用户名: 密码: 验证码:
罗格列酮对2型糖尿病内皮依赖性血管舒张功能的影响及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章 糖耐量异常和2型糖尿病病人内皮依赖性血管舒张功能的变化及罗格列酮对其影响
     目的:观察糖耐量异常(IGT)和2型糖尿病(T2DM)患者肱动脉血流介导的内皮依赖性舒张功能(FMD)的变化及其影响因素,并观察罗格列酮治疗对其的影响。
     方法:糖耐量异常(IGT)及T2DM患者共124例,分成IGT组(36例)、糖尿病无血管病变组(DM1组,57例)、糖尿病有血管病变组(DM2组,31例),另选年龄性别匹配的正常人为正常对照组(NC组,25例),均检测身高、体重、腰围、臀围、血压、空腹血糖(FPG)、血浆胰岛素(FINS)、糖化血红蛋白(HbAlc)、甘油三脂(TG)、胆固醇(TC)、低密度脂蛋白(LDL-C)、高密度脂蛋白(HDL-C)、血清一氧化氮(NO)、肿瘤坏死因子(TNF-α)和高敏C反应蛋白(hs-CRP),同时计算体重指数(BMI)、腰臀比(WHR)和胰岛素抵抗指数(HOMA-IR),并用高分辨超声技术检测FMD和硝酸甘油介导的非内皮依赖性舒张功能(EID)。然后把IGT和糖尿病无血管病变组病人分成三个治疗组:二甲双胍组(二甲双胍0.75g/d)、联合治疗组(二甲双胍0.75g/d+罗格列酮4mg/d)和罗格列酮组(罗格列酮4mg/d),连续治疗12周后复查上述指标。
     结果:(1)与正常对照组比较,IGT组和T2DM组BMI、WHR、FPG、
Chapter one
    Changes of endothelium-dependent vasodilation and the effects of rosiglitazone on it in patients with IGT and T2DM
    Objective: To observe the changes of endothelium-dependent flow-mediated dilation (FMD) and to investigate the effects of rosiglitazone(RSG) on it in patients with impaired glucose tolerance (IGT)and type 2 diabetes(T2DM).
    Methods: One hundred and twenty four patients with IGT and type 2 diabetes were divided into IGT group(36 cases),DMl group(type 2 diabetes without vascular complications,57 cases)and DM2 group (type 2 diabetes with vascular complications,31 cases) ,and 25 normal subjects as normal controls (NC group). The height, weight, blood pressure, fasting plasma glucose(FPG),fasting serum insulin(FINS),glycosylated hemoglobin(FIBA1c),triglyceride (TG), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C) , high density lipoprotein-cholesterol ( HDL-C ) ,serum nitric oxide(NO), tumor necrosis factor-α(TNF-α) and high sensitive C-reactive protein (hs-CRP) were measured in all subjects.The body mass index(BMI),waist circumam-bience/hip circumambience ratio(WHR)and homeostasis model assess-
引文
[1] Tomiyama H, Kimura Y, Okazaki R, et al. Close Relationship of Abnormal Glucose Tolerance With Endothelial Dysfunction in Hypertension. Hypertension, 2000, 36(2):245-249.
    [2] Balletshofer BM, Kilian R, Enderle MD, et al. Endothelial Dysfunction Is Detectable in Young Normotensive First-Degree Relatives of Subjects With Type 2 Diabetes in Association With Insulin Resistance. Circulation, 2000, 101(15): 1780-1784.
    [3] Natali A, Baldeweg S, Toschi E, et al. Vascular Effects of Improving Metabolic Control With Metformin or Rosiglitazone in Type 2 Diabetes, Diabetes Care, 2004, 27:1349-1357.
    [4] Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet, 1992, 340:1111-1115.
    [5] De Artinano AA, Gonzalez UL. Endothelial dysfunction and hypertensive vasoconstriction. Pharmacol Res, 1999, 40:113-124.
    [6] Xiang Guang-da and Wang Yun-lin. Regular Aerobic Exercise Training Improves Endothelium-Dependent Arterial Dilation in Patients With Impaired Fasting Glucose, Diabetes Care 2004, 27: 801-802.
    [7] Prior JO, Quinones MJ, Hemandez-Pampaloni M, Coronary Circulatory Dysfunction in Insulin Resistance, Impaired Glucose Tolerance and Type 2 Diabetes. Circulation, 2005, 111:2291-2298.
    [8] Anderson AD, Uehata A, Gerhard MD, et al. Close relationship of endothelial functionin the human coronary and peripheral. circulations. J Ama Coil Cardiol, 1995, 26:1235-1241.
    [9] 周启昌,赵水平,李江,等.高频超声检测血管内皮依赖性舒张功能的探讨,中华超声影像学杂志,1999(8),5:277-279.
    [10] Corretti MC, Anderson TJ, Benjamin EJ,et al.Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vosodilation of the brachial artery: a report of the International Brachial Artery Be-activity Task Force.J Am Coll Cardiol,2002,39(2):257-265.
    
