用户名: 密码: 验证码:
桂北九万大山—元宝山地区火成岩系列和锡多金属矿床成矿系列
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Igneous Rock Series and Metallogenic Series of Tin Polymetallic Deposits in Jiuwandashan-Yuanbaoshan Region, North Guangxi
  • 作者:毛景文
  • 论文级别:博士
  • 学科专业名称:矿床学
  • 学位年度:1988
  • 导师:宋叔和 ; 陈毓川
  • 学科代码:070901
  • 学位授予单位:中国地质科学院
  • 论文提交日期:1988-06-01
摘要
桂北九万大山—元宝山锡多金属成矿区位于扬子古陆南部边缘活动带,区内火成岩种类繁多和成岩成矿条件十分特殊。诸多地质学家认为华南地区地质演化特点是从扬子古陆边缘向外逐渐增殖,若对古陆边缘地区进行较好的研究必将得到认识华南地质史及成岩成矿的钥匙。近些年来,不少学者纷至踏来,对有关岩石和矿床进行了大量的研究,并获得了一些珍贵的资料和有意义的成果。在前人工作的基础上,笔者经过近四年的野外和室内工作,通过区域地质、地层地球化学、岩石学、岩石化学、微量元素、同位素和流体包裹体等方面综合研究了区内火成岩系列和锡多金属矿床成矿系列的成因演化特点和成岩成矿规律,取得如下一些新的认识:
     1、桂北九万大山—元宝山地区是一个富成矿元素Sn、W、Cu、Pb.Zn、Cr、Co、Ni、Sb,碱质组分K和Na,挥发组分B、F和Cl及不相容元素Rb、Sr、Li、Ba,U和Th等的地球化学异常区。该异常区内的最大特征是无论地壳还是地幔都富有上述元素,这正是锡多金属矿床成矿的基础。
     2、用Sm-Nd同位素年代学方法测得四堡群成岩时代为2412Ma。由此可以认为扬子地块最古老的地层形成于早元古代而不是中晚元古代。
     3、通过区域岩石序列、岩石学、岩石组构、地球化学、微量元素等方面研究,确认原命名的层状基性-超基性侵入岩是一套镁铁质一超镁铁质火山杂岩,其中部分为科马提岩。
     4、从岩石序列、矿体产状、矿石构造和硫同位素等方面证明原称之谓正岩浆熔离Cu-Ni硫化物矿床是一种与辉石质科马提岩有关的火山岩型铜镍矿床,系我国一个新的矿床类型。
     5、黑云母花岗岩是锡多金属矿床成矿之主因。它来源于地壳,并分两个阶段于雪峰期定位。黑云母花岗岩对成矿的贡献有两个突出的方面:其一是其在重熔生成演化过程中,经高度分异作用,将原各地质体中的锡多金属元素分馏寓集,为成矿奠定了一个良好的基础。其二,花岗岩在定位期间,其本身的热能导致周围地层中的地下水形成了一系列热卤水循环系统,生成了许多的贱金属硫化物矿床。
     6.收集了我国的有关资料,从岩石学、矿物学、地球化学、微量元素、过渡族元素、不相容元素和同位素等方面建立了我国含锡花岗岩的系列判别准则。并尝试对研究区内的花岗质岩石进行判别,得到了良好的效果。
     7.长时间以来,本洞等花岗闪长岩体被认为是华南地区典型的幔源分异型花岗岩,近年又有人提出其为I型花岗岩,并与三防、元宝山、平英等S型花岗构成了大陆边缘成对花岗岩类。此次工作,通过进一步对该套岩体的岩石学、矿物学、地球化学、数量元素、稀土元素和同位素等方面研究,并考虑了区域地质演化和地质时代等因素,基本上证明其并非幔源分异型花岗岩,也不是典型I或S型花岗岩,而是一种以地壳物质为主、地幔物质为辅的混源重熔型花岗岩,该岩石的Sm-Nd同位素模式年龄恰与四堡群的Sm-Nd同位素等时线年龄一致,说明前者源于后者,花岗闪长岩之所以没有成矿,关键在于本身的分异程度太低,它们较小的体积,也不足以引起地下热卤水矿床的产生。
     8、发现了四堡期昙状,透镜状体具层纹构造的电英岩锡矿化体。此举不仅将我国锡矿成矿时代从800Ma左右推前至2412Ma左右,而且证明了该区锡矿化的多旋回性和继承性,也提出了一个与镁铁质岩浆活动有关的热卤水锡矿化的实例。
     9.本文从成矿系列角度研究了与雪峰期黑云母花岗岩有关的锡多金属矿床。该成矿系列的矿床在空间上有序分带,即以岩体为中心的顺向分带为:云英岩型锡矿床→电英岩型锡矿床→锡石石英型锡矿床→锡石硫化物型锡矿床→铜铅锌金属硫化物矿床→铅锌硫化物矿床→锑矿床,逆向分带为:锡多金属矿床→铜铅锌硫化物矿床→铅锌硫化物矿床。造成这种分带现象的内在因素是高热能且富含矿热液的黑云母花岗岩的高侵定位和岩体热中心的向下移动。该成矿系列时间递变可分为三个成矿期(锡石硅酸盐成矿期、锡石硫化物成矿期和贱金属硫化物成矿期)和六个成矿阶段。
     10、关于内陆的成矿作用,岩浆热液成矿论者将花岗岩视为成矿物质唯一来源,而层控成矿论者将花岗岩仅看作成矿的能源,本区的工作初步证实,部分矿质(Sn。W、Cu等元素)与花岗岩有关,另一部分矿质(Cu、Pb、Zn、Sb等)与围岩石有关。锡多金属矿床的成矿水以岩浆水为主、混合有大气降水,而贱金属硫化物矿床的成矿水主要为大气降水。由此可以认为这正是在同一成矿系列中内生成矿作用与外生成矿作用的辩证统一。
     11、提出了交代体系的概念.并运用了交代系列和交代建造的学术思想。以矿化蚀变期为经线,以交代系列为纬线,探讨了交代网落中各个子系列的化学变化、条件、演化方向和最终结果。
     12,从成因矿物、矿石和蚀变岩地球化学、同位素和包裹体地球化学、成岩成矿物理化学等方面探讨了与黑云母花岗岩有关的锡多金属矿床成矿系列的成矿环境和组成演绎。
     13.提出了以锡多金属地球化学异常场客观存在为基础,以构造运动为主导,以黑云母花岗岩分异演化及热功能作用为主因的成矿思路。此外,还建立了该区域成矿系列的成矿模型。
     14、与周科子一起发现了一个新矿物,属Cu与Ni的金属互化物,具主要成分为Cu、28.52%、Ni、64.81%和Fe,6.58%。
The metallogenic region of Jiuwandashan-Yuanbaoshan tin polymetallic deposits in North Guangxi is located in the marginal active belt of Yangtze oldland where there is a great deal of various igneous rocks and a very special rock-forming and metallogenic environment. Some gelolgists have pointed out that the main characteris-tics of gelolgical evolution of South China was that the crust grew from the margin of Yangtze oldland outward. So if the oldland margin is well studied, it is possible to get a key for knowing the geological evolutional history and rock-forming and metallogenic processes in South China. Many geologists have come to the region and obtained some precious and interesting data on the petrology and ore deposits through their research works.Based on the previous studies, this work is mainly aimed at the geneses and evo-lutions of the igneous rock series and the metaliogenic series by the study on regional geology, strata geochemistry, petrology, model mineralogy, petrochemistry, trace ele-ments, isotopes and fluid inclusion, and some new scientific results are obtained as fol-low:
     1. The Jiuwandashan-Yuanbaoshan region is a geochemical anomalous field en-riched in metallogenic elemcnts Sn, W, Cu, Pb, Zn, Cr, Co, Ni and Sb, alkali cornpenents K and Na, volatilcs B, F and Cl, as well as incompatible clcmcnts Rb, Sr, Li, Ba, U and Th. An apparent feature of the anomalous field is that elements metioned above are enrichcd eighcr in the crust or in the mantle, which is thought to be the basis for the metallogenesis or tin poly-mctallic deposits.
     2. A new rock-forming age 2412 Ma. for the Sibao group is got hcrc by Sm-Nd isochron method dating the mafic-ultramafic whole rocks. In this way, the oldcst stra-ta in the Yangtze Massif is the early Protcrozoic in stead of middle-late Protcrozoic in-ferred before.
     3. Tha layered basic-ultrabasic intrusions called before are confirmed as a suite of mafic-ultamafic volcanic rocks, of which its part is identified to be komatiite by studieson the rcglonal rock sequence, petrology, rock structures, geochemistry and trace ele-ments.
