用户名: 密码: 验证码:
人类上皮性卵巢癌细胞培养上清诱导CD4+CD25-CD45RA+初始T细胞向调节性T细胞转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人类CD4+CD25-CD45RA+初始T细胞和CD4+CD25-CD45RA-T细胞群体有不同的FOXP3表达模式
     目的研究CD4+CD25-CD45RA+初始T细胞和CD4+CD25-CD45RA-T细胞群体静息及激活状态下叉头框蛋白3(FOXP3)的表达,以探讨不同群体细胞的可能性质及同调节性T细胞的内在联系。方法采用磁珠分选人外周血淋巴细胞,使用CD4 T细胞磁选分离试剂盒、CD25磁珠及CD45RA磁珠分离CD4+T淋巴细胞、CD4+CD25+T淋巴细胞、CD4+CD25-CD45RA+T淋巴细胞及CD4+CD25-CD45RA-T淋巴细胞,采用流式细胞仪检测其纯度,并使用流式细胞仪检测其FOXP3的表达。然后使用CD3/CD28双信号分别激活CD4+CD25-CD45RA+T淋巴细胞及CD4+CD25-CD45RA-T淋巴细胞3天,流式细胞仪检测激活后的细胞FOXP3表达。结果静息状态下的CD4+CD25-CD45RA+初始T细胞不表达FOXP3,即使使用CD3/CD28双信号激活后也很少细胞表达FOXP3,而CD4+CD25-CD45RA-T细胞在静息状态下少量细胞表达FOXP3,但是一旦激活,则高比例的细胞表达FOXP3。结论不同亚型的T细胞具有不同的FOXP3表达模式,特别是在激活状态下有明显的区别。CD4+CD25-CD45RA+T细胞在未激活时不表达FOXP3, CD3/CD28双信号刺激3天仅很少量的细胞表达FOXP3,适合作为调节性T细胞体外诱导实验的靶细胞。
     第二部分激活的人类CD4+CD25-CD45RA-T淋巴细胞高表达FOXP3并有抑制功能的体外研究
     目的研究激活后的CD4+CD25-CD45RA-T细胞的表型特征及功能,以明确激活的CD4+CD25-CD45RA-T细胞是否有调节性T细胞的抑制功能及其抑制功能的变化。方法采用磁珠分选人外周血淋巴细胞,首先采用阴性分选分离CD4+T淋巴细胞,然后使用CD25磁珠去除CD4+CD25+T淋巴细胞,而CD4+CD25-T淋巴细胞再使用CD45RA磁珠分离部分CD4+CD25-CD45RA+T淋巴细胞,剩下的细胞作为CD4+CD25-CD45RA-T细胞分别采用各种方式进行激活,激活后的细胞使用流式细胞仪检测其FOXP3的表达,然后将其同自身CD4+CD25-CD45RA+T淋巴细胞共培养,使用溴标法检测其抑制自身CD4+CD25-CD45RA+T淋巴细胞增生的能力。结果不管是否有外源性的IL-2存在,使用CD3/CD28双信号激活的CD4+CD25-CD45 RA-T细胞都有高比例的细胞表达FOXP3,而且即使是CD3单信号激活,也有高比例的细胞表达FOXP3.中和IL-10及TGF-β并不能抑制其FOXP3的表达。进一步的功能试验表明,3天激活的CD4+CD25-CD45 RA- T细胞具有抑制功能。但是随着激活时间的延长,其抑制能力减弱,抑制能力的减弱可能同大量细胞的凋亡有关。结论人类外周血记忆性T细胞群体内存在一类调节性T细胞的前体细胞,这部分细胞在静息状态下不表达FOXP3,一旦接受TCR信号的激活,特别是有合适的共刺激信号存在的条件下,则快速表达FOXP3并且具有抑制功能,但激活后有快速凋亡的特征。
     第三部分人类上皮性卵巢癌细胞诱导激活的CD4+CD25-CD45RA+初始T细胞表达FOXP3并X-有抑制功能的体外研究
     目的研究上皮性卵巢癌细胞培养上清是否能够诱导激活的CD4+CD25-CD45RA+T初始细胞表达FOXP3并具有抑制功能及其内在机制。方法采用磁珠分选的方法分离高纯度的人类CD4+CD25-CD45RA+初始T细胞,使用CD3/CD28双信号激活的方法体外激活这些细胞并且在激活的同时在培养基中加入一定比例的上皮性卵巢癌细胞培养上清,共培养3天,激活后的细胞使用流式细胞仪检测其FOXP3的表达并使用溴标法细胞共培养试验观察其抑制功能。我们也在培养系统中分别加入几种细胞因子的特异性抗体,以观察其对FOXP3表达的影响。最后我们使用细胞因子模拟或者改变卵巢癌细胞培养上清中细胞因子构成的方法观察其对FOXP3表达的影响。结果我们使用了2个上皮性卵巢癌的细胞株及5个原代培养的上皮性卵巢癌细胞,同时使用一个正常的卵巢上皮细胞培养上清作为对照。发现所有的上皮性卵巢癌细胞培养上清均能诱导激活的CD4+CD25-CD45RA+T初始细胞表达FOXP3,而正常卵巢上皮细胞培养上清没有这个能力。随后的共培养抑制试验表明这些细胞具有抑制功能。细胞因子中和试验发现中和IL-10及TGF-β及IL-4均不能抑制激活的CD4+CD25-CD45RA+T初始细胞表达FOXP3,而LIF中和抗体部分抑制其FOXP3表达,但是LIF单独并不能诱导激活后的CD4+CD25-CD45RA+T初始细胞表达FOXP3。在培养系统中加入IL-6也不影响卵巢癌细胞上清诱导的FOXP3表达。结论人类上皮性卵巢癌细胞培养上清能够诱导激活的人类CD4+CD25-CD45RA+初始T细胞表达FOXP3,并具有抑制自身免疫细胞增殖的功能,提示人类上皮性卵巢癌细胞能体外诱导非调节性T细胞转化为调节性T细胞。改变培养上清中卵巢癌细胞分泌的单一细胞因子水平,不影响人类上皮性卵巢癌细胞诱导激活的人类CD4+CD25-CD45RA+初始T细胞表达FOXP3,提示可能多种细胞因子参与了FOXP3表达的诱导,而且细胞因子间可能存在复杂的相互作用。
PARTⅠThere are different FOXP3 expression profiles of human CD4+CD25-CD45RA+T cells and CD4+CD25-CD45 RA-T cells
     Objective To study the forkhead box protein 3 (FOXP3) expression in activated or unactivated different subtypes of CD4+T cells, and to explore the latent relation between these cells and regulatory T cells.
     Methods T cells were isolated over the autoMACS Separator. CD4+ T cells, CD4+CD25+T cells, CD4+CD25-CD45RA+T cells and CD4-CD25-CD45RA-T cells were isolated with human CD4+T cell isolation kit II, CD25 microbead and CD45RA microbead respectively. The isolated T cells were cultured in complete RPMI 1640 with or without anti-CD3/CD28 dual-signal activation. The purity of all isolated populations was routinely controlled by flow cytometry. The FOXP3 expression of cultured T cells was determined by single-cell analysis using flow cvtometrv after 3 days.
     Results High purity CD4+CD25-CD45RA+ naive T cells didn't contain any cells with FOXP3 expression by single-cell analysis. Only a few of these CD4+CD25-CD45RA+T cells will express FOXP3 when they are activated with anti-CD3/CD28 dual-signal for 3 days. However, a few CD4+CD25-CD45 RA-T cells express FOXP3 without activation with anti-CD3/CD28 dual-signal, and about half of all these cells will express FOXP3 when they are activated with anti-CD3/CD28 dual-signal for 3 days. FOXP3 expression was observed in a considerable part of CD4+CD25+T cells.