    [11] De Vegt F, Dekker JM, Stehouwer CD, et al.Similar 9-year mortality risks and reproducibility for the World Health Organi-zation and American Diabetes Association glucose tolerance categories:the Hoorn Study.Diabetes Care,2000,23:40-44.
    
    [12] Plutzky J, Viberti G, Haffner S .Atherosclerosis in type 2 diabetes mellitus and insulin resistance mechanistic links and therapeutic targets J Diabetes Comp- lications,2002,16:401-415.
    
    [13] Ritchie SA, Ewart MA, Perry CG,et al., The role of insulin and the adipocytokines in regulation of vascular endothelial function, Clin Sience, 2004, 107:519-532
    
    [14] Steinberg HO, Chaker H, Learning R,et al.Obesity/Insulin Resistance Is Associated with Endothelial Dysfunction . Implications for the Syndrome of Insulin Resistance.J Clin Invest,1996,97:2601-2610.
    [15] Arcaro G,Cretti A, Balzano S,et al.Insulin Causes Endothelial Dysfunction in Humans: Sites and Mechanisms.Circulation, 2002, 105: 576-582.
    [16] Criqui MH,Golomb BA. Epidemiologic aspects of lipid abnormalities. Am J Med, 1998, 105(lA):48S-57S.
    
    [17] Kinosian B,Glick H,Preiss L,et al. Cholesterol and coronary heart dsease: predcting risks in men by changes in levels and ratios. J Investig Med, 1995,43:443-450.
    
    [18] Elhadd TA,Kennedy G,Robb R, et al. Elevated soluble cell adhesion molecules E-selectin and intercellular cell adhesion molecule-1 in type-2 diabetic patients with and without asymptomatic peripheral arterial disease.Int Angiol,2004,23: 128-133.
    
