用户名: 密码: 验证码:
透明质酸通过p38MAPK和JNK信号通路影响肾小管上皮细胞粘附性在尿石形成中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨草酸和一水草酸钙对人肾小管上皮细胞HK-2细胞的毒性作用。
     方法:共培养体系培养HK-2细胞至长满后,使用不同浓度(0,1,5和10mmmmol/L)的草酸和一水草酸钙处理HK-2细胞24h,通过检测细胞培养基中的乳酸脱氢酶LDH的含量和DAPI染色结果分析草酸及一水草酸钙对细胞的毒性作用。
     结果:DAPI染色显示草酸浓度在0-5mmol/L时,细胞数目没明显变化,5mmol/L时个别细胞的细胞核呈固缩状,草酸浓度10mmol/L时,细胞数目开始明显减少。水草酸钙浓度在1mmol/L时细胞数目就开始明显减少,5mmol/L和10mmo1/L时细胞基本死亡。5mmol/L和10mmol/L草酸在处理HK-2细胞24h后培养基中的LDH含量显著高于未处理组(p<0.01)。1mmo1/L、5mmol/L和10mmol/L一水草酸钙组培养基中LDH含量均显著高于未处理组(p<0.01)。
     结论:草酸和一水草酸钙对HK-2细胞的毒性呈浓度相关性。一水草酸钙晶体相比较草酸更具有细胞毒性。
     目的:探讨一水草酸钙晶体(calcium oxalate monohydrate, COM)通过对人肾小管上皮细胞HK-2的作用能否激活MAPK信号通路,通过拮抗MAPK信号通路能否减少透明质酸合成酶、CD44的产生以及能否抑制COM晶体对细胞的粘附作用。
     方法:HK-2细胞在饥饿处理12h后分别在不同时间点(0min、15mmin、30mmin、1h和2h)暴露在COM晶体(1mmol/L)及阳性对照下。检测p38MAPK.JNK和ERK蛋白的磷酸化情况。p38MAPK通路的抑制剂SB203580对细胞进行干预,通过western blot和RT-PCR技术检测p38-MAPK磷酸化情况及透明质酸合成酶1-3和CD44的mRNA表达情况。通过离子色谱仪检测COM晶体与肾小管上皮细胞的粘附情况。
     结果:HK-2细胞在饥饿处理12h后,COM晶体(1mmol/L)能快速的、充分的激活p38MAPK信号通路。COM晶体能轻度激活JNK信号途径但是无法激活ERK信号途径。通过使用p38MAPK信号途径的抑制剂SB203580(50μM)能够充分阻滞p38MAPK信号通路的激活并且能够降低透明质酸合成酶1-3和CD44的mRNA表达以及减少肾小管上皮细胞与COM晶体的粘附。
     结论:一水草酸钙晶体能够选择性激活p38MAPK和JNK信号途径。p38MAPK信号通路抑制剂SB203580能够降低透明质酸合成酶1-3和CD44的mRNA表达以及减少肾小管上皮细胞与COM晶体的粘附。
     目的:观察透明质酸(HA)、CD44及透明质酸合成酶(HAS1-3)在结石患者肾组织中的表达,着重探讨HAS1在一水草酸钙晶体(calcium oxalate monohydrate, COM)和人肾小管上皮细胞在粘附过程中的作用。
     方法:通过免疫组化的方法,检测结石患者肾组织和正常肾组织中CD44、HAS1-3和HA的表达差异。通过RT-PCR和western blot检测I-IK-2细胞在分别在不同时间点(Oh、24h、48h)暴露在COM晶体(lmmol/L)下HAS1的mRNA和蛋白表达情况。通过ELISA方法,检测HK-2细胞在不同时间点(0h、12h、24h、36h、48h)暴露于COM晶体后培养基中HA的含量。通过干扰HAS1,检测其对HA的合成以及对肾小管上皮与COM晶体粘附力的影响。通过共聚焦显微镜和离子色谱仪检测COM晶体与肾小管上皮细胞的粘附情况。
     结果:免疫组化结果显示在结石患者肾组织中,CD44、HAS1-3及HA比正常肾组织都有明显升高。HK-2细胞在COM晶体(lmmol/L)处理24h后,HAS1-3和CD44的mRNA表达最高,48h后下降,其中HAS1的表达升高最明显。HK-2细胞在COM晶体(1mmol/L)处理24h后HAS1的蛋白含量开始升高,48h达到最高。通过对HAS1的siRNA干扰能充分的降低HAS1的表达。HK-2细胞在COM晶体(1mmol/L)处理24h后组织培养基中的HA的含量达到最高,其后开始下降。荧光共聚焦染色和离子色谱仪结果显示,通过抑制HAS1的表达可以大大降低肾小管上皮细胞与COM晶体的粘附。
     结论:结石患者肾组织中CD44、HAS1-3和HA都有高表达。透明质酸在COM晶体与肾小管上皮的粘附过程中起到非常重要的作用,通过抑制HAS1的表达可以减少HA的表达从而降低肾小管上皮细胞对COM晶体的粘附。
     目的:长链非编码RNAs (lncRNAs)具有非常重要的生物功能。本研究通过lncRNA芯片研究一水草酸钙刺激人近端肾小管后lncRNAs的变化,为将来结石形成机制的研究提供候选lncRNAs。
     方法:通过lncRNA芯片检测lmmo1/L一水草酸钙刺激人近端肾小管HK-2细胞24h后长链非编码RNA的变化情况。通过qPCR的方法验证芯片结果。结果:经过1mmol/L一水草酸钙刺激人近端肾小管HK-2细胞24h后2971条lncRNAs发生了变化,其中上调1630条,下调1341条。通过qPCR的方法验证了4条lncRNAs (ENST00000430583、ENST00000428930、NR_029401和chr13)。结果显示qPCR结果和基因芯片结果具有良好的一致性。
     结论:本研究首次报道肾小管上皮细胞经一水草酸钙刺激24h后lncRNAs的变化,结果中表达有差异的lncRNAs可能在结石形成过程中有巨大的作用。综上所述,本研究为结石形成的病理过程提供新的思路,为将来泌尿系结石形成的机制研究提供理论依据。
