotic'pattern of gene induction. J. Neurosci.17, (1997)7736-7745.
    66. Troy, C. M. et al. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J. Neurosci.20, (2000)1386-1392.
    67. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, (1995) 754-760.
    68. Levy-Lahad, E. et al. Candidate gene for chromosome 1 familial Alzheimer's disease locus. Science 269, (1995)973-977.
    69. Price, D. L. et al. Alzheimer's disease:genetic studies and transgenic models. Annu. Rev. Genet.32, (1998)461-493.
    70. Scheuner, D. et al. Secreted amyloid b-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med.2, (1996)864-870.
    71. Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and g-secretase activity. Nature 398, (1999)513-517.
    72. Li, Y. M. et al. Photoactivated g-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, (2000)689-694.
    73. Mattson, M. P. et al.Presenilins, the endoplasmic reticulum,and neuronal apoptosis in Alzheimer's disease. J. Neurochem.70, (1998)1-14.
    74. Giulian, D. et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J. Neurosci.16, (1996)6021-6037.
    75. Tan, J. et al. Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 286, (1999)2352-2355.
    76. Brown, D. R. et al.Arole of microglia and host prion protein in neurotoxicity of prion protein fragment. Nature 380, (1996)345-347.
    77. Gonzalez-Scarano, F. B. et al.Microglia as mediators of inflammatory and degenerative diseases. Annu.Rev. Neurosci.22, (1999)219-240.
    78. Ohagen, A. et al. Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates:evidence for a role of the envelope. J. Virol.73, (1999)897-906.
    79. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, (1997)549-558.
    80. Lunkes, A. M. et al.Polyglutamines, nuclear inclusions and neurodegeneration. Nature Med.3, (1997)1201-1202.
    81. DiFiglia, M. et al. Aggregation of huntington in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, (1997)1990-1993.
    82. Orr, H. T. et al. Reversing neurodegeneration:a promise unfolds. Cell (2000)101,.
    83. Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, (1997)537-548.
    84. Saudou, F., et al. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, (1998)55-66.
    85. Klement, I. A. et al. Ataxin-1 nuclear localization and aggregation:role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, (1998)41-53.
    86. Sanchez, L. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats.Neuron 22, (1999)623-633.
    87. Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, (1999)204-205,207.
    88. Vonsattel, J. P. et al. Neuropathological classification of Huntington's diesease. J. Neuropathol. Exp.Neurol.44, (1985)559-577.
    89. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, (1996)493-506.
    90. Yamamoto, A., et al.Reversal of neuropathology and motor dysfunction in aconditional model of Huntington's disease. Cell 101, (2000) 57-66.
    91. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familialamyotrophic lateral sclerosis. Nature 362, (1993)59-62.
    92. Cleveland, D. W. et al.From Charcot to SOD1:mechanisms of selective motor neuron death in ALS.Neuron 24, (1999)515-520.
    93. Rabizadeh, S. et al. Mutations associated with amyotrophic lateral sclerosis covert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc.Natl Acad. Sci. USA 92, (1995)3024-3028.
    94. Pasinelli, P. et al. Caspase-1 is activated in neuronl cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. Proc. Natl Acad. Sci. USA 95, (1998)15763-15768.
    95. Kostic, V., et al.Bcl-2:prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, (1997)559-562.
    96. Li, M., et al.Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, (2000)335-339.
    97. Friedlander, R. M. et al.Inhibition of ICE slows ALS in mice. Nature 388, (1997)31.
    98. Liu, X. H. et al. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J. Cereb. Blood Flow Metab.19, (1999)1099-1108.
    99. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, (1998)339-352.
    100. Lee, V. M. Y. et al.Neurodegenerative tauopathies:human disease and transgenic mouse models. Neuron 24, (1999)507-510.
    101. Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, (1999)615-622 (.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700