    [19] Barzilay JI,Abraham L,Heckbert SR,et al.The relation of markers of inflammation to the development of glucose disorder in the elderly:the Cardiovascular Health Study.Diabetes,2001,50:2384-2389.
    [20] Festa A, D'Agostino RJ, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation,2000,102:42-47.
    [21] Pasceri V, Willerson JT, Yeh ETH. Direct proinflammatory effect of C- reactive protein on human endothelial cells. Circulation,2000, 102:2165-2168.
    [22] Law RE, Goetze S, Xi XP, et al.Expression and function of PPARγ in rat and human vascular smooth muscle cells.Circulation ,2000,101:1311-1318.
    [23] Inoue M, Itch H, Tanaka T, et al.Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome prolifera-toractivated receptor y.Arterioscler Thromb Vasc Biol,2001, 21:560-566.
    [24] Scheen AJ .Drug treatment of non-nsulin-dependent diabetes mellitus in the 1990s' achivements and future developments.Drugs,1997,54:355-58.
    [25] Nomura M,Mnoshita S.(3-substituted benzyl) thiazolidine-2, 4-diones as structurally new anti hyperglycemic agents.Bioorg Ad Chem Lett, 1999,9: 533-538.
    [26] Hauner H.The mode of action of thiazolidinediones.Diabetes Metab Res Rev, 2002, 18(supppl 2):S 10-S15
    [27] Mather KJ, Verma S, Anderson TJ.Improved endothelial function with metformin in type 2 diabetes mellitus.J Am Coll Cardiol, 2001,37(5): 1344-1350.
    [28] Calnek D, Mazzella L, Roser S, et al.Peroxisome Proliferator-Activated ReceptorγLigands Increase Release of Nitric Oxide From Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology.2003,23:52-57.
    [1] Luo Z, Fujio Y, Kureishi Y, et al. Acute modulation of endothelial Akt/PKB activity alters nitric oxide-dependent vasomotor activity in vivo. J Clin Invest, 2000, 106(4):493-499.
    [2] Kobayashi T, Taguchi K, Yasuhiro T, etal. Impairment of PI3-K/Akt pathway underlies attenuated endothelial function in aorta of type 2 diabetic mouse model. Hypertension, 2004, 44(6):956-962.
    [3] Zecchin HG, Bezerra RMN, Carvalheira JBC, et al. Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance-the obese middle-aged and spontaneously hypertensive rats. Diabetologia, 2003, 46: 479-491.
    [4] Ritchie SA, Ewart MA, Perry CG, et al. The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clin Sience, 2004, 107:519-532
    [5] Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptorγligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol, 2003, 23: 52-57.
    [6] Cho DH, Choi Y J, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone:evidence for involvement of peroxisome proliferator-activated receptor (PPAR) gamma-dependent and PPARgamma-independent signaling pathways. J Biol Chem. 2004, 23, 279(4):2499-506.
    [7] 郭啸华,刘志红,李恒,等。实验性2型糖尿病大鼠模型的建立,肾脏病与透析肾移植杂志,2000,9(4):351—355
    [8] 张芳林,李果,刘优萍,等.2型糖尿病大鼠模型的建立及其糖代谢特征分析,中国实验动物学报,2002,10(1):16—20.
    [9] Storlien LH, James DE, Burleighy KM, etal. Fat feeding causes widespreadin vivo insulin resistance, decrease denergy expenditure, and obesity in rats. Am J Physiol, 1988, 251:E576-E583.
    [10] Oakes ND, Kennedy CJ, Jeninks AB, etal. A new anti diabetic agent, BRL49653 reduces lipid availability and improves insulin action and glucose regulation in the rats. Diabetes, 1994, 43:1203-1210.
    [11] Taylor PD, Graves JE, Poston L. Selective impairment of acetylcholine-mediated endothelium-dependent relaxation in isolated resistance arteries of the streptozocin-induced diabetic rats. Clin Sci, 1995, 88:519-524
    [12] Ding H, Hashem M, Wiehler WB, et al. Endothelial dysfunction in the streptozotocininduced diabetic apoE-deficient mouse. Br J Pharmacol. 2005, 146(8):1110-1118.
    [13] Heygate KM, Lawrence IG, Bennett MA, et al. Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats. Br J Pharmacol, 1995, 116:3251-3259
    [14] 都健,赵晓娟,刘国良.胰岛素抵抗大鼠内皮依赖性血管舒张功能研究,中华内分泌代谢杂志,2003,19(4):313—316