     4. The magmatic liquation type Cu-Ni sulfide deposits called before have been proved to be volcanic Cu-Ni deposits associated with pyroxenic komatiite, which is a new type Cu-Ni deposit in China.
     5. A series or criteria of recognizing tin-bearing graniteis set up by collecting the data on related petrology, mineralogy, geochemistry, trace elements, transitional ele-ments, incompatible elements and rare earth elements. Furthermore, with the criteria the two series of granitoids (granodiorite series and biotite granite series) in the region are well recognized.
     6. The biotite granite intrusions, emplacemented in two stages during the Xuefeng movement, is a dominant factor for the metallogenesis of tin polymetallic deposits. The biotite granite intrusions were formed through remelting of the crust and show two im-portant contributions to the minerogeneses. Firstly, during formation and evolution, the granite intrusions experienced a strong fractionation and concentrated the scattered tin polymetals into their cupolas, which lay a good fundament for the metallogenesis. Secondly, when the biotite granite intrusions emplacemented, their heating energy made the ground water to form a series of circular systems of hydrothermal brines and then many base metal sulfide deposits were formed.
     7. The Beidong and other similar granodiorite intrusions have been firmly believed as a classical differential granitoids derived from the mantle for long time. Recently some gelolgists suggest that the granodiorites belong to I type granite, and constitute a pair granitoids with Sanfang, Yuanbaoshan, Pingying S type granite at the margin of Yangtze oldoand. In this paper the suit of granodiorite is prelimnarily proved to be remelt type granite in which the major rock-forming substances are derived from the crust and a few from the mantle by study on petrology, genetic mineralogy, geochemistry, trace elements, rare earth elments and isotopes combining with the re-gional geological evolution and geological chronology. The Sm-Nd isotopic model age of the granodiorite shows a consistency with the Sm-Nd isotopic isochronous age of the Sibao group, which displays the former being born from the latter. The key reason for no mineralizations aroud the granodiorite intrusions is that they experienced very poor differentiation, and that they were too small in volume to form the hydrothermal brine deposits.
     8. The laminated tourmalite tin mineralization in strataform and lentiform bodies are discoverd in the Sibao group. This new discovery not only moves up tin metallogenic age in China from 800 Ma. to 2412 Ma. but also certificates the multicycle and inheritance of tin mineralization in the region; moreover, it provides an instance for marine exhalative tin mineralization associated with mafic magmatic activity.
     9. The tin polymetallic deposits related to the Xuefeng biotite granites are studied in this thesis according to the academic idea of metallogenic series. The deposits in the metallgenic series show two kinds of zoning from the intrusive body outward.1) the normal zonning in order of greisen type tin deposit" tourmalite type tin deposit→cassiterite quartz type tin deposit→cassiterite sulfide tin deposit→copper-lead-zinc sulfide deposit→lead-zinc sulfide deposit→antimony deposit, which may be related to the high-level emplacement of the intrusions; 2) the reversed zoning in order of lead-zinc deposit→copper-lead-zinc deposit→tin polymctallic deposit, which may be result from the descending of heat centre of the intrusions with their cold and solidification. The metallogenic series in time can be divided into three metallogenic pe-riods (cassiterite silicate period, cassiterite sulfide period and base metal sulfidr period) and six metallogenic stages.
     10. As for the metallogenesis in inland, some geologists with the viewpoint of magmatic hydroghermal metallogenesis look upon granite intrusion as an only source of metallogenic substance, the others with the viewpoint of stratabound metallogenesis only look upon granite intrusion as a heat source. In the region it is preliminarily certi-fied that some of metallogenic substances (Sn, W, Cu and ect.) are related to the biotite granite, another (Cu, Pb, Zn, Sb and ect. ) are derived from the host strata (es-pecially the mafic-ultramafic rocks). The hydrothermal solution to form the base met-al sulfide deposits is from meteoric water. Thus it can be seen that there exists the dialectical unity between endogenetic and epigenenic mineralizations in the metallogenic series.