     Conclusion There are different forkhead box protein 3 expression profiles in different subtypes of CD4+T cells, especially when the cells were activated with anti-CD3/CD28 dual-signal. Foxp3 expression is absent in unstimulated CD4+CD25-CD45RA+T cells, and few cells express FOXP3 in activated CD4+CD25-CD45RA+ naive T cells. The CD4+CD25-CD45RA+ naive T cells are competent precursors for the study of inducing regulatory t cells in vitro.
     PARTⅡThe activated human CD4+CD25-CD45RA-T cells express FOXP3 and exhibit suppressive ability in vitro.
     Objective To determine the suppressive ability of activated CD4+CD25-CD45RA-T cells.
     Methods The isolation and culture of T cells were shown in the part I. The FOXP3 expression of cultured T cells was determined by single-cell analysis using flow cytometry as shown in part I. The suppressive ability of activated CD4+CD25-CD45RA -T cells was determined with coculture suppression assay using a BrdU proliferation ELISA kit.
     Results More than half of CD4+CD25-CD45RA-T cells will express FOXP3 when they are activated with anti-CD3/CD28 dual-signal for 3 days in the presence or absence of exogenous IL-2. There are high rate of cells will express FOXP3 even these cells are activated just with anti-CD3 single-signal. Neutralization assays revealed that neutralizing antibody against TGF-βor interleukin-10 did not abrogate the expression of FOXP3. Furthermore, an in vitro coculture suppression assay showed that these cells could suppress the proliferation of autologous CD4+CD25-CD45RA+T cells T cells. The suppressive ability of activated CD4+CD25-CD45RA-T cells decreased accompanying with increased apoptosis as prolong of activation duration.
     Conclusion There is a subset of regulatory T cell precursors in human memory CD4+ T cells, which does not express FOXP3 in rest state, quickly express FOXP3 and exhibit suppressive ability once exposed to its cognate antigen, but experience promptly apopatosis. [Key words] regulatory T cells; memory T cells; forkhead box protein 3; apoptosis
     PART III Human epithelial ovarian carcinoma cell-derived cytokines cooperatively induce activated CD4+CD25-CD45RA+ naive T cells to express FOXP3 and exhibit suppressive ability in vitro.
     Objective To study whether the culture supernatant of human epithelial ovarian carcinoma cells could induce activated CD4+CD25-CD45RA+ naive T cells to express FOXP3 and exhibit suppressive ability in vitro and explore the involved mechanism
     Methods We collected high-purity human CD4+CD25-CD45RA+ naive T cells by microbead cell separation. The CD4+CD25-CD45RA+ naive T cells were cultured in the absence or presence of the culture supernatant of human epithelial ovarian carcinoma cells for 3 days. The FOXP3 expression of cultured T cells was determined by single-cell analysis using flow cytometry as shown in part I. The suppressive ability of induced FOXP3+ T cells was determined with coculture suppression assay using a BrdU proliferation ELISA kit. In neutralization experiments.10 ug/mL of neutralizing anti-TGF-beta. anti-IL-10, anti-IL-4, anti-LIF antibody or a combination of neutralizing anti-TGF-beta and anti-IL-10 antibody was used. In induction experiments, hrLIF or IL-6 at 10 ng/mL was used. The FOXP3 expression of cultured T cells was determined by single-cell analysis using flow cytometry as shown in part I.
     Results High-purity human CD4+CD25-CD45RA+ naive T cells did not express FOXP3 by single-cell analysis, and few cells expressed FOXP3 when they were activated with anti-CD3/CD28 dual signal. However, more cells expressed FOXP3 when the supernatant of human epithelial ovarian carcinoma cell culture was added, yet not the supernatant of normal human ovarian surface epithelia cell culture. A further coculture suppression assay showed that these cells could suppress the proliferation of autologous CD4+CD25-CD45RA-T cells. Neutralizing antibody against transforming growth factor beta (TGF-beta), interleukin-10, and interleukin-4 did not abrogate elevated FOXP3 expression induced by carcinoma cell culture supernatant, whereas neutralizing leukemia inhibitory factor (LIF) partially abrogated FOXP3 expression, but LIF alone could not increase FOXP3 expression in activated naive T cells.
     Conclusion Human epithelial ovarian carcinoma cells are able to induce expression of FOXP3 and exhibit suppressive ability in activated CD4+CD25-CD45RA+ naive T cells, which may be related with the increased regulatory T cells in the patient of ovarian carcinoma. Multiple human epithelial ovarian carcinoma cell-derived cytokines could be involved in the FOXP3 expression induction of activated CD4+CD25-CD45RA+ naive T cells. There should be a complicated interaction among these cytokines, which cooperatively induces the expression of FOXP3 in activated naive T cells and differentiates these cells into regulatory T cells.
引文
[1] Mangan PR, Harrington LE, O'Quinn DB, Helms WS. Bullard DC. Elson CO. Hatton RD, Wahl SM, Schoeb TR. Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature.2006 May 11;441(7090):231-4. [2] Bettelli E, Carrier Y, Gao W. Korn T. Strom TB, Oukka M, Weiner HL. Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature.2006 May 11;441(7090):235-8. [3] Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995 Aug 1; 155(3):1151-64. [4] Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol.2003 Mar;3(3):253-7. [5] Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol.2001 Aug 1;167(3):1245-53. [6] Valmori D. Merlo A, Souleimanian NE. Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest. 2005 Jul;115(7):1953-62. [7] Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S, Nanan R. Fazekas de Saint Groth B. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood.2006 Apr 1;107(7):2830-8. [8] Fritzsching B, Oberle N, Pauly E, Geffers R, Buer J, Poschl J, Krammer P. Linderkamp O, Suri-Payer E. Naive regulatory T cells:a novel subpopulation
    defined by resistance toward CD95L-mediated cell death. Blood.2006 Nov 15;108(10):3371-8. [9] Yokokawa J. Cereda V. Remondo C, Gulley JL, Arlen PM, Schlom J. Tsang KY. Enhanced functionality of CD4+CD25(high)FoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res.2008 Feb 15;14(4):1032-40. [10] Walker MR, Kasprowicz DJ, Gersuk VH. Benard A, Van Landeghen M, Buckner JH, Ziegler SF.Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J Clin Invest 2003; 112(9):1437-43. [11] Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25-cells. Proc Natl Acad Sci U S A 2005; 102(11):4103-8. [12] Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, Akbar AN. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest.2006 Sep;116(9):2423-33.
    [1]Bluestone JA. Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol.2003 Mar;3(3):253-7.
    [2]Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 2001; 166(12):7282-9.
    [3]Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF.Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J Clin Invest 2003; 112(9):1437-43.
    [4]Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc Natl Acad Sci U S A 2005; 102(11):4103-8.
    [5]Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA.Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 2004; 172(9):5213-21.
    [6]Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA.Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol 2002; 169(8):4183-9.
    [7]Rao PE, Petrone AL, Ponath PD. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-{beta}. J Immunol 2005; 174(3):1446-55.
    [8]Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007; 19(4):345-54.
    [9]Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW. Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+T cells. Eur J Immunol 2007; 37(1):129-38.
    [10]Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3-T cells by T-cell receptor stimulation is transforming growth factor-Β-dependent but does not confer a regulatory phenotype. Blood 2007; 110(8):2983-90.
    [11]Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol.2001 Aug 1;167(3):1245-53.
    [12]Skapenko A, Kalden JR, Lipsky PE, et al. The IL-4 receptor alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25-CD4+precursors. J Immunol 2005; 175(9):6107-16.