    [15] 刘颖,赵瑛,刘志民,等。罗格列酮对胰岛素抵抗大鼠内皮细胞作用的形态学观察,中华内分泌代谢杂志,2004,20(3):200—202
    [16] Pieper GM, Peltier BA. Amelioration by L-arginien of a dysfunctional argininal nitric oxide pathway in diabetic endothelium. J Cardio Phar macol. 1995. 25: 397-403
    [17] Fulton D, Gratton J P, McCabe T, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999. 399:597-601
    [18] Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 1999, 399(6736): 601-605.
    [19] 余叶蓉,朱锦舒,吴永刚,等。血游离脂肪酸水平对SD大鼠主动脉舒张功能的影响,中华内分泌代谢杂志。2002,18(1):13-15
    [20] Jiang ZY, Lin YW, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker rats. J Clin Invest, 1999, 104:447-457.
    [21] Ishizuka T, Miura A, Kajita K, et al. Alteration in insulin-induced postreceptor signaling in adipocytes of the Otsuka Long-Evans Tokushima fatty rat strain. J Endocinol, 1998, 156:1-13
    [22] Kuboki K,Jiang ZY, Takahara N,et al.Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo:a specific vascular action of insulin.Circulation,2000,101:676-681.
    [23] Law RE, Goetze S, Xi XP, et al.Expression and function of PPARγ in rat and human vascular smooth muscle cells.Circulation,2000,101: 1311-1318.
    [24] Ricote M,Li A, Willson TM,et al.The peroxisome prolifera for activated receptor is a negative regulator of macrophage activation.Nature, 1998,391:79-82.
    [25] Inoue M, Itch H, Tanaka T, et al.Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator activated receptor.Arterioscler Thromb Vase Biol,2001, 21:560-566.
    [26] Reusch JE,Regensteiner JG,Watson PA.Novel actions of thiazolidinediones on vascular function and exercise capacity.Am J Med.2003,8,115(Suppl8A): 69S-74S.
    [27] Ryan MJ, Didion SP, Mathur S,et al.PPAR{gamma} Agonist Rosiglitazone Improves Vascular Function and Lowers Blood Pressure in Hypertensive Transgenic Mice. Hypertension.2004 ,43(3):661-666.
    [28] Tao L,Liu HR, Gao E,et al.Antioxidative,antinitrative,and vasculoprotective effects of a peroxisome proliferator-activated receptor-gamma agonist in hypercholesterolemia.Circulation.2003, 108(22):2805-11.
    [29] Bagi Z, Koller A, Kaley G,et al. PPARγ activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. Am J Physiol Heart Circ Physiol, 2004,286:H742-748.
    [30] Hetzel J, Balletshofer B, Rittig K,et al.Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol.2005, 25(9): 1804-1809.
    [1] Rosenfeld CR, Chen C, Roy T, et al. Estrogen selectively up regulates eNOS and nNOS in reproductive arteries by transcriptional mechanisms. J Soc Gynecol Invest, 2003, 10: 205-215.
    [2] Davis ME, Cai H, Drummond GR, et al. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res, 2001, 89: 1073-1080.
    [3] Harris MB, Ju H, Venema VJ, Liang H, et al. Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. JBiolChem, 2001, 276: 16587-16591.
    [4] Drew BG, Fidge NH, Gallon-Beaumier G et al. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci U S A, 2004,101: 6999-7004.
    [5] Boo YC, Jo H. Flow-dependent regulation of eNOS: role of protein kinases. Am J Physiol Cell Physiol. 2003, 285: C499-C508.
    [6] Bauer PM, Fulton D, Boo YC, et al. Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in eNOS. J Biol Chem, 2003, 278: 14841-14849.
    [7] Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 1999 , 399(6736) : 601-605.
    [8] Chen ZP, Mitchelhill KI Michell BJ, et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett, 1999, 443,285-289.
    [9] Kobayashi T, Taguchi K Yasuhiro T, Matsumoto T, et al. Impairment of PI3-K/Akt pathway underlies attenuated endothelial function in aorta of type 2 diabetic mouse model. Hypertension, 2004, 44(6): 956-962.
    [10] Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by post translational modification at the Akt site. J Clin Invest, 2001, 108(9): 1341-1348.
    