     11. The conception of metasomatic system is put forward here. The metasomatism and metasomatic phenomena in the region are studied with the academic idea of metasomatic series and formations. The chemical compositional changes, conditions, evolutional directions and final results of various metasomatic daughter-series in the metasomatic network are studied from the point of view of mineralized-altered period taken as meridian and metasomatic series as latitude.
     12. The minerogenetic environment and compositional evolution of the metallogenic series of tin polymetallic deposits related to biotite granite are studied by the methods of genetic mineralogy, geochemistry of ore, altered rocks, isotopes and in-clusions.
     13. A new idea for the polymetallic metallogenesis, including the geochemical anomalous field of tin polymetallic elements as a prerequisite, the tetonic movement as a leading role and the strong differential evolution and heating effect of the biotite granite intrusions as a dominant factor, is put forward in this thesis. Furthermore, the metallogenic model of the metallogenic series in the region is set up here.
     14. A new mineral with Cu, 28.52%, Ni, 64, 81% and Fe, 6.58% (preliminarily named Baotanite) is discovered together with Mr. Zhoukezi.
引文
[1] 丁悌平,1980,《氢氧同位素地球化学》.地质出版社.
    [2] 广西区域地质调查队,1985,《广西壮族自治区区域地质志》.地质出版社.
    [3] 于崇文等,1987,《南岭地区区域地球化学》.地质出版社.
    [4] 王书凤,1983,大顶锡铁矿的地球化学问题.中国地质科学院矿床地质研究所所刊,总第9号.
    [5] 王德滋等,1982,华南前寒武纪幔源花岗岩类的基本特征.桂林冶金地质学院学报,第4期.
    [6] 毛景文、唐绍华,1986,广西—洞五地锡矿床围岩蚀变研究.中国地质科学院院报,总第13号.
    [7] 毛景文,1987,桂北九万大山—元宝山地区锡多金属矿床的地质特征和成矿系列,矿床地质,第4期.
    [8] 毛景文,1987,广西宝坛锡矿稀土元素特征及其与成矿关系,河北地质学院学报,第10卷,第2期.
    [9] 毛景文、林进姜、马富君,1987,广西—洞五地锡矿床成因讨论.地质论评,第33卷,第6期.
    [10] 毛景文、张士鲁、Ph.Rossi,1987,云南腾冲地区锡花岗岩演化及其与成矿关系.岩石学报,第4期.
    [11] 毛景文、周科子、朱征,1987,九万大山地区科马提岩及有关铜镍矿的初步研究.中国地质科学院矿床地质研究所所刊,总第21期.
    [12] 毛景文、陈晴勋等,1988,桂北地区中元古代层纹状锡矿化的发现及其意义.矿床地质,第7卷,第1期.
    [13] 毛景文,1988.云南腾冲地区火成岩系列和锡多金属矿床成矿系列研究.地质学报,第4期.
    [14] 毛景文、周科子,1988,广西宝坛地区火山岩型铜镍矿床—我国一个新铜镍矿类型.矿床地质,第7卷,第2期.
    [15] 毛景文、陈毓川,1988,关于桂北四堡期花岗闪长岩成因的探讨.岩石矿物学杂志,第7卷.
    [16] 叶庆同,1987,《江西银山铜铅锌矿床及赣北过渡带中铅锌矿床成矿系列研究》.北京科学技术出版社.
    [17] 冯钟燕、于方、魏绮英,1985,太行山北段接触交代铜矿特征、矿液性质和起源.国际交流地质学术论文集—为二十七届国际地质大会撰写,地质出版社.
    [18] 冯钟燕、张兴余,1985,冀东层状硫化物矿床的特征和成因.国际交流地质学术论文集—为二十七届国际地质大会撰写,地质出版社.
    [19] 刘元镇、钟铿、马林清,1987,广西锡矿地质特征和成矿规律.《锡矿地质讨论会论文集》.地质出版社.
    [20] 地球化学研究所,1977.《简明地球化学手册》.科学出版社.
    [21] 伍实,1979,广西晚元古代本洞岩体同位素年代学研究.地球化学,第3期.
    [22] 汪绍年,1986,大容山花岗岩形成的物理化学条件和地质背景的初步探讨.《花岗岩地质和成矿关系》.江苏科学技术出版社.
    [23] 冶金工业部西南冶金地质勘探公司,1984,《个旧锡矿地质》.冶金工业出版社.
    [24] 张荣华,1980,长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理.地质学报,第54卷,第1期.
    [25] 张荣华,1979,长江中下游玢岩铁矿围岩蚀变的地球化学分带.地质学报,第53卷,第2期.
    [26] 张德全.孙桂英.1987,广西姑婆山—里松花岗岩及其与锡矿化关系的研究.《锡矿地质讨论会论文集》.地质出版社.
    [27] 张德全、王立华,1986.湖南香花岭锡矿床交代蚀变作用及其分带.中国地质科学院矿床地质研究所所刊,第2号.
    [28] 张理刚,1985,《稳定同位素在地质科学中应用》.陕西科学技术出版社.
    [29] 芮宗瑶等,1984,《中国斑岩铜(钼)矿床》.地质出版社.
    [30] 宋叔和,1985,甘陕境内秦祁地轴两侧古生代断陷地槽海相火山活动与多金属成矿的探讨.中国地质科学院矿床地质研究所所刊,总第14号.
    [31] 宋叔和,1982,黄铁矿型铜和多金属矿床(铜,铅、锌)—世界范围内一些主要矿带和矿床类型的对比及研究趋势.中国地质科学院矿床地质研究所所刊.总第5号.
    [32] 李文达,1980,《长江中下游硫化物矿床氧化带及铁帽评价研究》.地质出版社.
    [33] 李在基,1987,广西北部火山—侵入基性-超基性杂岩中锡矿床的某些地球化学特征.《锡矿地质讨论会论文集》.地质出版社.
    [34] 李荫消,1985,我国几个主要斑岩铜(钼)矿床的包裹体演化机制及成矿pH条件.矿床地质,第4卷,第3期.