    [13]Chen W, Jin W, Hardegen N, Lei KJ et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198(12):1875-86.
    [14]Fantini MC, Becker C, Monteleone G. et al. Cutting edge:TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172(9):5149-53.
    [15]Grimbert P, Bouguermouh S, Baba N, Nakajima T, Allakhverdi Z, Braun D, Saito H, Rubio M, Delespesse G, Sarfati M. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+CD25-T cells in response to inflammation. J Immunol.2006 Sep 15;177(6):3534-41.
    [16]Wang Z, Hong J, Sun W, Xu G, Li N, Chen X, Liu A, Xu L, Sun B, Zhang JZ. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+CD25-T cells to CD4+ Tregs. J Clin Invest.2006 Sep;116(9):2434-41.
    [17]Chatenoud L. CD3-specific antibody-induced active tolerance:from bench to
    bedside. Nat Rev Immunol.2003 Feb;3(2):123-32.
    [18]Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A. Masters JE. Rustin MH. Taams LS, Beverley PC, Macallan DC, Akbar AN. Human CD4+ CD25hi Foxp3+regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest.2006 Sep;116(9):2423-33.
    [19]Pakravan N, Hassan AT. Hassan ZM. Naturally occurring self-reactive CD4+CD25+regulatory T cells:universal immune code. Cell Mol Immunol. 2007 Jun;4(3):197-201.
    [20]Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest.2005 Jul;115(7):1953-62.
    [21]Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S, Nanan R, Fazekas de Saint Groth B. Persistence of naive CD45RA+regulatory T cells in adult life. Blood.2006 Apr 1;107(7):2830-8.
    [22]Santner-Nanan B, Seddiki N, Zhu E, Quent V, Kelleher A, Fazekas de St Groth B, Nanan R. Accelerated age-dependent transition of human regulatory T cells to effector memory phenotype. Int Immunol.2008 Mar;20(3):375-83.
    [23]Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001 Jun 4;193(11):1285-94.
    [24]Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human anergic/suppressive CD4(+)CD25(+) T cells:a highly differentiated and apoptosis-prone population. Eur J Immunol.2001 Apr:31 (4):1122-31.
    [25]Fritzsching B, Oberle N, Eberhardt N, Quick S, Haas J, Wildemann B, Krammer PH, Suri-Payer E. In contrast to effector T cells, CD4+CD25+FoxP3+regulatory T cells are highly susceptible to CD95 ligand-but not to TCR-mediated cell death. J Immunol.2005 Jul 1;175(1):32-6.
    [26]Fritzsching B. Oberle N, Pauly E, Geffers R, Buer J, Poschl J, Krammer P. Linderkamp 0, Suri-Payer E. Naive regulatory T cells:a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood.2006 Nov 15;108(10):3371-8.
    [1]Jerome KR, Barnd DL, Bendt KM, Boyer CM, Taylor-Papadimitriou J. McKenzie IF, Bast RC Jr, Finn OJ. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res.1991 Jun 1;51(11):2908-16.
    [2]Mami-Chouaib F, Echchakir H, Dorothee G, Vergnon I, Chouaib S. Antitumor cytotoxic T-lymphocyte response in human lung carcinoma:identification of a tumor-associated antigen. Immunol Rev.2002 Oct;188:114-21.
    [3]Ioannides CG, Fisk B, Jerome KR, Irimura T, Wharton JT, Finn OJ. Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J Immunol.1993 Oct 1; 151 (7):3693-703.
    [4]Peoples GE, Schoof DD, Andrews JV, Goedegebuure PS, Eberlein TJ. T-cell recognition of ovarian cancer. Surgery.1993 Aug;114(2):227-34.
    [5]Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston RB, Moe R and Cheever MA. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res.1994 Jan 1:54(1):16-20.
    [6]Mortarini R, Borri A, Tragni G, Bersani I, Vegetti C, Bajetta E, Pilotti S, Cerundolo V, Anichini A. Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+T cells in melanoma patients receiving interleukin 12. Cancer Res.2000 Jul 1;60(13):3559-68.
    [7]Anichini A, Molla A, Mortarini R, Tragni G, Bersani I, Di Nicola M, Gianni AM, Pilotti S, Dunbar R. Cerundolo V, Parmiani G. An expanded peripheral T cell population to a cytotoxic T lymphocyte (CTL)-defined, melanocyte-specific antigen in metastatic melanoma patients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J Exp Med.1999 Sep 6;190(5):651-67.
    [8]Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med.2004 Sep 20;200(6):771-82.
    [9]Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med.2005 May 16;201 (10):1591-602.
    [10]Zhang P, Cote AL, de Vries VC, Usherwood EJ, Turk MJ. Induction of postsurgical tumor immunity and T-cell memory by a poorly immunogenic tumor. Cancer Res.2007 Jul 1;67(13):6468-76.
    [11]Cote AL, Usherwood EJ, Turk MJ. Tumor-specific T-cell memory:clearing the regulatory T-cell hurdle. Cancer Res.2008 Mar 15;68(6):1614-7.
    [12]Chen L, Huang TG, Meseck M, Mandeli J, Fallon J, Woo SL. Rejection of metastatic 4T1 breast cancer by attenuation of Treg cells in combination with immune stimulation. Mol Ther.2007 Dec; 15(12):2194-202.
    [13]Goforth R, Salem AK, Zhu X, Miles S, Zhang XQ, Lee JH, Sandier AD. Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma. Cancer Immunol Immunother.2009 Apr;58(4):517-30.
    [14]Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest. 2005 Dec;115(12):3623-33.
    [15]Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P. Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med.2004 Sep;10(9):942-9.
    [16]Griffiths RW, Elkord E, Gilham DE, Ramani V, Clarke N, Stern PL, Hawkins RE. Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunol Immunother.2007 Nov;56(11):1743-53.
    [17]Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N, Omata H, Fujii H. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother.2006 Sep;55(9):1064-71.
    [18]Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y. Fu YX, Wang FS. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology.2007 Jun;132(7):2328-39.
    [19]Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res.2006 Sep 15; 12(18):5423-34.
    [20]Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA; Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K. Intraepithelial CD8+tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A.2005 Dec 20:102(51):18538-43.
    [21]Jordanova ES, Gorter A, Ayachi O, Prins F, Durrant LG, Kenter GG, van der Burg SH, Fleuren GJ. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio:which variable determines survival of cervical cancer patients? Clin Cancer Res.2008 Apr 1;14(7):2028-35.
    [22]Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol.2007 Jun 20;25(18):2586-93.
    [23]Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res. 2003 Oct 1;9(12):4404-8.
    [24]Li X, Ye DF, Xie X, Chen HZ, Lu WG. Proportion of CD4+CD25+ regulatory T cell is increased in the patients with ovarian carcinoma. Cancer Invest. 2005;23(5):399-403.
    [25]Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res.2005 Mar 15;65(6):2457-64.
    [26]Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol.2002 Sep 1;169(5):2756-61.
    [27]DeLong P, Carroll RG, Henry AC, Tanaka T, Ahmad S, Leibowitz MS, Sterman DH, June CH, Albelda SM, Vonderheide RH. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther.2005 Mar;4(3):342-6.
    [28]Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer.2005 Mar 14;92(5):913-20.
    [29]Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res.2003 Feb;9(2):606-12.
    [30]Valzasina B, Piconese S, Guiducci C, Colombo MP. Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent. Cancer Res.2006 Apr 15;66(8):4488-95.
    [31]Hiura T, Kagamu H, Miura S, Ishida A, Tanaka H, Tanaka J, Gejyo F, Yoshizawa H. Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression. J Immunol.2005 Oct 15;175(8):5058-66.