    [11]Polikandriotis JA , Mazzella LJ , Rupnow HL , et al . Peroxisome proliferator-activated receptor gamma ligands stimulate endothelial nitric oxide production through distinct peroxisome proliferator-activated receptor gamma-dependent mechanisms. Arterioscler Thromb Vasc Biol, 2005, 25(9): 1810-1806.
    
    [12] Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) gamma-dependent and PPARgamma-independent signaling pathways. J Biol Chem, 2004, 23, 279(4): 2499-2506.
    
    [13] Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature, 1998, 393: 790-793.
    
    [14] Zhang J, Fu M, Zhao L, et al. 15d-PGJ2 inhibits PDGF-A and B chain expression in human vascular endothelial cells independent of PPARgamma. Biochem Biophys Res Commun, 2002, 298: 128-132.
    
    [15]Dikalov S, Landmesser U, Harrison DG. Geldanamycin leads to superoxide formation by enzymatic and non-enzymatic redox cycling: implications for studies of hsp90 and eNOS. J Biol Chem, 2002, 277: 25480-25485.
    [16] Cai H, Zongming L, Davis ME, et al. Akt-Dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase. Mol Pharmacol, 2003, 63: 325-331.
    
    [17] uigserver P, Adelmant G, Wu Z, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science. 1999, 286: 1368-1371.
    
    [18] Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptor ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol, 2003, 23: 52-57.
    [19] Polikandriotis JA, Mazzella LJ, Rupnow HL, etal. Peroxisome Proliferator-Activated Receptor γLigands Stimulate Endothelial Nitric Oxide Production Through Distinct Peroxisome Proliferator-Activated Receptorγ-Dependent Mechanisms. Arteriosclerosis Thrombosis and Vascular Biology, 2005, 25: 1810—1816.
    [20] Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase. Metabolism, 2000, 49: 147-153.
    [21] Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 1999, 399: 597-601.
    [22] Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation, 2000, 101: 1539-1545.
    [23] DeFronzo RA. Pathogenesis of type 2 diabetes:metabolic and molecular implications for identifying diabetes genes. Diabetes Rev, 1997, 5: 177-269.
    [24] Zeng G., Quon M J. Insulin-stimulated Production of Nitric Oxide Is Inhibited by Wortmannin, Direct Measurement in Vascular Endothelial Cells. J Clin Invest, 1996, 98: 894-898.
    [25] 胡靖华,贾国良,张荣庆,等.高浓度胰岛素对无血清培养的人脐静脉内皮细胞一氧化氮产生的影响,第四军医大学学报,2001,22(8):687-690.
    [26] 张慧,陈向芳,叶福林,等.胰岛素对牛主动脉内皮细胞一氧化氮和(NOS)活性及诱生型NOSmRNA表达的影响.中华内分泌代谢杂志,2003,19(6):483-485.
    [27] Kadowali T. Insights into insulin resistance and type 2 diabetes from knockout mouse. J Clin Invest, 2000, 106: 459-465.
    [28] Kim F, Gallis B, Corson MA. TNF-α inhibits flow and insulin ignaling leading to NO production in aortic endothelial cells Am J Physiol, 2001, 280, C1057-C1065.
    [29] Montagnani M, Chen H, Barr V A, Insulin-stimulated Activation of eNOS Is Independent of Ca~(2+) but Requires Phosphorylation by Akt at Ser~(1179). J Biol Chem, 2001, 276(32): 30392-30398.
    [30] Akbari CM, Saouaf R, Bamhill DF, et al. Endothelium-dependent vasodilatation is impaired in both microcirculation and macrocirculation during acute hyperglycemia. J Vasc Surg, 1998, 28: 687-694.
    [31] Williams SB, Goldfine AB, Timimi FK, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation, 1998, 97: 1695-1701.
    [32] Makimattila S, Virkamaki A, Groop Pk, et al. Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation, 1996, 94: 1276-1282.
    [33] Ding Y, Vaziri ND, Coulson R, et al. Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression. Am J Physiol Endocrinol Metab, 2000, 279: E11-E17.
    [34] 柴伟栋,陈家伟,汪承亚,等.胰岛素介导的内皮依赖性血管舒张功能与高血糖关系的试验研究.中华内分泌代谢杂志,2002,18(1):59-62.
    [35] Ikeda U, Shimpo M, Murakami Y, et al. Peroxisome Proliferator- Activated Receptor-γ Ligands Inhibit Nitric Oxide Synthesis in Vascular Smooth Muscle Cells. Hypertension, 2000, 35: 1232-1236.
    [36] Salt IP, Morrow VA, Brandie FM, et al. High glucose inhibits insulin- stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells. J Biol Chem, 2003, 23, 278(21): 18791-18797.
    [37] Mohan S, Hamuro M, Koyoma K, et al. High glucose induced NF-kappaB DNA-binding activity in HAEC is maintained under low shear stress but inhibited under high shear stress: role of nitric oxide. Atherosclerosis. 2003, 171(2):225-34.
    [38] Hamuro M, Polan J, Natarajan M, et al. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis. 2002, 162(2):277-87.
    [1] Chaudhuri A:Vascular reactivity in diabetes mellitus.Curr Diab Rep.2002,2(4): 305-10
    [2] Ledru F , Ducimetiere P , Battaglia S ,et al.New diagnostic criteria for diabetes and coronary artery disease:insights from an angiographic study.J Am Coll Cardiol,2001 ,37,1543-1550.
    [3] McVeigh GE,Cohn JN, Endothelial dysfunction and the metabolic syndrome. Curr Diab Rep.2003, 3(1):87-92.
    [4] Cohen RA. Role of nitric oxide in diabetic complications. Am J Ther. 2005 ,12(6):499-502.
    [5] Pryor WA, Squadrito GL.The chemistry of peroxynitrite:a product from the reaction of nitric oxide with superoxide.Am J Physiol,1995,268:L699
    [6] Celermajer,DS. Endothelial dysfunction: does it matter? is it reversible? J Am Coll Cardiol,1997,30:325-333
    [7] Wever RMF, L scher TF, Cosentino F, et al. Atherosclerosis and the two faces of endothelial nitric oxide synthase.Circulation.1998, 97:108-112.
    [8] Anderson TJ. Assessment and treatment of endothelium dysfunction in humans.J Am Coll Cardiol ,1999 ,34:631-638.
    