    [35] 赵子杰、马大铨等,1986,广东省阳春盆地两类花岗岩的对比及其成因探讨.《花岗岩地质和成矿关系》.江苏科学技术出版社.
    [36] 陈好寿,1979.《铅同位素地质研究的基本问题》.地质出版社.
    [37] 陈毓川,1964,对某矿床热液交代岩层中某些地球化学特点的初步探讨.中国地质学会第一届矿物、岩石、地球化学专业学术会议论文集(地球化学部分).
    [38] 陈毓川,1964,一个锡石多金属矿带中闪锌矿的成矿期与成矿特征.地质论评,第22卷,第2期.
    [39] 陈毓川,1965,广西某矿带原生带状分布.地质论评,第23卷,第1期.
    [40] 陈毓川,1983,华南与燕山期花岗岩有关的稀土,稀有、有色金属矿床成矿系列.矿床地质,第2卷,第2期.
    [41] 陈毓川,黄民智等,1985,大厂锡石-硫化物多金属矿带地质特征及成矿系列.地质学报,第60卷,第3期.
    [42] 冼柏琪,1984,试论广西锡矿的成矿条件及分布规律.地质学报,第58卷,第1期.
    [43] 陈德潜,1982,《稀有元素地质概论》.地质出版社.
    [44] 陈德潜,1987,论香花岭花岗岩的成因与稀土元素地球化学.中国地质科学院矿床地质研究所所刊,总第20号.
    [45] 邹天人,1985.论中国三个岩浆系列的稀有金属花岗岩及其稀土分布型式.昆明工学院学报,总第20期.
    [46] 季克俭、吴学汉、张国柄,1982,热液矿床三源表成热液成矿模式.中国地质科学院矿床地质研究所所刊,第3号.
    [47] 林文蔚,1987,辽西扬家杖子钼矿田的交代系列,矿床地质,第6卷,第1期.
    [48] 林进姜、毛景文等,1986,桂北平英花岗岩与锡矿成矿关系的初步研究.广西地质,第1期.
    [49] 莫少剑,1986,锡矿新类型及其成因机理研究.中国科学院地球化学研究所年报.贵州人民出版社.
    [50] 莫柱孙等,1980,南岭花岗岩地质学.地质出版社.
    [51] 施实,1976,前寒武摩天岭岩体同位素年龄讨论.地球化学,第4期.
    [52] 施央申、郭令智、马瑞士,1986,成矿作用的板块构造类型.板块构造基本问题.地震出版社.
    [53] 赵一呜、毕承思,1980,从岩浆专属性的角度讨论中国接触交代型铁矿的成因分类.国际交流地质学术论文集—为二十六届国际大会撰写(3),成矿作用和矿床.地质出版社.
    [54] 赵一呜、谭惠静、孙静华,1982,福建马坑、阳山铁矿床的矽卡分带特征及其与矿化分带的关系.岩矿测试,第1卷,第1期.
    [55] 赵一呜、谭惠静等,1983,闽西南地区马坑式钙矽卡岩型铁矿床.中国地质科学院矿床地质研究所所 刊,第1号.
    [56] 赵一呜、毕承思、李大新,1983,中国主要矽卡岩铁矿床的挥发组分和碱质交代特征及其在成矿中的作用.地质论评,第29卷,第1期.
    [57] 赵一呜、林文蔚、毕承思、李大新,1985,中国矽卡岩矿床的几个重要交代系列.国际交流地质学术论文集(4),为二十七届国际地质大会撰写.地质出版社.
    [58] 赵一呜,1986,交代岩分类及其含矿性初探.矿床地质,第5卷,第4期.
    [59] 南京大学地质系,1981,华南不同时代花岗岩类及其与成矿关系,科学出版社.
    [60] 胡受奚等.1985,华南414花岗岩体中氢-钠-钾交代蚀变作用与锂-铌-钽矿化之间的成因联系.国际交流地质学术论文集(4)—为二十七届国际地质大会撰写.地质出版社.
    [61] 洪大卫,1982,华南花岗岩的黑云母和矿物相及其与矿化系列的关系.地质学报,第56卷,第2期.
    [62] 洪大卫,1986,试论华南花岗岩岩套(岩石序列)的划分原则和研究方法.中国区域地质,第3期.
    [63] 洪大卫,1987,福建沿海晶洞花岗岩带的岩石学和成因演化.北京科学技术出版社.
    [64] 涂光炽,1984,锡和铅锌成矿作用的若干问题.矿床地质,第1期.
    [65] 涂光炽,1984,《中国层控矿床地球化学》.科学出版社.
    [66] 涂光炽.1987,广西大厂矿床成因兼论锡石硫化物矿床形成条件.《锡矿地质讨论会论文集》.地质出版社.
    [67] 郭文魁,1963,某些金属矿床的原生分带及其成因问题.地质学报,第43卷,第3期.
    [68] 郭文魁,1982,中国东部成矿域与成矿期的基本特征.矿床地质,第1卷,第1期.
    [69] 郭文魁,1982,谈类花岗岩与金属成矿作用.中国区域地质,第1卷,第2期.
    [70] 郭令智、俞剑华、施央申,1963,华南加里东地槽褶皱区大地构造的几个问题的探讨.地质学报,第43卷,第2期.
    [71] 郭令智、俞剑华等,1987,中国东南部花岗岩类的时空分布与大地构造格架形成和演化的关系.花岗岩地质和成矿关系.地质出版社.
    [72] 徐克勤等,1985,华南花岗岩成因与成矿.《花岗岩地质和成矿关系》,地质出版社.
    [73] 徐克勤、胡受奚等,1982.华南两个成因系列花岗岩类及其成矿特征.矿床地质,第1卷,第2期.
    [74] 徐克勤等,1982,华南两类不同成因花岗岩岩石学特征.岩矿测试,第1卷,第2期.
    [75] 袁忠信等,1988,《江西灵山花岗岩地质特征及其成岩成矿作用》.北京科学技术出版社.
    [76] 徐文昕,1987,广西主要锡矿床的物理化学条件和同位素的初步研究.广西地质,第2期.
    [77] 徐文昕,1987,桂北九毛锡多金属矿床物理化学和硫、氧同位素研究.矿产与地质,第1卷,第4期.