Objective To evaluate the toxic effect of oxalate and calcium oxalate monohydrate (COM) crystals on human renal tubular epithelial cells (HK-2).
     Methods HK-2cells were cultured in co-culture system to confluence. Oxalic acid and COM crystals with different concentration (0,1,5and10mmol/L) were then added. The toxic effect of Oxalic acid and COM crystals on HK-2cells at24h after incubation were examined by measuring the activity of lactic dehydrogenase (LDH) and dyeing with4',6-diamidino-2-phenylindole(DAPI).
     Results Dyeing with DAPI showed that the number of cells was not significant decreased until the concentration of oxalic acid up to10mmol/L. The number of cells was reduced dramatically after treating with1mmol/L COM. Cells were almost dead after incubation24h with5and10mmol/L COM. LDH activity was increased significantly in5and10mmol/L oxalic acid group (p<0.01). Comparing with oxalic acid group, LDH activity was increased significantly in1,5and10mmol/L COM group (p<0.01).
     Conclusion Oxalic acid and COM crystals have toxic effect on HK-2cells in a concentration dependent manner. COM crystals are more toxic than oxalic acid.
     Objective To evaluate the MAPK signaling pathways involved in the process of calcium oxalate monohydrate (COM) crystals in human renal tubular epithelial cells (HK-2). To research the effect of SB203580on regulation of HAS1-3, CD44and adhesive influence between COM crystal and HK-2cells.
     Methods HK-2cells were cultured in serum-starved DMEM for12h before exposure to calcium oxalate monohydrate (lmM) for different time course (0,15min,30min,60min and120min). The activity of MAPK signaling pathways were evaluated by phosphorylation of p38, JNK and ERK. SB203580was used to block the transduction of p38. RT-PCR was used to measure the mRNA level of HAS1-3and CD44. Ion chromatograph was performed to measure the adhesion effect between COM crystal and HK-2cells.
     Results Exposure to calcium oxalate monohydrate (COM) crystal rapidly activated p38-MAPK. Calcium oxalate monohydrate (COM) crystal induced modest activation of JNK. In contrast, COM crystal had no effect on phosphorylation of ERK. The adhesive effect between COM crystal and HK-2cells was reduced by the use of SB203580(50μM).The mRNA levels of HAS1-3and CD44were diminished by the use of SB203580. Conclusion Exposure to calcium oxalate monohydrate (COM) crystal selectively activates p38-MAPK and JNK signaling pathways. SB203580reduces the mRNA levels of HAS1-3, CD44and diminish the adhesive effect between COM crystal and HK-2cells.