    [9] Celermajer DS,Sorensen K, Cooch NM,etal.Norrinvasive detection of endothelial dysfunction in child and adults at risk of atherosclerosis.Lancet,1992, 340:1111-1115.
    [10] Schroeder S,Enderle MD, Ossen R,et al.Noninvasive determination of endothelium-mediated vasodilation as a screen test for coronary heart disease.Pilot study to assess the predictive value in comparison with angina pectoris,exercise electrocardiograpy,and myocardial per-fusion imaging.Am Heart J,1999,138:731-739.
    
    [11] Zimmermann PA,Knot HJ,Stevenson AS, et al. Increased myogenic tone and diminished responsiveness to ATP-sensitive K+ channel openers in cerebral arteries from diabetic rats. Circulation Research. 1997, 81:996-1004.
    [12] Pieper GM, Siebeneich W, Moore G, et al. Reversal by L-arginine of a dysfunctional arginine/nitric oxide pathway in the endothelium of the genetic diahetic BB rat Diabetologia, 1997, 40(8):910-915
    [13] 柴伟栋,陈家伟,汪承亚,等.胰岛素介导的内皮依赖性血管舒张功能与高血糖关系的实验研究,中华内分泌代谢杂志,2002,18(1):59-62
    [14] Steinberg HO, Chaker H, Learning R, et al. Obesity/Insulin Resistance Is Associated with Endothelial Dysfunction. Implications for the Syndrome of Insulin Resistance. J Clin Invest 1996, 97:2601-2610.
    [15] Arcaro A, Cretti S, Balzano A, et al. Insulin Causes Endothelial Dysfunction in Humans: Sites and Mechanisms. Circulation, 2002, 105(5):576-582.
    [16] Hsueh WA, Quinones MJ. Role of endothelial dysfunction in insulin resistance. Am J Cardiol. 2003;92:10J-17J.
    [17] Wu G;Meininger CJ. Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol. 1995, 269(4Pt2): 1312-1318
    [18] Cho HJ. Martin E, Xie QW. et al. Inducible nitric oxide synthase: identification of amino acid residues essential for dimerization and binding of tetrahydrobiopterin. Proc Natl Acad Sci USA. 1995, 92: 11514-11518.
    [19] Alp N J, Mussa S, Khoo J, et al. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase J oveiexpiession. J Clin Invest, 2003, 112(5):725-735
    [20] Davada RK, Stepniakowski KT, Lu G, et al. Oleic aeic inhibits endothelial nitric oxide synthase by a protion kinase C-independent menchanism. Hypertension, 1995, 26:764-770.
    [21] 余叶蓉,朱锦舒,吴永刚,等。血游离脂肪酸水平对SD大鼠主动脉舒张功能的影响[J],中华内分泌代谢杂志。2002,18(1):13-15
    [22] Diederich D, Skopec J, Diederich A, et al. Endothelial dysfunction in mesenteric resistance arteries of diabetic rats:role of free radicals. Am. J Phvsiol 1994, 266(3 Pt 2):1153-1161
    [23] Carmeron NE, Cotter MA. Impaired contraction and relaxation in aorta from Streptczotocin-diabetic rats:role of polyol pathway. Diabetologia,1992, 35(11): 1011-1019
    [24] Bucala R, Vlassara H . Advanced glycosylation end products in diabetic renal and vascular disease . Am J Kidney Dis,1995, 26(6):875 — 888
    [25] Hogen M, Cerami A,Bucala R. Advanced glycosylation endproducts block the antiproliferation effect of nitric oxide J Clin Invest, 1992, 90(3): 1110-1115
    [26] Yki-Jarvinen H. Insulin resistance and endothelial dysfunction,Best pract Res Clin Endocrinol Metab,2003,17:411-430
    [27] Bauer PM, Fulton D, Boo YC, et al. Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in eNOS. J Biol Chem, 2003, 278: 14841-14849