    [32]Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X. Zhang Q, Lonning S, Teicher BA, Lee C. Tumor evasion of the immune system by converting CD4+CD25-T cells into CD4+CD25+T regulatory cells:role of tumor-derived TGF-beta. J Immunol.2007 Mar 1;178(5):2883-92.
    [33]Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF.Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J Clin Invest 2003; 112(9):1437-43.
    [34]Walker MR. Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25-cells. Proc Natl Acad Sci U S A 2005; 102(11):4103-8.
    [35]Chen LL, Ye F, Lu WG, Yu Y, Chen HZ. Xie X. Evaluation of immune inhibitory cytokine profiles in epithelial ovarian carcinoma. J Obstet Gynaecol Res.2009 Apr;35(2):212-8.
    [36]Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 2001; 166(12):7282-9.
    [37]Chen W, Jin W, Hardegen N, Lei KJ et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198(12):1875-86.
    [38]Fantini MC, Becker C, Monteleone G, et al. Cutting edge:TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172(9):5149-53.
    [39]Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+CD25+cells educate CD4+CD25-cells to develop suppressive activity:the role of IL-2, TGF-beta, and IL-10. J Immunol.2004 May 1;172(9):5213-21.
    [40]Skapenko A, Kalden JR, Lipsky PE, Schulze-Koops H. The IL-4 receptor alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25-CD4+ precursors. J Immunol.2005 Nov 1;175(9):6107-16.
    [41]Metcalfe SM, Watson TJ, Shurey S, Adams E, Green CJ. Leukemia inhibitory factor is linked to regulatory transplantation tolerance. Transplantation.2005 Mar 27;79(6):726-30.
    [42]Zenclussen AC. Regulatory T cells in pregnancy. Springer Semin Immunopathol. 2006 Aug;28(1):31-9.
    [43]Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007; 19(4):345-54.
    [44]Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+T cells. Eur J Immunol 2007; 37(1):129-38.
    [45]Tran DQ, Ramsey H. Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3-T cells by T-cell receptor stimulation is transforming growth factor-Β-dependent but does not confer a regulatory phenotype. Blood 2007; 110(8):2983-90.
    [46]Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature.2006 May 11;441 (7090):235-8.
    [47]Thornton AM. Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med.1998 Jul 20;188(2):287-96.
    [48]Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001 Jun 4;193(11):1285-94.
    [49]Groux H, O'Garra A. Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature.1997 Oct 16;389(6652):737-42.
    [50]Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol. 2002 Oct 15;169(8):4183-9.
    [51]Liang S, Alard P, Zhao Y, Parnell S, Clark SL, Kosiewicz MM. Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med.2005 Jan 3;201(1):127-37.
    [1]Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med.1985 Jan 1:161(1):72-87.
    [2]Sugihara S, Izumi Y, Yoshioka T, Yagi H, Tsujimura T, Tarutani O. Kohno Y, Murakami S, Hamaoka T, Fujiwara H. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. I. Requirement of Lyt-1 dull L3T4 bright normal T cells for the induction of thyroiditis. J Immunol.1988 Jul 1;141(1):105-13.
    [3]Sakaguchi S, Sakaguchi N. Organ-specific autoimmune disease induced in mice by elimination of T cell subsets. V. Neonatal administration of cyclosporin A causes autoimmune disease. J Immunol.1989 Jan 15;142(2):471-80.
    [4]Berendt MJ, North RJ. T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med.1980 Jan 1;151(1):69-80.
    [5]Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995 Aug 1; 155(3):1151-64.
    [6]Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol.2003 Mar;3(3):253-7.
    [7]Starr TK. Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol.2003;21:139-76.
    [8]Itoh M, Takahashi T. Sakaguchi N. Kuniyasu Y. Shimizu J, Otsuka F, Sakaguchi S. Thymus and autoimmunity:production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol.1999 May 1;162(9):5317-26.
    [9]Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol.2001 Apr;2(4):301-6.
    [10]Apostolou I, Sarukhan A, Klein L, von Boehmer H. Origin of regulatory T cells with known specificity for antigen. Nat Immunol.2002 Aug;3(8):756-63.
    [11]Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D. Projection of an immunological self shadow within the thymus by the aire protein. Science.2002 Nov 15;298(5597):1395-401.
    [12]Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol.2003 Apr;4(4):350-4.
    [13]Bensinger SJ, Bandeira A, Jordan MS, Caton AJ, Laufer TM. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells. J Exp Med.2001 Aug 20;194(4):427-38.
    [14]Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity.2000 Apr; 12(4):431-40.
    [15]Tang Q, Henriksen KJ, Boden EK, Tooley AJ, Ye J, Subudhi SK, Zheng XX, Strom TB, Bluestone JA.. Cutting edge:CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol.2003 Oct 1;171(7):3348-52.
    [16]Tai X, Cowan M. Feigenbaum L, Singer A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol.2005 Feb;6(2):152-62.
    [17]Nazarov-Stoica C, Surls J, Bona C, Casares S, Brumeanu TD. CD28 signaling in T regulatory precursors requires p561ck and rafts integrity to stabilize the Foxp3 message. J Immunol.2009 Jan 1;182(1):102-10.
    [18]Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, Ovaa H, Ploegh HL, Coyle AJ, Rajewsky K. Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci U S A.2004 Mar 30;101(13):4566-71.
    [19]Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, Kuroda N, Han H, Li Y, Matsushima A, Takahama Y, Sakaguchi S, Mitani T, Matsumoto M. NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol.2004 Feb 15;172(4):2067-75.
    [20]Kumanogoh A, Wang X, Lee I, Watanabe C, Kamanaka M, Shi W, Yoshida K, Sato T, Habu S, Itoh M, Sakaguchi N, Sakaguchi S, Kikutani H. Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions:a role of CD40 in regulatory T cell development. J Immunol.2001 Jan 1;166(1):353-60.
    [21]Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A. C., Horak, I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993 Oct 22;75(2):253-61.
    [22]Willerford, D. M., Chen, J., Ferry, J. A., Davidson, L., Ma, A., Alt, F. W. Interleukin-2 receptor achain regulates the size and content of the peripheral lymphoid compartment Immunity.1995 Oct;3(4):521-30.
    [23]Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard JJ, Ohashi PS, Griesser H, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science.1995 Jun 9;268(5216):1472-1476.
    [24]Kneitz B., Herrmann T., Yonehara S., Schimpl A. Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice. Eur. J. Immunol.1995;25:2572-2577.
    [25]Van Parijs L., Biuckians A., Ibragimov A., Alt F.W., Abbas A.K. Functional responses and apoptosis of CD25 (IL-2R a)-deficient T cells expressing a transgenic antigen receptor. J. Immunol.1997;158:3738-3745.
    [26]Malek TR, Yu A, Vincek V, Scibelli P, Kong L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity.2002 Aug; 17(2):167-78.
    [27]Papiernik M, de Moraes ML, Pontoux C, Vasseur F, Penit C. Regulatory CD4 T cells:expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol.1998 Apr;10(4):371-8.
    [28]Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I. Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med.1999 Dec 6:190(11):1561-72.
    [29]Chang X, Gao JX, Jiang Q, Wen J, Seifers N, Su L, Godfrey VL, Zuo T, Zheng P, Liu Y. The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis. J Exp Med.2005 Oct 17;202(8):1141-51.
    [30]Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet.2001 Jan;27(1):68-73.
    [31]Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27(1):20-1.
    [32]Kobayashi I, Shiari R, Yamada M, et al. Novel mutations of FOXP3 in two Japanese patients with immune dysregulation, polyendocrinopathy, enteropathy, X linked syndrome (IPEX). J Med Genet 2001; 38(12):874-6.
