用户名: 密码: 验证码:
纳米流体在矩形微槽道内阻力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细通道在微机电系统、微电子、生物等的广泛应用,使得微通道流动与传热的研究成为当今科学及工业领域的热点之一,微尺度下的传热与传质是一个复杂、又有着巨大和广泛应用价值的前沿课题。大量的实验及分析结果表明,微通道内流动与常规尺度通道不同,具有明显的尺寸效应。本文以Al2O3/水纳米流体为工质,对高为2mm,宽分别为0.6mm、1mm、2mm的铝制矩形槽的单相及汽液两相流动阻力特性进行了实验与理论的研究。
     本文首先研究了两种不同体积分数的纳米流体在三种槽道内的单相流动阻力特性,实验结果表明:三种不同槽道的摩擦压降均随着雷诺数的增大而增大,在相同的雷诺数下,0.6mm槽道的摩擦压降最大,2mm槽道的最小,体积分数大的纳米流体的摩擦压降比体积分数小的纳米流体的摩擦压降大。三种槽道的摩擦阻力系数f均随着雷诺数Re的增大而相应的减小,它们的乘积为不同的常数。在相同的雷诺数下,0.6mm 2mm槽道的摩擦系数f最大,2mm 2mm槽道的摩擦系数f最小。对层流情况下摩擦阻力系数f与雷诺数Re关系曲线进行拟合,2mm 2mm槽道的流动阻力特性与常规尺度槽道比较一致,1mm 2mm槽道和0.6mm 2mm槽道的f Re值均比经典理论值f Re = 64大,两种不同体积分数的纳米流体在同一槽道内的f Re值相差不大。
     然后对槽道内两相摩擦压降进行了实验研究和对比。实验结果表明,两相摩擦压降随着热流密度和出口干度的增大而增大。相同条件下,体积分数小的纳米流体出口干度和两相压降均比体积分数大的纳米流体出口干度大。尺寸小的槽道两相压降明显大很多,热流密度大时,微槽的进出口总压降产生的不规则的周期性波动要剧烈。同时还将实验与L-M模型进行了比较,发现摩擦乘子随着热流密度和出口干度的增大而增大,随着质量流速的增大而减小。L-M模型预测的压降相比实验压降较小,误差较大,因此L-M模型不能很好的预测本实验的两相压降。
Microchannels were widely used in Micro-electro mechanical systems, micro-electronics, biology, making flow and heat transfer in microchannel become one of the hottest spot in science and industrial field. The study on micro heat and mass transfer is a complicated subject, but with extensive value. Many experimental data and analysis showed that flow performances in microchannel were different from that of in conventional channel. Experiments on flow resistance of single-phase and two-phase are conducted in aluminium rectangular microchannels with Al2O3/water nanofluid as working fluid. All the heights are uniformly 2mm, and the width is 2mm, 1mm and 0.6mm respectively.
     Firstly, experiments on single phase flow was conducted in aluminium rectangular microchannels with nanofluids with two various volume fractions as working fluid. It was found that, the pressure drop increases with the increase of the Re, the pressure drop of high volume fraction nano-fluid is bigger than that of low volume fraction nano-fluid. The frictional resistance coefficient decreases with the increase of the Re and it is biggest in 0.6mm microchannel, smallest in 2mm microchannel. According to the experimental data, the product of f Re is const and higher than classical theory prediction. The product of f Re in two various volume fractions of nanofluid have little difference in the same microchannel.
     Secondly, experiments on two-phase flow were studied and contrasted. The experimental results showed that: two-phase frictional pressure drop increases with the increase of dryness of outlet and heat flux. The dryness of outlet at high volume fraction nano-fluid is higher than that of at low volume fraction nano-fluid. The size of microchannel had a great impact on two-phase friction pressure drop. Two-phase friction pressure drop was increasing as the size was decreasing. As the heat flux increases, irregular and more severe cyclical pressure drop fluctuation was observed. Finally, Values between experiment and L-M model were compared. The results showed that the two-phase frictional multiplier increases with the increase of the dryness of outlet and the heat flux, decrease with the increase of mass flux. The volume of L-M model is obviously smaller than that of the experiment, So, L-M model couldn‘t predict very well in this experiment.