    [78] 徐俊,1987,广西元宝山东侧层状基性-超基性岩带及有关锡、铂矿床的地质特征.岩石矿物学杂志,第6卷,第3期.
    [79] 夏卫华、章锦统、冯志文、陈紫英,1985,稀有元素矿化花岗岩的成因.国际交流地质学术论文集(4)—为二十七届国际地质大会撰写,地质出版社.
    [80] 夏宏远、梁艺书、谢为鑫、帅德权,1983,江西黄沙钨矿床的原生分带及其成因.《钨矿地质国际讨论会论文集》,地质出版社.
    [81] 黄福生等.1983,个旧锡花岗岩的氢氧碳稳定同位素研究.岩石矿物及测试,第2卷,第4期.
    [82] 程先耀、黄有德,1984.试论锡的原始富集.地质与勘探,第6期.
    [83] 韩发、葛朝华,1983,福建马坑铁矿床海相火山-热液-沉积成因地质地球化学特征.中国地质科学院矿床地质研究所所刊,总第8号.
    [84] 程裕淇、陈毓川、赵一呜,1979,初论矿床的成矿系列问题.中国地质科学院院报,第1号.
    [85] 程裕淇、陈毓川、赵一呜、宋天锐,1983,再论矿床的成矿系列问题.中国地质科学院院报,第6号.
    [86] 裴荣富、刘瑛、吕凤翔,1985,再论大冶式铁矿.中国地质科学院矿床地质研究所所刊,第3号.
    [87] 裴荣富、吴良士,1987,中国东南部中生代火山岩区域成矿条件.中国地质科学院院报,总第16号.
    [88] 鲍佩声、王希斌等,1985,西藏大竹区蛇绿岩的钠长花岗岩.岩石矿物及测试,第4卷,第1期.
    [89] 翟裕生、姚书振、林新多,1983,长江中下游地区铁铜矿床类型、形成条件和成矿演化.地球科学,第4期.
    [90] 翟裕生等,1981,《矿田构造与成矿》.地质出版社.
    [91] 彭大良、郭玉儒、邓德贵,1987,桂北锡矿成矿作用过程及矿床成因探讨.《锡矿地质讨论会论文集》.地质出版社.
    [93] 射文安、刘文均,1986,湖南两类铅矿床的铅同位素组成特征.矿床地质,第5卷,第3期.
    [94] Bernard,A.J.Dagallicr,G.and Solcr,E.,1984(邢文臣译.),与火山喷气块状硫化物矿床有关的喷气沉积—欧洲的一个实例.火山地质矿产,第3期.
    [95] Carmichacl,I.S.E.Turner.F.J.and Verhoogen,J.,9182(从柏林等译),火成岩石学.地质出版社.
    [96] 福尔,1983,(潘曙兰等译),《同位素地质学原理》.科学出版社.
    [97] 斯通,1984(徐珏译),英国康沃尔西部花岗岩分异作用期间的锡和其它一些痕量元素的性状.国外矿床地质,第29期.
    [98] 萨维德拉,1984(盛继福译),西班牙中西部无矿花岗岩和锡钨矿化花岗岩的地球化学.国外矿床地质,第29期.
    [99] Jackson,N.J.Halliday,A.N.Sheppard,S.M.and Mitchell,J.G.,1984(艾永德译).英格兰康沃尔St.Just矿区的热液活动.国外矿床地质,第29期.
    [100] 赵子杰等,1985,桂北前寒武纪花岗岩本洞,三防岩体的最新研究资料.研究报告
    [101] Anderson, G. M., 1970. Some thermodynamics of dehydration equilibria. Am. I. Sci., Vol. 269, pp. 392-401.
    [102] Arndt, N. T. and Nisbert, E, G, 1982. Komatiites. George Allen and Unwin (Publishers) Ltd.
    [103] Barnes, H. L., 1979. Geochemistry of hydrothermal ore deposits (2rid Edition). Awiley-Interscience Publication.
    [104] Barsukov, V. L. and Kurilchikova, G. Y., 1966. On the forms in which tin is transported in the hydrothermal solutions. Geokhimiya., No. 8. pp. 943-948.
    [105] Berglund, S. and Ekstrom. T. K., 1980. Arsnopyrite and sphalcritc as T-P indications in sulfide ores from Northern Sweden. Mineralium Deposita., Vol. 15, pp. 175-187.
    [106] Blockley, J. G., 1980. The tin deposits of Western Australia with special reference to the associated granitcs. Geological Survey of Western Australia Mineral Resources., Bulletin 12.
    [107] Boissavy, V. M. and Roger, G., 1980. The TiO_2/Ta ratio as an indicator of the degree of differentiation of tin granites. Mineralium Deposita. Vol. 15, pp. 231-236.
    [108] Bowden, P. Batchelor, R. A. Chappell, B. W. Didier, J. and Lameyre, J., 1984. Petrological, geochemical and source criteria for the classification of granitic rocks: a discussion. Physics of the Earth and Planetary Interiors.. Vol. 35, pp. 1-11.
    [109] Bowden, P. and Kinnaird, J. A. , 1984. The petrology and geochemistry of alkaline granites from Nigeria.Physics of the Earth and Planetary Interiors., Vol.35, pp. 199-211.
    [110] Burnham, C. W. and Ohmoto, H., 1980. Late-stage processes o felsic magmatism. pp. 1-12. In: Granitic Magmatism and Related Mineralization. The society of Minning Geologists of Japan.
    [111] Chatterjee, A. K. and Strong, D. F. , 1985. Review of some chemical and mineralogical characteristics of granitoid rocks hosting Sn, W, U, Mo deposits in Newfoundland and Nova Scotia. In: High heat production (HHP) granites. hydrothermal circalation and ore genesis.Inst.Min.and Metall., London.
    [112] Cocherie, A. Rossi, Ph. and Le Bel , L ., 1984. The Variscan calc-alkalic plutonism of western Corsica: mineralogy and trace element geochemistry.Physics of Earth and Planetary Interiors., Vol.35, pp.145—178.
    [113] Coleman, R. G. , 1977. Ophiolities: Ancient oceanic lithosphere. Springer, New York, Berlin, Heidelberg.