    [33]Fontenot, J.D., Gavin, M.A. Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol 2003; 4, 330-336.
    [34]Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+T regulatory cells. Nat. Immunol 2003; 4,337-342.
    [35]Hori, S., Nomura, T. Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299,1057-1061.
    [36]Groux H, O'Garra A. Bigler M, Rouleau M, Antonenko S, de Vries JE. Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature.1997 Oct 16;389(6652):737-42.
    [37]Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK. Type 1 T regulatory cells. Immunol Rev.2001 Aug;182:68-79.
    [38]Cottrez F, Hurst SD, Coffman RL, Groux H. T regulatory cells 1 inhibit a Th2-specific response in vivo. J Immunol.2000 Nov 1;165(9):4848-53.
    [39]Levings MK, Roncarolo MG. T-regulatory 1 cells:a novel subset of CD4 T cells with immunoregulatory properties. J Allergy Clin Immunol.2000 Jul; 106(1 Pt 2):S109-12.
    [40]Meiler F, Zumkehr J, Klunker S, Riickert B, Akdis CA, Akdis M. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med. 2008 Nov 24;205(12):2887-98.
    [41]Levings MK, Sangregorio R, Galbiati F, Squadrone S, de Waal Malefyt R, Roncarolo MG. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol.2001 May 1;166(9):5530-9.
    [42]Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G. Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J Exp Med. 2002 Jul 15:196(2):247-53.
    [43]Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG. Differentiation of Trl cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood.2005 Feb 1; 105(3):1162-9.
    [44]Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev.2001 Aug;182:207-14.
    [45]Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance:suppression of autoimmune encephalomyelitis. Science.1994 Aug 26;265(5176):1237-40.
    [46]Inobe J, Slavin AJ, Komagata Y, Chen Y. Liu L, Weiner HL. IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur J Immunol.1998 Sep;28(9):2780-90.
    [47]Weiner HL. Oral tolerance:immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect.2001 Sep;3(11):947-54.
    [48]Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol.2002 Oct 15; 169(8):4183-9.
    [49]Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta. and IL-10. J Immunol.2004 May 1;172(9):5213-21.
    [50]Stassen M, Fondel S, Bopp T, Richter C, Muller C, Kubach J, Becker C, Knop J, Enk AH, Schmitt S, Schmitt E, Jonuleit H. Human CD25+ regulatory T cells: two subsets defined by the integrins alpha 4 beta 7 or alpha 4 beta 1 confer distinct suppressive properties upon CD4+ T helper cells. Eur J Immunol.2004 May;34(5):1303-11.
    [51]Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, Powell JD, Pardoll DM, Drake CG, Vignali DA. Role of LAG-3 in regulatory T cells. Immunity.2004 Oct;21(4):503-13.
    [52]Han Y, Guo Q, Zhang M, Chen Z, Cao X. CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J Immunol.2009 Jan 1;182(1):111-20.
    [53]Deniz G, Erten G, Kiiciiksezer UC, Kocacik D, Karagiannidis C, Aktas E, Akdis CA, Akdis M. Regulatory NK cells suppress antigen-specific T cell responses. J Immunol.2008 Jan 15;180(2):850-7.
    [54]Cosmi L. Liotta F, Lazzeri E. Francalanci M, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Vanini V, Romagnani P, Maggi E, Romagnani S, Annunziato F. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood.2003 Dec 1;102(12):4107-14.
    [55]Reibke R, Garbi N, Ganss R, Hammerling GJ, Arnold B, Oelert T. CD8+ regulatory T cells generated by neonatal recognition of peripheral self-antigen. Proc Natl Acad Sci U S A.2006 Oct 10;103(41):15142-7.
    [56]Manavalan JS, Kim-Schulze S, Scotto L, Naiyer AJ, Vlad G, Colombo PC, Marboe C, Mancini D, Cortesini R, Suciu-Foca N. Alloantigen specific CD8+CD28- FOXP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol.2004 Aug;16(8):1055-68.
    [57]Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol.2001 Aug 1;167(3):1245-53.
    [58]Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest.2005 Jul;115(7):1953-62.
    [59]Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M, Demengeot J. Foxp3+ CD25- CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci U S A.2005 Mar 15;102(11):4091-6.
    [60]Degauque N, Lair D, Braudeau C, Haspot F, Sebille F, Dupont A, Merieau E, Brouard S, Soulillou JP. Development of CD25- regulatory T cells following heart transplantation:evidence for transfer of long-term survival. Eur J Immunol. 2007 Jan;37(1):147-56..
    [61]Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med.2000 Jul 17;192(2):303-10.
    [62]Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol.2002 Feb;3(2):135-42.
    [63]McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC. CD4(+)CD25(+) immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity.2002 Feb;16(2):311-23
    [64]Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med.2000 Jul 17;192(2):295-302.
    [65]GJ Freeman, DB Lombard, CD Gimmi, SA Brod, K Lee, JC Laning, DA Hafler, ME Dorf, GS Gray and H Reiser。CTLA-4 and CD28 mRNA are coexpressed in most T cells after activation. Expression of CTLA-4 and CD28 mRNA does not correlate with the pattern of lymphokine production. J Immunol.1992 Dec 15;149(12):3795-801.
    [66]Nocentini G, Riccardi C. GITR:a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol.2005 Apr;35(4):1016-22.
    [67]Kanamaru F, Youngnak P, Hashiguchi M, Nishioka T. Takahashi T, Sakaguchi S, Ishikawa I, Azuma M. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol.2004 Jun 15;172(12):7306-14.
    [68]Chai JG, Xue SA, Coe D, Addey C, Bartok I, Scott D, Simpson E, Stauss HJ, Hori S, Sakaguchi S, Dyson J. Regulatory T cells, derived from naive CD4+CD25- T cells by in vitro Foxp3 gene transfer, can induce transplantation tolerance.2005; Transplantation 79(10):1310-6.
    [69]Oswald-Richter K, Grill SM, Shariat N, Leelawong M, Sundrud MS, Haas DW, Unutmaz D.HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Biol 2004; 2(7):E198.
    [70]Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S.Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004; 16(11):1643-56.
    [71]Kim JY, Kim HJ, Hurt EM, Chen X, Howard OM, Farrar WL. Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells. Biochem Biophys Res Commun 2007; 362(1):44-50.
    [72]Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK.Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007; 19(4):345-54.
    [73]Wang J, Ioan-Facsinay A, van der Voort El, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007; 37(1):129-38.
    [74]Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3- T cells by T-cell receptor stimulation is transforming growth factor-Β-dependent but does not confer a regulatory phenotype. Blood 2007; 110(8):2983-90.
    [75]Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA.A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 2001; 166(12):7282-9.
    [76]Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 2003; 112(9):1437-43.
    [77]Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc Natl Acad Sci U S A 2005; 102(11):4103-8.
    [78]Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 2004; 172(9):5213-21.
    [79]Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol 2002; 169(8):4183-9.
    [80]Rao PE, Petrone AL, Ponath PD. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-{beta}. J Immunol 2005; 174(3):1446-55.
    [81]Zhao X, Ye F, Chen L, Lu W, Xie X. Human epithelial ovarian carcinoma cell-derived cytokines cooperatively induce activated CD4(+)CD25(-)CD45RA(+) naive T cells to express forkhead box protein 3 and exhibit suppressive ability in vitro. Cancer Sci.2009 Jul 10. [Epub ahead of print]
    [82]Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A, Ocheltree EL, Greenberg PD, Ochs HD, Rudensky AY. Single-cell analysis of normal and FOXP3-mutant human T cells:FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A.2006 Apr 25;103(17):6659-64.