     Objective To evaluate the expression of hyaluronan, CD44and hyaluronan synthase1-3in kidney stone patients. The effect of HAS1on the adhesion between renal epithelial cells (HK-2) and calcium oxalate monohydrate (COM) crystals was studied. Methods The expression of hyaluronan, CD44and hyaluronan synthase1-3were measured between kidney stone patients and normail kidney patients by immunohistochemistry. HK-2cells were exposed to calcium oxalate monohydrate (1mM) for different time course (Oh,24h,48h). The mRNA levels of HAS1-3and CD44were measured by RT-PCR, and the protein level of HAS1was measured by western blot. The expression of hyaluronan was detected by Elisa kit. siRNA methods was used to influent the content of hyaluronan and the adhesion of renal epithelial cells. Ion chromatograph and confocal laser scanning microscopy were used to measure the adhesive effect between COM crystal and HK-2cells. Results The expression of hyaluronan, CD44and hyaluronan synthase1-3were higher in kidney stone group by immunohistochemistry. At the24h after exposure to calcium oxalate monohydrate(COM) crystal, the mRNA levels of HAS1-3and CD44were highest by RT-PCR, which diminished at the48h after exposure to COM crystals. The protein level of HAS1was highest at48h after exposure to COM crystals. It could be blocked by the HAS siRNA. The content of hyaluronan were measured at different time course (Oh,12h,24h,36h,48h) by ELISA kit. It began to increase at12h and reached its peak at24h. At36h after exposure it began to decrease. The adhesive effect between COM crystal and HK-2cells were reduced by the use of HAS1siRNA through confocal laser scanning microscopy and ion chromatagraph. Conclusion The expression of hyaluronan, CD44and hyaluronan synthase1-3were higher in kidney stone patients. Hyaluronan plays a crucial role in the formation of kidney stone. The adhesion of between COM crystal and HK-2cells can be decreased by the use of HAS1siRNA.
     Objective long noncoding RNAs (IncRNAs) are very important in biological functions. Microarray was used to reveal the changes of HK-2cells induced by COM crystals, so as to provide candidate IncRNAs involved in the molecular mechanisms concerning kidney stone formation.
     Methods HK-2cells were oxposed to COM crystals(lmmol/L) for24h. The microarray was used to detect the change of lncRNAs. RT-qPCR was used to validate the results.
     Results From the data we found there were2971lncRNAs that differentially expressed in HK-2cells exposed to lmmol/L COM crystals.1630lncRNAs were upregulated and1341lncRNAs were downregulated. Four lncRNAs (ENST00000430583、ENST00000428930、 NR_029401and chr13) validated by qPCR were matched the result of microarray.
     Conclusion Our study is the first one to determine lncRNAs expression patterns in HK-2cells exposed to COM crystals. The results displayed that clusters of lncRNAs were aberrantly expressed may exert a partial role in stone formation. Taken together, this study may provide potential targets for future treatment of stone disease and novel insights into stone formation biology.
引文
[1]Khan S R. Renal tubular damage/dysfunction:key to the formation of kidney stones[J]. Urol Res,2006,34(2):86-91.
    [2]Tsujihata M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury[J]. Int J Urol,2008,15(2):115-120.
    [3]Verkoelen C F. Crystal retention in renal stone disease:a crucial role for the glycosaminoglycan hyaluronan?[J]. J Am Soc Nephrol,2006,17(6):1673-1687.
    [4]Verhulst A, Asselman M, Persy V P, et al. Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding-into a nonadherent epithelium[J]. J Am Soc Nephrol,2003,14(1):107-115.
    [5]余虓,朱旋,王少刚,等.大鼠肾小管上皮细胞透明质烷和CD44表达对草酸钙晶体黏附的影响[J].中华医学杂志,2008,88(10):701-704.
    [6]Itano N, Sawai T, Yoshida M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties[J]. J Biol Chem,1999,274(35):25085-25092.
    [7]Khan S R. Role of renal epithelial cells in the initiation of calcium oxalate stones[J]. Nephron Exp Nephrol,2004,98(2):e55-e60.
    [8]Chaturvedi L S, Koul S, Sekhon A, et al. Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase sigoal transduction pathways in renal epithelial cells[J]. J Biol Chem,2002,277(15):13321-13330.