    [114] Collins, W. J. Beams, S. D. White, A. J.R. and Chappell, B.W., 1982.Nature and origin of A-type granites with particular reference to Southeastern Australia, contrib. Mieral.petrol., Vol.80, pp. 189-200.
    [115] Condie, K.C., 1975. Plate tectonics and crustal evolution. Pergamon Press, INC.
    [116] Corn. R. M., 1975. Alteration-mineralization zonning. Red Mountain, Arizona. Econ.Geol., Vol.70, pp.1437-1447.
    [117] Cox. R. and Glasson, K. R., 1971. Cleveland Mine, Tasmania. Econ.Geol.. Vol.66, pp.861—878.
    [118] de la Roche, H.and Marchal, M.. 1980. A classification of volcanic rocks using R1-R2 diagrams and major element analyses — its relationships with current nomenclature. Chemical Geology. , Vol. 29, pp.183-210.
    [119] Flynn, R. T. and Burnham, C. W,, 1978. An experimental detemination of rare earth partition coeficients between a chloride containing vapour phase and silicate melts.Gcochim.Cosmochim., Vol.42, pp.685-701.
    [120] Fyfe, W .S. Price. N. J. and Thompson, A. B., 1978. Fluids in the Earths crust. Eleseveir Science Publishing Company, Amsterdam.
    [121] Goad, B. E. and Corny, P., 1981. Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River District, Southeastern Monitoba. Canadian Mineralogist., Vol.19, pp.177-194.
    [122] Green, A. H. and Naldrctt, A. J., 1981.The Lagmuir volcanic peridotite-associated nickle deposits: Canadian equivalents of the Western Australia occurences. Econ. Geol., Vol.76, pp. 1503-1523.
    [123] Groves, D. I., 1972.The gcochemical evolution of tin-bearing granites in the Blue Tier batholith, Tasmania. Econ. Geol., Vol.67, pp445-457.
    [124] Groves, D. I.and Mccarthy, T.S., 1978. Fractional crystallization and the origin of tin deposits in granitoids. Mineralium Deposita., Vol.13, pp.11-26.
    [125] Groves, D. I. Barrett, F. M. and Mcqueen, K.G., 1979.The relative roles of magmatic segregation, volcanic exhalation and regional metamophism in the generation of volcanic associated nickle oires of Western Australia. Can. Mineral., Vol.17, pp.319-336.
    [126] Groves, D. I. , 1982. Vertical geochemical zonation within tin- bearing granite sheets. Blue Tier batholith, NE Tasmania. Metallization Associated with Acid Magmatism., Vol.3, pp.205-215.
    (127) Halliday, A.N. and Stephens, W. E., 1984. Crustal controls on the genesis of the 400Ma old Caledonian granites Physics of the Earth Planetary Interiors.. Vol.35, pp.89—104
    (128) Hannington, M. D. Peter, J. M. and Scott, S. D. , 1986. Gold in sea-floor polymetallic sulfide deposits.Econ.Geol., Vol.81, pp. 1867-1883.
    (129) Harmon, R. S., 1984. Stable geochenistry of Caledonian granitoids from the British Isles and East Greenland. Physics of the Earth and Planetary Interiors., Vol.35, pp.105-120.
    (130) Helgeson, J. W. and Hemley, J. J., 1975. Activity relations stabilities in alkali feldspar and mica alteration reactions. Econ. Geol., Vol.70, pp.577-594.
    (131) Helgeson, H. C. 1970. Reaction rates in hydrothermal system. Min. Soc. Am., Vol.269, pp.392-401.
    (132) Hesp, W. R.and Rigby, D., 1971. The transport of tin in acid igneous rocks. Pacific. Geol., Vol.5, pp.135-152.
    (133) Hesp, W. R. and Rigby, D. , 1974. Some geological aspects of tin mineralization in the Tasman geosyncline. Mineralium deposita, Vol.9, pp.49-60.
    (134) Hetrogen, J. Janssen, M. J. and Palme, H., 1980. Trace elements in ocean ridge basalt glasses, implications for fractionation during mantle evolution and petrogenesis. Geochim. Cosmochim, Vol. 44. pp.2125—2143.
    (135) Higgins, N.C.Solomon, M. and Varne, R., 1985., The genesis of the Blue Tier batholith. Northeast Tasmania, Australia. Lithos., Vol.18, pp.129-149.
    (136) Hosking, K. F. G., 1969. The primary tin ores of the southwest England. A second technical conference of tin .Bankok. International Tin Council, Vol.1, pp.1157-1243.
    (137) Hosking, K. F. G., 1977. Known relationship between the 'hardrock' tin granites and the granites of southeast Asia. Geol. Soc. Malaysia., Bulletin 9, pp.141-157.
    (138) Hosking, K. F.G., 1979. Tin ditribution patterns. Geol. Soc. Malaysia.. Bulletin 11, pp.1-70.
    (139) Imeokparia, E.G., 1982. Tin content of biotites from the Afu younger granite complex, Central Nigeria. Econ. Geol.. Vol.77, pp.1710-1724.
    (140) Ishihara, S.. 1977. The magnetite and ilmenite scries granitic rocks.Mining Geol., Vol.27, pp.293-305.
    (141) Ishihara, S., 1984. Granitoid series and Mo/W-Sn mineralizationm in East Asia. Geological survey of Japan Report., No.263, pp.173-208.
    (142) Jones, B. G., 1981. Ferrian tourmaline from Bungonia, New South Wales. J. Geol. Soc. Aust. Vol.28, pp.13—17.
    (143) Jackson, K. and Helgeson, H. C, 1985. Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: II .Interpretation of phase relations in the Southeast Asia tin belt. Econ. Geol., Vol.80, pp.1365-1378.
    (144) Kretschmar, U.Scott, S. D., 1976. Phase relations involving arsenopyrite in the system Fe-As-S and their applications. Can. Mineral., Vol. 14, pp.364-386.
    (145) Kawk, T. A. P. and Askins, P. W., 1981. Geology and genesis of the F-Sn-W (-Bc-Zn) skarn (wrigglitc) at Monina, Tasmania. Econ. Geol., Vol.76, pp.439—467.