    [28] Ishizuka T,Miura A,Kajita K,et al.Alteration in insulin-induced postreceptor signaling in adipocytes of the Otsuka Long-Evans Tokushima fatty rat strain.J Endocinol,1998,156:1-13
    [29] Kuboki K, Jiang ZY, Takahara N,et al.Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo:a specific vascular action of insulin. Circulation,2000,101:676-681.
    [30] Zecchin HG, Bezerra RMN, Carvalheira JBC, et al.Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance-the obese middle- aged and spontaneously hypertensive rats. Diabetologia, 2003 ,46:479-491.
    [31] Melamed I, Franklin RA, Celfand EW.Microfilament assembly is required for anti-IgM dependent MAPK and p90rsk activation in human B lymphocytes. Biochem Biophys Res Commun, 1995, 209(3):1102-1110.
    [32] Force T, Bonventre JV. Growth Factors and Mitogen-Activated Protein Kinases, Hypertension, 1998,31:152-161.
    [33] Sugden PH, Clerk A."Stress-Responsive"Mitogen-Activated Protein Kinases (c-Jun N-Terminal Kinases and p38 Mitogen-Activated Protein Kinases) in the Myocardium.Circ Res, 1998,83:345-352.
    [34] Saklatvala J, Rawlinson L, Waller RJ, Role for p38 Mitogen-activated Protein Kinase in Platelet Aggregation Caused by Collagen or a Yhromboxane Analogue. J Biol Chem, 1996, 271:6586-6589.
    [35] Ritchie SA, Ewart MA, Perry CG, et al. The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clinical cience, 2004, 107:519-532
    [36] Hsueh WA, Lyon CJ, Quinones MJ. Insulin resistance and the endothelium. Am J Med. 2004, 117:109-117.
    [37] Dashwood MR, Tsui JCS. Endothelin-1 and atherosclerosis:potential complications associated with endothelin-receptor blockade. Atherosclerosis, 2002, 160:297-304.
    [38] Ross R. Mechanisms of Disease: Atherosclerosis-An Inflammatory Disease. N Engl J Med, 1999, 340:115-126.
    [39] Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferators 2 activated receptor(PPARs):tissue distribution of PPARα,β,andγ in the adult rat. Endocrinology, 1996, 137:354-366.
    [40] Willson TM, Wahli W. Peroxisome proliferator-activated receptor agonists. Curr Opin Chem Biol, 1997, (1):235-241.
    [41] Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, et al. Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun, 1998, 244:678-682.
    [42] Watanabe Y, Sunayama S, Shimada K, et al. Troglitazone improves endothelial dysfunction in patients with insulin resistance. J Atheroscler Thromb 2000(7): 159-163.
    [43] Tao L, Liu HR, Gao E, et al. Rosiglitazone Improves Endothelial Function in Rabbits with Hypercholesterolemia by Reducing Oxidative Stress and Preserving NO/cGMP Signaling. Acad Emerg Med, 2003, 10(5):425.
    [44] 朱艳利,朱兴雷,卓晶明.罗格列酮对胰岛素抵抗伴高血压大鼠血管内皮功能的影响,山东大学学报(医学版),2004,42(6):687-690.
    [45] Hwang J, Kleinhenz DJ, Lassegue B, et al. Peroxisome proliferator -activated receptor-γ ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol,2005,288(4): C899-C905.
    
    [46] Sugawara A,Takeuchi K,Uruno A,et al.Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferators activated receptor gamma in vascular smooth muscle cells.Endocrinology,2001,142: 3125-3134.
    