    [9]Ponting C P, Oliver P L, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell,2009,136(4):629-641.
    [10]Taft R J, Pang K C, Mercer T R, et al. Non-coding RNAs:regulators of disease[J]. J Pathol,2010,220(2):126-139.
    [11]Ota T, Suzuki Y, Nishikawa T, et al. Complete sequencing and characterization of 21,243 full-length human cDNAs[J]. Nat Genet,2004,36(1):40-45.
    [12]Willingham A T, Orth A P, Batalov S, et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT[J]. Science,2005,309(5740):1570-1573.
    [1]Coe F L, Keck J, Norton E R. The natural history of calcium urolithiasis[J]. JAMA,1977,238(14):1519-1523.
    [2]Amato M, Lusini M L, Nelli F. Epidemiology of nephrolithiasis today [J]. Urol Int,2004,72 Suppl 1:1-5.
    [3]Khan S R. Role of renal epithelial cells in the initiation of calcium oxalate stones[J]. Nephron Exp Nephrol,2004,98(2):e55-e60.
    [4]Thamilselvan S, Byer K J, Hackett R L, et al. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells[J]. J Urol,2000,164(1):224-229.
    [5]Belliveau J, Griffin H. The solubility of calcium oxalate in tissue culture media[J]. Anal Biochem,2001,291(1):69-73.
    [6]Guo C, Mcmartin K E. The cytotoxicity of oxalate, metabolite of ethylene glycol, is due to calcium oxalate monohydrate formation[J]. Toxicology,2005,208(3):347-355.
    [7]Schepers M S, van Ballegooijen E S, Bangma C H, et al. Oxalate is toxic to renal tubular cells only at supraphysiologic concentrations[J]. Kidney Int,2005,68(4):1660-1669.
    [8]陈书尚,孙颖浩,高小峰,等.草酸和一水草酸钙结晶对人肾小管上皮细胞的影响[J].中华泌尿外科杂志,2008,29(z1).
    [9]Shum D K, Liong E. Calcium oxalate crystallizing properties of polyanions elaborated by cultured renal proximal tubular cells[J]. Urol Res,1995,23(2):103-110.
    [10]Pomara C, Fiore C, D'Errico S, et al. Calcium oxalate crystals in acute ethylene glycol poisoning:a confocal laser scanning microscope study in a fatal case[J]. Clin Toxicol (Phila),2008,46(4):322-324.
    [11]Jeong B C, Kwak C, Cho K S, et al. Apoptosis induced by oxalate in human renal tubular epithelial HK-2 cells[J]. Urol Res,2005,33(2):87-92.
    [12]Huang M Y, Chaturvedi L S, Koul S, et al. Oxalate stimulates IL-6 production in HK-2 cells, a line of human renal proximal tubular epithelial cells[J], Kidney Int,2005,68(2):497-503.
    [13]Koul S, Khandrika L, Meacham R B, et al. Genome wide analysis of differentially expressed genes in HK-2 cells, a line of human kidney epithelial cells in response to oxalate[J]. PLoS One,2012,7(9):e43886.
    [14]Khaskhali M H, Byer K J, Khan S R. The effect of calcium on calcium oxalate monohydrate crystal-induced renal epithelial injury[J]. Urol Res,2009,37(1):1-6.
    [15]Habibzadegah-Tari P, Byer K G, Khan S R. Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells[J]. Urol Res,2006,34 (1):26-36.
    [1]Coe F L, Evan A, Worcester E. Kidney stone disease[J]. J Clin Invest,2005,115 (10):2598-2608.
    [2]Coe F L, Keck J, Norton E R. The natural history of calcium urolithiasis[J]. JAMA,1977,238(14):1519-1523.
    [3]Amato M, Lusini M L, Nelli F. Epidemiology of nephrolithiasis today[J]. Urol Int,2004,72 Suppl 1:1-5.
    [4]Robertson W G, Peacock M. Calcium oxalate crystalluria and inhibitors of crystallization in recurrent renal stone-formers[J]. Clin Sci,1972,43(4):499-506.
    [5]Evan A P, Coe F L, Lingeman J E, et al. Insights on the pathology of kidney stone formation[J]. Urol Res,2005,33(5):383-389.