    (146) Le Bel, L. Li Yi-dou and sheng Ji-fu., 1984. Granitic evolution of the Xihuashan-Dangping (Jiangxi, china) tungsten-bearing system. TMPM tsehermarks Min. Petro. Miff., Vol.33, pp.149-167.
    (147) Lehmann, B. H., 1980. Tin distribution in mid-Andean volcanic rocks. Mineralium deposita., Vol.15, pp.35-39.
    (148) Liew, T. C. and Mcculloch, M. T., 1984. Genesis of granitoid batholiths of Penisular Malaysia and implications for models of crustal evolution: Evidence from a Nd-Sr isotopic and U—Pb zircon study. Geochemica at Cosmochemica., Vol.49, pp.587-600.
    (149) Mcculloch, M. T. and Chappell, B. W., 1982. Sm-Nd isotopic characteristics of S- and I-type granites.Earth Planet.Sci.Less., Vol.59, pp.51-64.
    (150) Marston. R. J. Groves D. I. Hudson, D. R. and Ross, J. R., 1981. Nickle sulfide deposits in Western Australia: A review . Econ. Geol., Vol.76, pp.1330—1363.
    (151) Mckay, W. J. and Hazeldene, R. K., 1987. Woodlawn Zn-Pb-Cu sulfide deposit. New South Wales, Australia: An interpretation of ore formation from fluid observations and metal zonming. Econ. Gdeol., Vol.82, pp.141-164.
    (152) Miller, C. F. Stoddard, E. F. Bradfish, L. J. and Dollase, W.A., 1984. Composition of plutonic muscovite: granitic implications. Canadian Mineralogist, Voi.19, pp.25-34.
    (153) Mitchell, A.H.G., 1977. Tectonic settings for emplacement of Southeast Asia tin granites. geol. Soc. Malaysia.. Bulletin 9, pp.123-140.
    (154) Mitchell, A.H.G., 1979. Rift-, subduction-and collision-related tin belts. Geol. Soc. Malaysia., Bulletin 11, pp.81-102.
    (155) Mitchell, A.H.G.and Garson, M. S., 1981. Mineral deposits and global tectonic settings.Academic Press. Inc. (London) Ltd.
    (156) Moller, P. Morteani, G. Hoefs, J. and Parekh, P.P., 1979. The origin of the ore-bearing solution in the Pb-Zn veins of the Western Harz, Germany. Chem. Geol., Vol.26, pp. 197-215.
    (157) Montoya, J. W. and Hemley, J. J., 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Econ. Geol., Vol.70, pp. 577-594.
    (158) Mucke, G. K.and Clarke, D. B., 1981. Geochemical evolution of the south mountain batholith, Nova Scotia; rare earth element evidence. Canadian Mineralogist., Vol.19, pp.133-145.
    (159) Neall, F. B. and Phillips, G. N., 1987. Fluid—wall rock interaction in an Archean hydrothermal gold deposit: a thermodynamic model for the Hunt Mine, Kambalda. Econ. Geol., Vol.82, pp.1679—1694.
    (160) Neiva, A. M. R., 1984. Geochemistry of tin-bearing granitic rocks. Chemical Geology., Vol.43, pp.241-256.
    (161) O'neil, J. R., 1977. Oxygen and hydrogen isotope compositions as indictors of granite genesis in the New England batholith, Austualia. ontri. Mineral. Petrol., Vol.62, pp.313—328.
    (162) Patterson, D. J. Ohmoto, H. and solomon, M. , 1981. Geological setting and genesis of cassiterite-sulfide mineralization at Renison Bell, Western Tasmania. Econ. geol., Vol.76, pp.393-438.
    (163) Pearce, J.A.Harris, N. B. W. and Tindle, A. G., 1984. Trace clemetn discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., Vol.25, pp.956—983.
    (164) Pedersen, R. B. and Malpas, J., 1984. The origin of oceanic plagiogranites from the Carmoy ophiolite, Western Norway. Contri. Mineral. Petrol. Vol.88, No. 1 / 2.
    (165) Porfit, M. R. Brueckner, H.Lawrence, J. R. and Kay, R. W., 1980. Trace element and isotopic varia- tions in a zoned pluton and associated vocanic rocks, Unalaska Island, Alaska: a model for fractionation in the Aleutian calcalkalinc suite. Contrib. Mineral. petrol., Vol. 73, pp. 69-87.
    [166] Pichavant, C. W. and Ohmoto, H., 1980. Petrogenesis of tourmaline granites and topaz granites; the contribution of experimcntal data, Interiors., Vol. 35, pp. 31-50.
    [167] Pitcher, W. S., 1982. Granite type and tectonic enviroment. In: K. J. Hsu (Ed), Mountain Building Proccss, Academie Press, London, pp. 19-40.
    [168] Plimer, I. R., 1980 Exhalalivc' Sn and W deposits associated with marie volcanism as precursors to Sn and W deposits associated with granites. Mineraliurn Deposita., Vol. 15. pp. 275-289.
    [169] Plimer, I. R., 1987. The association of tourmaline with stratiform scheelite deposits. Mincralium deposita., Vol. 22, pp. 282-291.
    [170] Porter, D. J. and Mckay, K. G., 1981. The nickle sulfidc mineralization and metamorphic setting of the forrestrania area, Western Australia. Econ. Geol., Vol. 76, pp. 1524-1549.
    [171] Puchner, C. C., 1986. Geology, alteration, and mincralization of the Kougarok Sn deposit, Seward Peninsula, Alaska. Econ. Geol., Vol. 81, pp. 1775-1794.
    [172] Rona, P. A., 1978. Griteria for recognition of hydrothcrmal mineral dcposits in oceanic crust. Econ. Geol., Vol. 73, pp. 135-160.
    [173] Ryabchirov, I. D. Durasova, N. A. and Barsukov, V. L., 1974. The role of volatiles in the mobilization of tin from granitic magmas. In: M. Stemprok (Ed), Metallization associated with Acid Magmatism., vet. 1, pp. 287-288.
    [174] Ross, J. R. and Travis, G. A. 1981. The nickle sulfide deposits of Western Australia in global perespective. Econ. Geol., Vol. 76, pp. 1291-1299.