    [83]Allan SE, Song-Zhao GX, Abraham T, McMurchy AN, Levings MK. Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3. Eur J Immunol.2008 Dec;38(12):3282-9.
    [84]Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD 127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med.2006 Jul 10;203(7):1701-11.
    [85]Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, Kelleher A, Fazekas de St Groth B. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med.2006 Jul 10;203(7):1693-700.
    [86]Kubach J. Lutter P, Bopp T, Stoll S, Becker C, Huter E, Richter C, Weingarten P, Warger T, Knop J, Mullner S, Wijdenes J, Schild H, Schmitt E, Jonuleit H. Human CD4+CD25+ regulatory T cells:proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood. 2007 Sep 1;110(5):1550-8.
    [87]Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, Powell JD, Pardoll DM, Drake CG, Vignali DA. Role of LAG-3 in regulatory T cells. Immunity.2004 Oct;21(4):503-13.
    [88]Baixeras E, Huard B, Miossec C, Jitsukawa S, Martin M. Hercend T, Auffray C, Triebel F, Piatier-Tonneau D. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class Ⅱ antigens. J Exp Med.1992 Aug 1;176(2):327-37.
    [89]Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beissert S, Loser K, von Boehmer H, Buer J, Hansen W. Neuropilin-1:a surface marker of regulatory T cells. Eur J Immunol.2004 Mar:34(3):623-30.
    [90]La Cava A. Natural Tregs and autoimmunity. Front Biosci.2009 Jan 1;14:333-43.
    [91]Mellanby RJ, Thomas DC, Lamb J. Role of regulatory T-cells in autoimmunity. Clin Sci (Lond).2009 Apr;116(8):639-49.
    [92]Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN. Regulatory T cells and human disease. Clin Dev Immunol.2007:2007:89195.
    [93]Hawrylowicz CM, O'Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol.2005 Apr;5(4):271-83.
    [94]Robinson DS, Larche M, Durham SR. Tregs and allergic disease. J Clin Invest. 2004 Nov;114(10):1389-97.
    [95]Rouse BT, Sarangi PP, Suvas S. Regulatory T cells in virus infections. Immunol Rev.2006 Aug;212:272-86.
    [96]Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol.2005 Apr;6(4):353-60.
    [97]Kessel A. Bamberger E, Masalha M, Toubi E. The role of T regulatory cells in human sepsis. J Autoimmun.2009 May-Jun;32(3-4):211-5.
    [98]Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol.2003 Mar;3(3):199-210.
    [99]Cobbold SP. Regulatory T cells and transplantation tolerance. J Nephrol.2008 Jul-Aug;21(4):485-96.
    [100]Dijke IE, Weimar W, Baan CC. Regulatory T cells after organ transplantation: where does their action take place? Hum Immunol.2008 Jul;69(7):389-98.
    [101]Muller YD, Golshayan D, Ehirchiou D, Wekerle T, Seebach JD, Biihler LH. T regulatory cells in xenotransplantation. Xenotransplantation.2009 May;16(3):121-8.
    [102]Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med.1998 Jul 20;188(2):287-96.
    [103]Jonuleit H, Schmitt E, Stassen M. Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001 Jun 4;193(11):1285-94.
    [104]von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol.2005 Apr;6(4):338-44.
    [105]Tang Q, Bluestone JA. The Foxp3+ regulatory T cell:a jack of all trades, master of regulation. Nat Immunol.2008 Mar;9(3):239-44.
    [106]Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol.2008 Jul;8(7):523-32.
    [107]Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity.2009 May;30(5):636-45.
    [108]Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells:how do they suppress immune responses? Int Immunol.2009 Oct;21(10):1105-11.
    [109]Bopp T, Becker C, Klein M. Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, Jonuleit H, Schmitt E. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med.2007 Jun 11;204(6):1303-10.
    [110]Bopp T, Dehzad N, Reuter S, Klein M, Ullrich N, Stassen M, Schild H, Buhl R, Schmitt E, Taube C. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. J Immunol.2009 Apr 1;182(7):4017-24.
    [111]Gondek DC,Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol.2005 Feb 15;174(4):1783-6.
    [112]Grossman WJ, Verbsky JW, Barchet W. Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity.2004 Oct;21(4):589-601.
    [113]Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood.2006 May 15;107(10):3925-32.
    [114]Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, Ley TJ. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity.2007 Oct;27(4):635-46.
    [115]Gondek DC, Devries V, Nowak EC, Lu LF, Bennett KA, Scott ZA, Noelle RJ. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells. J Immunol.2008 Oct 1;181(7):4752-60.
    [116]Venet F, Pachot A, Debard AL, Bohe J, Bienvenu J, Lepape A, Powell WS, Monneret G. Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J Immunol.2006 Nov 1; 177(9):6540-7.
    [117]Strauss L, Bergmann C, Whiteside TL. Human circulating CD4+CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol.2009 Feb 1;182(3):1469-80.
    [118]Baatar D, Olkhanud P, Sumitomo K, Taub D, Gress R, Biragyn A. Human peripheral blood T regulatory cells (Tregs), functionally primed CCR4+ Tregs and unprimed CCR4- Tregs, regulate effector T cells using FasL. J Immunol. 2007 Apr 15;178(8):4891-900.
    [119]Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med.2001 Sep 3;194(5):629-44.
    [120]Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H, Shevach EM. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor betal production and responsiveness. J Exp Med.2002 Jul 15;196(2):237-46.
    [121]Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C, Blay JY, Bernard J, Caillat-Zucman S, Freitas A, Tursz T, Wagner-Ballon O, Capron C, Vainchencker W, Martin F, Zitvogel L. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med.2005 Oct 17;202(8):1075-85.
    [122]Ralainirina N, Poli A. Michel T, Poos L, Andres E, Hentges F, Zimmer J. Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol. 2007 Jan;81(1):144-53.
    [123]Savage ND, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A. Ottenhoff TH. Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol.2008 Aug 1;181(3):2220-6.
    [124]Annunziato F, Cosmi L, Liotta F, Lazzeri E, Manetti R, Vanini V, Romagnani P, Maggi E, Romagnani S. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med.2002 Aug 5;196(3):379-87.
    [125]Wei HX, Chuang YH, Li B, Wei H, Sun R, Moritoki Y, Gershwin ME, Lian ZX, Tian Z. CD4+CD25+ Foxp3+ regulatory T cells protect against T cell-mediated fulminant hepatitis in a TGF-beta-dependent manner in mice. J Immunol.2008 Nov 15;181(10):7221-9.
    [126]Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, O'Shea JJ, Shevach EM. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med.2008 Sep 1:205(9):1975-81.
    [127]Marangoni F, Trifari S, Scaramuzza S, Panaroni C, Martino S, Notarangelo LD, Baz Z, Metin A, Cattaneo F, Villa A, Aiuti A, Battaglia M, Roncarolo MG, Dupre L. WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells. J Exp Med.2007 Feb 19;204(2):369-80.
    [128]Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI. Galectin-1:a key effector of regulation mediated by CD4+CD25+T cells. Blood. 2007 Mar 1;109(5):2058-65.
    [129]Bodor J, Fehervari Z, Diamond B, Sakaguchi S. Regulatory T cell-mediated suppression:potential role of ICER. J Leukoc Biol.2007 Jan:81(1):161-7.
    [130]Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A.2008 Jul 22;105(29):10113-8.
    [131]Tran DQ, Glass DD, Uzel G, Darnell DA, Spalding C, Holland SM, Shevach EM. Analysis of adhesion molecules, target cells, and role of IL-2 in human FOXP3+ regulatory T cell suppressor function. J Immunol.2009 Mar 1;182(5):2929-38.