    [47] Ghanim H, Garg R,Aljada A,et al.Supression of nuclear factor kappaB and stimulation of inhibitor kappaB by troglitazone:evidence for an anti inflammatory effect and a potential antiatherosclerotic effect in the obese.J Clin Endocrinol Metab,2001,86:1306-1312.
    
    [48] Li Ac, Brown KK, Silvestre MJ, et al.Peroxisome proliferators activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor deficient mice.J Clin Invest, 2000, 106:523-531.
    
    [49] Sugawara A,Uruno A,Kudo M,et al.Transcription suppression of thromboxane receptor gene by peroxisome proliferator-activated receptor-gamma via an interaction with Sp1 in vascular smooth muscle cells.J Biol Chem 2002, 22,277(12):9676-83.
    
    [50] Plutzky J, Viberti G, Haffner S .Atherosclerosis in type 2 diabetes mellitus and insulin resistance:mechanistic links and therapeutic targets.J Diabetes Complications,2002 ,16:401-415.
    
    [51] Kato K, Satoh H, Endo Y,et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: A possible role for PPAR gamma in endothelial function. Biochem Biophys Res Commun,1999,258:431-435.
    
    [52] Ghanim H, Garg R,Aljada A, et al .Supression of nuclear factorkappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti- inflammatory effect and a potential antiatherosclerotic effect in the obese J Clin Endocrinol Metab ,2001,86:1306-1312.
    
    [53] May J.Troglitazone,but not rosiglitazone,inhibits Na+/H+ exchange activity and proliferation of macrovascular endothelial cells.J Diabetes Compl,2001,15: 120-7.
    [54] Abe M, Hasegawa K, Wada H, et al .GATA-6 Is involved in PPAR-mediated activation of differentiated phenotype in human vascular smooth muscle cells .Arterioscler Thromb Vasc Biol, 2003, 23:404-410.
    [55]Cho DH, Choi YJ, Jo SA, et al.Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) gamma-dependent and PPARgamma-independent signaling pathways. J Biol Chem. 2004, 23; 279(4):2499-506.
    
    [56] Goetze S, Bungenstock A, Czupalla C, et al .Leptin induces endothelial cell migration through Akt,which is inhibited by PPARgamma- ligands. Hypertension,2002,40(5):748-754.
    [57] Gillis T,Mo QZ, Liu HR,et al.Anti-apoptotic Effects of the PPARgamma Agonist Rosiglitazone on Aortic Endothelial Cells in Hypercholesterolemic Rabbits.Acad Emerg Med,2003,10(5):558-560.
    [58] Wakino S, Kintscher U,Kim S, et al.Peroxisome proliferator-activated receptor ligands inhibit Rb phosphorylation and Gl-S transition in vascular smooth muscle cells.J Biol Chem, 2000, 275:22435-22441.
    [59] Haffner SM. Insulin resistance, inflammation, and the prediabetic state.Am J Cardiol,2003,18,92(4A): 18J-26J.
    [60] Jackson S M, Parhami F, Xi X P. Peroxisome proliferator activated receptor activators target human endothelial cells to inhibit leuhcyte-endothelial cell interaction. Arterioscler Thromb Vase Biol, 1999, 19:2094-2104.
    [61] Ross R. Atherosclerosis-an inflammatory disease.N Engl Med,1999, 340: 115-26.
    [62] Vesper H, Patel L, Graham TL, et al.The peroxisome prolifer atoractivated receptor 5 promotes lipid accumulation in human macrophages J Biol Chem, 2001, 276:44258-44265.
    [63] Lapsys N M, Kriketos A D, Linr Fraser M, et al. Expression of genes involved in lipid metabolism correlate with peroxisome pmliferator- activated receptor gamma expression in human skeletal muscle J Gin Endocrirol Metab, 2000, 85:4293-4297.
    [64] Dicp QN, El Mabrouk M, Cohn JS, et al. Structure, Endothelial Function, Cell Growth, and Inflammation in Blood Vessels of Angiotensin Ⅱ-Infused Rats:Role of Peroxisome Proliferator-Activated Receptor-γ Circulation, 2002, 105: 2296-2302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700