    [175] Sahama, T. G. Knorring, O. and Tornroos, R., 1979. On tourmaline., Lithos., Vol. 12, pp. 109-114.
    [176] Sangster, D. F., 1970. Metallogenesis of some Candian lead—zinc deposits in carbonate rocks. Geol. Ass. Prec., Vol. 22, pp. 27-36.
    [177] Sawkins, F. J., 1972. Sulfide ore deposits in relation to plate tectonics. J. Geol., Vol. 80, pp. 37-394.
    [178] SawKins, F. J., 1984. Metal deposits in relation to plate tectonics, printed in Germany.
    [179] Schneider,. H. J. Dulski, P. Luck, J. Moller, P. and Villalpando, A., 1978. Correlation of trace element distribution in cassiterites and geological position of thcir deposits in Bolivia. Mincralium Deposita., Vol. 13, pp. 119-122.
    [180] Schuiling, R D., 1967. Tin belts on the continents around the Atlantic Ocean. Econ. Geol., Vol. 62, PP. 540-550.
    [181] Scott, S. D. and Barnes, H. C., 1971. Sphalerite geothermome try and geobarometry. Econ. Geol., Vol. 66, pp. 653-669.
    [182] Scott, B., 1976. Zinc and lead mineralization along the margins of the Caledonian orogen. Tans. Insth. Min. Metall., Vol. 85, pp. 200-204.
    [183] Sillitoe, R. H. 1974. Tin mineralization above mantle hot spots. Nature., Vol. 284, pp. 297-499.
    [184] Sillitoe, R. H. Halls, C. and Grant, J N., 1975. Porphyry tin deposits in Bolivia. Econ. Geol., Vol. 70, pp. 913-927.
    [185] Solomon, M., 1981. An introduction to the geology and metallic ore deposits of Tasmania. Econ. geol., Vol. 76, pp. 21-54.
    [186] Souriyajan, S. and Kenneday, G. C., 1962. The system H_2O-NaCl at elevated tempratures and pressures. Am. J. Sci., Vol. 260, pp. 115-141.
    [187] Stemprok, M., 1982. Differentiation of some elements by ore——bearing grantites. Mctallization associated with Acid Magmatism., Vol. 3, pp. 393-403.
    [188] Stormer, J. J. C., 1975. A practical two-feldspar geothermometer. Am. Mineral., Vol. 60, pp667-674.
    [189] Sun Shen-su and Eadington, P. J., 1984. Oxygen isotope cvidence for the mixing of magmatic and mete oric waters during tin mineralization in the Mole granite, New South Wales, Australia. Econ. Geol., Vol. 82, pp. 43-52.
    [190] Tauson, L. V. and Kuzmin, M. I., 1966. Behavior of tin in tin-bearing and non-tin-bearing granites of Eastern Trasbaikaliya. Geokhimiya., No. 2, pp. 161-167.
    [191] Taylor D. and Leeuwen, T. V., 1980. Porphyry-type deposits in Southeast Asia. pp. 95-116. In: Granitic Magmatism and Related Mineralization. The Society of Mining Geologist of Japan.
    [192] Taylor, Jr, H. P., 1978. Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth. Planet. Sci. Lett., Vol. 38, pp. 177-210.
    [193] Taylor, R. G., 1979. Geology of tin dcposits. Elesevier Scientific Publishing Company.
    [194] Taylor, R. G., 1979. Some observation upon the tin deposits of Australia. Geol. Soc. Malaysia., Bulletin 11, pp. 181-207.
    [195] Tischendorf, G. Schust, F. and Lange, H., 1982. Relation between granites and tin deposits in the Erzgebirge, GDR. Metallization Associatted with Acid Mangmatism., Vol. 3, pp123-137.
    [196] Tuttle, O. F. and Bowen, N. L., 1958. Origin of granite in the light of experiment studies in the system NaAlSi_3O_8-KAlSi_3O_8-SiO_2-H_2O. Geol. Soc. Am. Mem. Vol. 74, pp. 1-153.
    [197] Varlamoff, N., 1972. Central and West African rare metal granitic pegmatites, related aplites, quartz Veins and mineral deposites. Mineralium Deposita., Vol. 7, pp. 202-216.
    [198] Vidal, Ph. Griffiths, J. B. cocherie, A Le Fort, P. Peucat, J. J. and Sheppared, S. M. F., 1984. Geochemical comparison between Himalayan and Hercynian leucogranites. Physics of the Earth and Planetary Interiors., Vol. 35, pp. 179-190.
    [199] Von Damm, K. L. Edmond, J. M. Measures, C. I. and Grat, B., 1985. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim et cosmochim., Vol. 49, pp. 2221-2237.
    [200] Waston, E. B. and Harrison, T. M., 1934. Accessory minerals and the geochematical evolution of crustal magmatic system: a summary and prospectes of experimental approaches. Physics of the Earth and Planetary Interiors., Vol. 35, pp, 19-30.
    [201] Whalen, J. B. Currie, K. L. and Chappell, B. W., 1987. A-type granites: geochemical characteristdcs, distrimination and petrogenesis. Contrib. Mineral. Petrol., Vol. 95, pp. 407-419.
    [202] Wones D. R. and Eugster, H. P., 1965. Stability of biotite: Experiment, theory and application. Am. Mineral., Vol. 50, pp. 1228-1272.
    [203] Wones, D. R., 1972. Stability of biotite: Areply. Am Mineral., Vol. 57, pp. 316-317.
    [204] 彭大良、冼柏琪等,1985,广西罗城宝坛地区花岗岩与锡矿成矿作用的关系.广西壮族自冶区地质矿产局出版.
    [205] 洪流,1984,从两个岩浆系列的演化探讨桂北大地构造对成岩成矿的控制.硕士研究生论文.
    [206] 马宏,1984,九毛锡铜矿床成矿条件与成矿机理剖析—兼论基性超基性岩与锡矿化的关系.硕士研究生论文.
    [207] 陈骏,1985,论华南某些层控锡矿床的地质特征与形成机制.博士研究生论文.
    [208] 胡云中等,桂北地区及锡矿带地层地球化学.北京科学技术出版社(正在出版).
    [209] 程先耀、卢建春、彭振安,1985,桂北地区锡矿床地质特征、成矿作用和找矿方向研究总报告.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700