引文
[1]杨世铭,陶文铨.传热学[M](第三版).北京:高等教育出版社, 1998:132-136
    [2]刘益才.电子芯片冷却技术发展综述[J].电子器件, 2006, 29(1): 276-300
    [3] Tuckerman D B, Pease Device Letters. R F W High performance heat sink for VISI[J].IEEE Electron, 1981(4):126-129
    [4] Choi.U.S. Ehanching Thermal Conductivity of Fluids with Nanoparticles. Development and applications of non-Newtonian flows[J].Appl.Phys 1995(66):99-103
    [5]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社, 2000:67-84
    [6] Pfahler J, Harvay J, Bau H. Gas and Liquid Flow in Small Channels[J]. ASME DSC. 1991, 32:49-60
    [7] Turkerman D.B., Pease R.F.W. Optimized Convective Cooling Using Micro machined Structures[J].Electro chemical Society. 1982, 98 (3):1232-1245
    [8]刘荣.液体在微型槽内流动与传热的研究[D].北京:清华大学.1994:35-43
    [9]郭航,黄峰等.微流道换热器阻力特性的实验研究[J].制冷. 1998, 65(4):8-13
    [10] Acosta R, Muller R,Tobias C,Transport processes in narrow(capillary) channels[J]. AIChE Journal.1985(31):473-482
    [11] Harms T M,Kazmierczak M,Gerner F M,et al. Experimental investigation of heat transfer and pressure drop through deep microchannels in a(110)silicon substrate[J] Proceedings of the ASME Heat Transfer Division,1997,1:347-357
    [12] Ding L S,Sun H,Sheng X L,et al,Measurement of friction of factors for R134a and R12 through microchannels[J]. Proceedings of Symposium on Energy in the 21st Century. 2000,2:650-657
    [13] Pfund D A, Shekarriz A, Popescu A etal. Pressure drops measurements in microchannels[J]. Proceedings of MEMS, ASME DSC, 1998, 66:193-198
    [14] Li Z X,DuDX,Guo Z Y. Experimental study on flow characteristics of liquid in circular microtubesl[J]. Microscale Thermophysics Engineering, 2003, 7:253 -265
    [15] Tuckerman D B, Pease R F W. Ultrahigh Thermal Conductance Microstructres for Cooling Integrated Circuits[J]. Procs. 32nd Electronics Components Conf, 1982, IEEA EIA, CHMT:145-149
    [16] Wu P Y and Little W A. Measurement of heat transfer characteristics of gas flow in very fine channels used for microminiature Joule-Thomson refrigerators[J]. Cryogenics 1984. 24 (8):415-420
    [17] Acosta R E, Muller R.H, Tobias W C. Transport processes in narrow (Capillary) channels[J]. AIChE. 1985. 31 (1-3):473-482
    [18] Harms T M., Kazmierczak M J, Gerner F M. Developing convective heat transfer in deep rectangular microchannels[J]. International Journal of Heat and Fluid Flow, 1999. Vo1.20 No.2: 149-157
    [19] Peng X. F.,Peterson G P. Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures[J].International Journal of Heat and Mass Transfer, 1996, 39 (12): 2599-2608
    [20] Peng X.F., Peterson G.P., Wang B.X.. Frictional flow characteristics of water flowing through rectangular microchannels[J]. Exp. Heat Transfer, 1994, 7: 249-265
    [21]蒋洁,郝英立,施明恒.矩形微通道中流体流动阻力和换热特性实验研究[J].热科学与技术, 2006, 5(3):189-194
    [22]周继军,申盛,徐进良.微槽道内单相流动阻力与传热特性[J].化工学报, 2005, 56(10):1849-1854