    [132]Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science.2008 Oct 10;322(5899):271-5.
    [133]Pakravan N, Hassan AT, Hassan ZM. Naturally occurring self-reactive CD4+CD25+ regulatory T cells:universal immune code. Cell Mol Immunol. 2007 Jun;4(3):197-201.
    [134]Kanegane H, Miyawaki T, Kato K, Yokoi T, Uehara T, Yachie A, Taniguchi N. A novel subpopulation of CD45RA+ CD4+ T cells expressing IL-2 receptor alpha-chain (CD25) and having a functionally transitional nature into memory cells. Int Immunol.1991 Dec;3(12):1349-56.
    [135]Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest.2005 Jul;115(7):1953-62.
    [136]Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S, Nanan R. Fazekas de Saint Groth B. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood.2006 Apr 1;107(7):2830-8.
    [137]Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, Edinger M. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood.2006 Dec 15;108(13):4260-7.
    [138]Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood.2006 May 15;107(10):3940-9.
    [139]Antons AK, Wang R, Oswald-Richter K, Tseng M, Arendt CW, Kalams SA, Unutmaz D. Naive precursors of human regulatory T cells require FoxP3 for suppression and are susceptible to HIV infection. J Immunol.2008 Jan 15:180(2):764-73.
    [140]Santner-Nanan B, Seddiki N, Zhu E, Quent V, Kelleher A, Fazekas de St Groth B, Nanan R. Accelerated age-dependent transition of human regulatory T cells to effector memory phenotype. Int Immunol.2008 Mar;20(3):375-83.
    [141]Grindebacke H, Stenstad H, Quiding-Jarbrink M, Waldenstrom J, Adlerberth I, Wold AE, Rudin A. Dynamic development of homing receptor expression and memory cell differentiation of infant CD4+CD25(high) regulatory T cells. J Immunol.2009 Oct 1;183(7):4360-70.
    [142]Fritzsching B, Oberle N, Pauly E, Geffers R, Buer J, Poschl J, Krammer P, Linderkamp O, Suri-Payer E. Naive regulatory T cells:a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood.2006 Nov 15;108(10):3371-8.
    [143]Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human anergic/suppressive CD4(+)CD25(+) T cells:a highly differentiated and apoptosis-prone population. Eur J Immunol.2001 Apr;31(4):1122-31.
    [144]Fritzsching B, Oberle N, Eberhardt N, Quick S, Haas J, Wildemann B, Krammer PH, Suri-Payer E. In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol.2005 Jul 1;175(1):32-6.
    [145]Pacholczyk R, Kern J, Singh N, Iwashima M, Kraj P, Ignatowicz L. Nonself-antigens are the cognate specificities of Foxp3+ regulatory T cells. Immunity.2007 Sep;27(3):493-504.
    [146]Fazilleau N, Bachelez H, Gougeon ML, Viguier M. Cutting edge:size and diversity of CD4+CD25high Foxp3+ regulatory T cell repertoire in humans: evidence for similarities and partial overlapping with CD4+CD25- T cells. J Immunol.2007 Sep 15;179(6):3412-6.
    [147]Liang S, Alard P, Zhao Y, Parnell S, Clark SL, Kosiewicz MM. Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med.2005 Jan 3:201 (1):127-37.
    [148]Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK. Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med.2005 Nov 21:202(10):1375-86.
    [149]Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 2001; 166(12):7282-9.
    [150]Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF.Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 2003; 112(9):1437-43.
    [151]Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc Natl Acad Sci U S A 2005; 102(11):4103-8.
    [152]Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA.Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 2004; 172(9):5213-21.
    [153]Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA.Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol 2002; 169(8):4183-9.
    [154]Rao PE, Petrone AL, Ponath PD. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-{beta}. J Immunol 2005:174(3):1446-55.
    [155]Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG, Levings MK. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007; 19(4):345-54.
    [156]Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+T cells. Eur J Immunol 2007; 37(1):129-38.
    [157]Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3-T cells by T-cell receptor stimulation is transforming growth factor-B-dependent but does not confer a regulatory phenotype. Blood 2007;110(8):2983-90.
    [158]Zhao X, Ye F, Chen L, Lu W, Xie X. Human epithelial ovarian carcinoma cell-derived cytokines cooperatively induce activated CD4(+)CD25(-)CD45RA(+) naive T cells to express forkhead box protein 3 and exhibit suppressive ability in vitro. Cancer Sci.2009 Jul 10. [Epub ahead of print]
    [159]Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, Akbar AN. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest.2006 Sep;116(9):2423-33.
    [160]Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1-27.
    [161]Dunn GP, Bruce AT, Ikeda H, Old LJ. Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol.2002 Nov;3(11):991-8.
    [162]Jerome KR, Barnd DL, Bendt KM, Boyer CM, Taylor-Papadimitriou J, McKenzie IF, Bast RC Jr, Finn OJ. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res.1991 Jun 1;51(11):2908-16.
    [163]Mami-Chouaib F, Echchakir H, Dorothee G, Vergnon I, Chouaib S. Antitumor cytotoxic T-lymphocyte response in human lung carcinoma:identification of a tumor-associated antigen. Immunol Rev.2002 Oct;188:114-21.
    [164]Ioannides CG, Fisk B, Jerome KR, Irimura T, Wharton JT, Finn OJ. Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J Immunol.1993 Oct 1;151(7):3693-703.
    [165]Peoples GE, Schoof DD, Andrews JV, Goedegebuure PS, Eberlein TJ. T-cell recognition of ovarian cancer. Surgery.1993 Aug;114(2):227-34.
    [166]Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston RB, Moe R and Cheever MA. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res.1994 Jan 1;54(1):16-20.
    [167]Mortarini R, Borri A, Tragni G, Bersani I, Vegetti C, Bajetta E, Pilotti S, Cerundolo V, Anichini A. Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+T cells in melanoma patients receiving interleukin 12. Cancer Res.2000 Jul 1;60(13):3559-68.
    [168]Anichini A, Molla A. Mortarini R, Tragni G, Bersani I, Di Nicola M, Gianni AM, Pilotti S, Dunbar R, Cerundolo V, Parmiani G. An expanded peripheral T cell population to a cytotoxic T lymphocyte (CTL)-defined, melanocyte-specific antigen in metastatic melanoma patients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J Exp Med.1999 Sep 6;190(5):651-67.
    [169]Goodell V, Salazar LG, Urban N, Drescher CW, Gray H, Swensen RE, McIntosh MW, Disis ML. Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J Clin Oncol.2006 Feb 10;24(5):762-8.
    [170]Ralainirina N, Poli A, Michel T, Poos L, Andres E, Hentges F, Zimmer J. Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol. 2007 Jan;81(1):144-53.
    [171]Lim HW, Hillsamer P, Banham AH, Kim CH. Cutting edge:direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol.2005 Oct 1;175(7):4180-3.
    [172]Veldhoen M, Moncrieffe H, Hocking RJ, Atkins CJ, Stockinger B. Modulation of dendritic cell function by naive and regulatory CD4+T cells. J Immunol. 2006 May 15;176(10):6202-10.
    [173]Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR. Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med.2004 Sep;10(9):942-9.
    [174]Griffiths RW, Elkord E, Gilham DE, Ramani V, Clarke N, Stern PL, Hawkins RE. Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunol Immunother.2007 Nov;56(11):1743-53.
    [175]Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res. 2003 Oct 1;9(12):4404-8.
    [176]Kono K, Kawaida H, Takahashi A. Sugai H, Mimura K. Miyagawa N, Omata H, Fujii H. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother. 2006 Sep;55(9):1064-71.