    [23] Stanley R.S.. Two-phase flow in microchannels[D]. Ruston, LA.: Louisiana Tech University, 1997
    [24]姜明健,罗晓惠,刘伟力.水在微尺度槽道中单相流动和换热研究[J].北京联合大学学报, 1998,12(1):71-75
    [25]姜明健,孙晗.制冷剂在微尺度槽道内的流动与传热研究[J].北京工业大学学报, 1998,24(1):55-59
    [26]郭航,黄峰等.微流道换热器阻力特性的实验研究[J].制冷. 1998, 65(4):8-13
    [27] Wu P Y, Little W A. Measurement of friction fractor for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators[J]. Cryogenics.1983, 23:273-277
    [28]路广遥.窄环形流道单相强迫对流换热与阻力特性实验研究[D].哈尔滨:哈尔滨工程大学. 2004
    [29] B.X. Wang, X.F. Peng. Experimental Investigation on Liquid Forced-convection Heat Transfer through Mcirochannels[J]. Heat mass Transfer. 1994,37:73-82
    [30]路广遥等.窄缝环形流道内流动传热特性的实验研究[J].中国动力工程学报. 2005, 25(2):275-279
    [31] X.F. Peng, GP. PETERSON. Convective Heat Transfer and Flow Friction for Water Flow in Micro-channel Structures[J]. Heat Mass Transfer. 1996, 39(12):2599-2608
    [32] Qu W, Mudamar I. Experimental and numerical study of the pressure drop and heat transfer in a single-phase micro-channel heat sink[J]. Heat Mass Transfer, 2002, 45:2549-2565
    [33]张培杰,辛明道.微尺寸管内流体的受迫流动与换热[C].中国工程热物理学会第八届年会论文集,北京: 1992,第三分册,89-94
    [34] Bowers.M.B, Mudawar.I, High Flux Boiling in Low Flow rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sink[J]. Heat Mass Transfer, 1994, 37: 321-332
    [35] Tong.W et al., Pressure Drop with Highly Sub-Cooled Flow Boiling in Small Diameter Tubes[J], Experimental Thermal and Fluid Science, Elsevier Science Inc.1997, 15: 202-212
    [36]Ravigururajan.T.S, Impact of Geometry on Two-Phase Flow Heat Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers[J]. Heat Transfer, 1998, 120: 485-491
    [37]章春伟.矩形窄缝通道内水沸腾流型理论研究[J].核动力工程. 2005,26(4):340-343
    [38] Stanley, R.S., Two-phase flow in microchannels[J].PH.D. thesis, Louisana Tech University, Ruston,LA. 1997
    [39] H.J.Lee,S.Y.Lee.Pressure drop correlations for two-phase flow within horizontal rectangular channels with small height[J]. Multiphase Flow,2001,27:783-796
    [40]孙立成,阎昌琪,孙中宁.窄环隙内水流动沸腾时的阻力特性实验研究[J].哈尔滨工程大学学报. 2005,6(1):44-47
    [41]颜晓虹,唐大伟,王际辉.矩形微槽内水的流动沸腾压降特性实验研究[J].华中科技大学学报(自然科学版), 2007, 35(5):88-90
    [42] Masuda H, Ebata A, Teramae K, Hishinuma N. Alternation of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-fine Particles (Dispersion of r-A1203, Si02 and Ti02 Ultra-Fine Particles)[J]. Netsu Bussei (Japan), 1993, 4: 227-233
    [43] Lee S, Choi S U S, Li S, Eastman J A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles[J]. Heat Transfer, 1999, 121:280-289
    [44]李强.纳米流体强化传热机理研究[D].南京:南京理工大学, 2004
    [45] Wang X W, Xu X F,Choi S U S. Thermal Conductivity of Nanoparticle-Fluid[J]. Thermophysics and Heat Transfer,1999;13(4):474-480
    [46] D. Wen, Y. Ding .Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[J]. International Journal of Heat and Mass Transfer. 2004, 47:5181-5188