    [177]Li X, Ye DF, Xie X, Chen HZ, Lu WG. Proportion of CD4+CD25+ regulatory T cell is increased in the patients with ovarian carcinoma. Cancer Invest. 2005;23(5):399-403. [178] Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res.2005 Mar 15;65(6):2457-64. [179] Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V. Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol.2002 Sep 1;169(5):2756-61. [180] DeLong P, Carroll RG, Henry AC, Tanaka T, Ahmad S, Leibowitz MS, Sterman DH, June CH, Albelda SM, Vonderheide RH. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther.2005 Mar;4(3):342-6. [181] Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL.
    Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer.2005 Mar 14;92(5):913-20. [182] Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res.2003 Feb;9(2):606-12. [183] Ahmadzadeh M, Felipe-Silva A, Heemskerk B, Powell DJ Jr, Wunderlich JR, Merino MJ, Rosenberg SA. FOXP3 expression accurately defines the population of intratumoral regulatory T cells that selectively accumulate in metastatic melanoma lesions. Blood.2008 Dec 15;112(13):4953-60. [184] Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa Y, Shevach EM, Wang RF. Tumor-specific human CD4+ regulatory T cells and their ligands:implications for immunotherapy. Immunity.2004 Jan;20(1):107-18. [185] van der Burg SH, Piersma SJ, de Jong A, van der Hulst JM, Kwappenberg KM, van den Hende M, Welters MJ, Van Rood JJ, Fleuren GJ, Melief CJ, Kenter GG, Offringa R. Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12087-92.
    [186]Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C Yao J, Jin L, Wang H, Yang Y. Fu YX, Wang FS. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology.2007 Jun;132(7):2328-39.
    [187]Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res.2006 Sep 15;12(18):5423-34.
    [188]Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A.2005 Dec 20;102(51):18538-43.
    [189]Jordanova ES, Gorter A, Ayachi O, Prins F, Durrant LG, Kenter GG, van der Burg SH, Fleuren GJ. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio:which variable determines survival of cervical cancer patients? Clin Cancer Res.2008 Apr 1;14(7):2028-35.
    [190]Gao Q, Qiu SJ. Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol.2007 Jun 20;25(18):2586-93.
    [191]Turk MJ, Guevara-Patino JA. Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med.2004 Sep 20;200(6):771-82.
    [192]Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med.2005 May 16;201 (10):1591-602.
    [193]Zhang P, Cote AL, de Vries VC, Usherwood EJ. Turk MJ. Induction of postsurgical tumor immunity and T-cell memory by a poorly immunogenic tumor. Cancer Res.2007 Jul 1;67(13):6468-76.
    [194]Cote AL, Usherwood EJ, Turk MJ. Tumor-specific T-cell memory:clearing the regulatory T-cell hurdle. Cancer Res.2008 Mar 15:68(6):1614-7.
    [195]Chen L, Huang TG, Meseck M, Mandeli J, Fallon J, Woo SL. Rejection of metastatic 4T1 breast cancer by attenuation of Treg cells in combination with immune stimulation. Mol Ther.2007 Dec;15(12):2194-202.
    [196]Goforth R, Salem AK, Zhu X, Miles S, Zhang XQ, Lee JH, Sandler AD. Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma. Cancer Immunol Immunother.2009 Apr;58(4):517-30.
    [197]Dannull J, Su Z, Rizzieri D, Yang BK. Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest. 2005 Dec;115(12):3623-33.
    [198]Ghiringhelli F, Menard C, Martin F, Zitvogel L. The role of regulatory T cells in the control of natural killer cells:relevance during tumor progression. Immunol Rev.2006 Dec;214:229-38.
    [199]Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y.
    CD4+CD25+T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol.2006 Feb 1;176(3):1582-7.
    [200]Lundqvist A, Yokoyama H, Smith A, Berg M, Childs R. Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood.2009 Jun 11;113(24):6120-7.
    [201]Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL, Deng J, Xu M, Briest S, Biragyn A. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res.2009 Jul 15;69(14):5996-6004.
    [202]Chaput N, Darrasse-Jeze G, Bergot AS, Cordier C, Ngo-Abdalla S, Klatzmann D, Azogui O. Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites. J Immunol.2007 Oct 15;179(8):4969-78.
    [203]Liu Z, Kim JH, Falo LD Jr, You Z. Tumor regulatory T cells potently abrogate antitumor immunity. J Immunol.2009 May 15;182(10):6160-7.
    [204]Xu L, Xu W, Jiang Z, Zhang F, Chu Y, Xiong S. Depletion of CD4(+)CD25(high) regulatory T cells from tumor infiltrating lymphocytes predominantly induces Thl type immune response in vivo which inhibits tumor growth in adoptive immunotherapy. Cancer Biol Ther.2009 Jan;8(1):66-72.
    [205]Jones E, Dahm-Vicker M, Simon AK, Green A, Powrie F, Cerundolo V. Gallimore A. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun.2002 Feb 22:2:1.
    [206]Kovar M, Tomala J, Chmelova H, Kovar L, Mrkvan T, Joskova R, Zakostelska Z, Etrych T, Strohalm J, Ulbrich K, Sirova M, Rihova B. Overcoming immunoescape mechanisms of BCL1 leukemia and induction of CD8+ T-cell-mediated BCL1-specific resistance in mice cured by targeted polymer-bound doxorubicin. Cancer Res.2008 Dec 1;68(23):9875-83.
    [207]Skapenko A, Kalden JR, Lipsky PE, et al. The IL-4 receptor alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25-CD4+ precursors. J Immunol 2005; 175(9):6107-16.
    [208]Chen W, Jin W, Hardegen N, Lei KJ et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198(12):1875-86.
    [209]Fantini MC, Becker C, Monteleone G, et al. Cutting edge:TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172(9):5149-53.
    [210]Kretschmer K, Apostolou I, Hawiger D, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005; 6(12):1219-27.
    [211]Apostolou I, von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 2004; 199(10):1401-8.
    [212]Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001; 193(2):F5-9.
    [213]Jonuleit H, Schmitt E, Schuler G, et al. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192(9):1213-22.
    [214]Valzasina B, Piconese S, Guiducci C, Colombo MP. Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent. Cancer Res.2006 Apr 15;66(8):4488-95.
    [215]Hiura T, Kagamu H, Miura S, Ishida A, Tanaka H, Tanaka J, Gejyo F, Yoshizawa H. Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression. J Immunol.2005 Oct 15;175(8):5058-66.
    [216]Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X, Zhang Q, Lonning S, Teicher BA, Lee C. Tumor evasion of the immune system by converting CD4+CD25-T cells into CD4+CD25+T regulatory cells:role of tumor-derived TGF-beta. J Immunol.2007 Mar 1;178(5):2883-92.
    [217]Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE. Ansell SM. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood.2007 Oct 1;110(7):2537-44.
    [218]Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol.2009 Mar 1;182(5):2795-807.
    [219]Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med.2005 Oct 3;202(7):919-29.
    [220]Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+T lymphocytes. J Immunol. 2009 Sep 15;183(6):3720-30.
    [221]Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H. Iida S, Inagaki H, Ueda R. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res.2006 Jun 1;66(11):5716-22.
    [222]Enarsson K, Lundgren A, Kindlund B, Hermansson M, Roncador G, Banham AH, Lundin BS, Quiding-Jarbrink M. Function and recruitment of mucosal regulatory T cells in human chronic Helicobacter pylori infection and gastric adenocarcinoma. Clin Immunol.2006 Dec;121(3):358-68.
    [223]Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci.2006 Nov;97(11):1139-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700