    [47] Ahuja A S. Augmentation of Heat Transfer in Flow of Polystyrene Suspensions[J]. Applied Physics, 1975, 46: 3408-3425
    [48] Sohn C W, Chen M M. Microconvective Thermal Conductivity in Disperse Tow-Phase Mixture as Observed in a Low Velocity Couette Flow Experiment[J]. Heat Transfer, 1981, 103: 47-51
    [49] Prasher R , Song D , Wang J. Thermal Conductivity of Nanoparticle-Fluid[J] Appl Phys Let t , 2006 , 89 :1-3
    [50] Li J M , Li Z L , Wang B X. Research on the Heat-Conduction Enhancement for Liquid with Nano-Particle Suspensions [J]. Tsinghua Sci Techn ,2002 ,7 :198
    [51] Das S K, Putra N , Roetzel W. Flow boiling of binary mixtures in microchanneled plates [J]. Heat Mass Transfer ,2003 ,46 :851
    [52] Ding Y, Alias H , Wen D, et al. Frictional flow characteristics of water flowing through rectangular microchannels [J]. Heat Mass Transfer ,2005 ,49 :240
    [53]王补宣,周乐平,彭晓峰.纳米流体导热系数的团簇宏观分析模型[J].自然科学进展, 2004, 14(7):799
    [54]彭小飞,俞小莉,夏立峰.纳米流体悬浮稳定性影响因素[J].浙江大学学报(工学版), 2007, 41:577
    [55]刘玉东,李夔宁,童明伟等. TiO2-水纳米流体的粘度修正公式[J].重庆大学学报, 2006 ,29 :52
    [56]郭顺松,骆仲泱,王涛. SiO2纳米流体粘度研究[J].硅酸盐通报, 2006,25:52
    [57]马重芳.强化传热[M].北京:科学出版社, 1992.
    [58] Shah R K,London A L. Laminar flow forced convection in ducts. A source book for compact heat exchanger analytical data[J],Academic Press,New York ,1978
    [59]徐济鋆.沸腾传热与气液两相流[M].第一版.北京:原子能出版社.1993
    [60] Qu W.L.,Mudawar I. Flow boiling heat transfer in two phase micro-channel heat sinks--Experimental investigation and assessment of correlations methods[J]. Heat Mass Transfer, 2003, 46(15): 2755–2771
    [61]周乐平,王补宜.准稳态法测量纳米颗粒悬浮液热物性的实验研究[J].工程热物理学报, 2003, 24(6):1037-1039
    [62]范庆梅,卢文强.纳米流体热导率和粘度的分子动力学模拟计算[J].工程热物理学报, 2004, 25(2):268
    [63]李泽梁,李俊明. CuO纳米颗粒悬浮液中个组分对悬浮液稳定性及黏度的影响[J].热科学与技术, 2005, 4(2):157-163
    [64] Chisholm D A. Theoretical basis for the Lockhart-Martinelli correlation for two–phase flow[J]. Heat and Mass Transfer, 1973, 10: 1767-1778
    [65]高镰,孙静,刘阳桥.纳米粉体的分散及表面改性北京[M].化学工业出版社, 2003,12
    [66] Einstein A. Investigation on the theory of the Brow mian Movement[J]. New York: Dover, 1956
    [67] Brinkman H C. The Viscosity of Concentrated Suspensions and Solutions[J]. Chem. Phys, 1952, 20: 571-581
    [68] Batchelor H C. The effect of brownian motion on the bulk stress in a sus pension of spherical particles[J]. F1uidMech, 1977, 83: 97
    [69]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001
    [70]鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社, 2002
    [71]颜晓虹,唐大伟,王际辉.矩形微槽内水的流动沸腾压降特性实验研究[J].华中科技大学学报(自然科学版). 2007, 35(5):88-90
    [72] Mishima, K., Hibiki, T. Some characteristics of air–water flow in small diameter vertical tubes[J]. Multiphase Flow 1996(22): 703–712
    [73] Zhang, W. Study on constitutive equations for flow boiling in mini-channels.[D]. Thesis, Kyoto University. 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700