    [6]Davalos M, Konno S, Eshghi M, et al. Oxidative renal cell injury induced by calcium oxalate crystal and renoprotection with antioxidants:a possible role of oxidative stress in nephrolithiasis[J]. J Endourol,2010,24(3):339-345.
    [7]Khan S R. Crystal-induced inflammation of the kidneys:results from human studies, animal models, and tissue-culture studies[J]. Clin Exp Nephrol,2004,8(2):75-88.
    [8]Peerapen P, Thongboonkerd V. p38 MAPK mediates calcium oxalate crystal-induced tight junction disruption in distal renal tubular epithelial cells[J]. Sci Rep,2013,3.1041.
    [9]Hammes M S, Lieske J C, Pawar S, et al. Calcium oxalate monohydrate crystals stimulate gene expression in renal epithelial cells[J]. Kidney Int,1995,48(2):501-509.
    [10]Verkoelen C F, Romijn J C, Cao L C, et al. Crystal-cell interaction inhibition by polysaccharides[J]. J Urol,1996,155(2):749-752.
    [11]Cano E, Mahadevan L C. Parallel signal processing among mammalian MAPKs[J]. Trends Biochem Sci,1995,20(3):117-122.
    [12]Raingeaud J, Whitmarsh A J, Barrett T, et al. MKK3-and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway[J]. Mol Cell Biol,1996,16(3):1247-1255.
    [13]Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation[J]. Nature,1997,386(6622):296-299.
    [14]Bhandari A, Koul S, Sekhon A, et al. Effects of oxalate on HK-2 cells, a line of proximal tubular epithelial cells from normal human kidney[J]. J Urol,2002,168 (1):253-259.
    [15]Obata T, Brown G E, Yaffe M B. MAP kinase pathways activated by stress:the p38 MAPK pathway[J]. Crit Care Med,2000,28(4 Suppl):N67-N77.
    [16]Han J, Lee J D, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells[J]. Science,1994,265(5173):808-811.
    [17]Lee J C, Laydon J T, Mcdonnell P C, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis[J]. Nature,1994,372(6508):739-746.
    [18]Yin T, Sandhu G, Wolfgang C D, et al. Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney[J]. J Biol Chem,1997,272 (32): 19943-19950.
    [19]Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis[J]. Science,1995,270(5240):1326-1331.
    [20]Chen Y R, Wang X, Templeton D, et al. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation[J]. J Biol Chem,1996,271(50):31929-31936.
    [21]Verkoelen C F. Crystal retention in renal stone disease:a crucial role for the glycosaminoglycan hyaluronan?[J]. J Am Soc Nephrol,2006,17(6):1673-1687.
    [22]Toole B P. Hyaluronan in morphogenesis[J]. Semin Cell Dev Biol,2001,12(2):79-87.
    [23]Lee G M, Johnstone B, Jacobson K, et al. The dynamic structure of the pericellular matrix on living cells[J]. J Cell Biol,1993,123(6 Pt 2):1899-1907.
    [24]Shum D K, Liong E. Calcium oxalate crystallizing properties of polyanions elaborated by cultured renal proximal tubular cells[J]. Urol Res,1995,23(2):103-110.
    [25]Asselman M, Verhulst A, De Broe M E, et al. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys[J]. J Am Soc Nephrol,2003,14(12):3155-3166.
    [26]Koul S, Khandrika L, Meacham R B, et al. Genome wide analysis of differentially expressed genes in HK-2 cells, a line of human kidney epithelial cells in response to oxalate[J]. PLoS One,2012,7(9):e43886.
    [27]Chen S, Gao X, Sun Y, et al. Analysis of HK-2 cells exposed to oxalate and calcium oxalate crystals:proteomic insights into the molecular mechanisms of renal injury and stone formation[J]. Urol Res,2010,38(1):7-15.
    [28]Habibzadegah-Tari P, Byer K G, Khan S R. Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells[J]. Urol Res,2006,34 (1):26-36.
    [1]Coe F L, Keck J, Norton E R. The natural history of calcium urolithiasis[J]. JAMA,1977,238(14):1519-1523.
    [2]Khan A, Wang W, Khan S R. Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys[J]. World J Urol,2013.
    [3]Evan A P, Coe F L, Lingeman J E, et al. Insights on the pathology of kidney stone formation[J]. Urol Res,2005,33(5):383-389.
    [4]Amato M, Lusini M L, Nelli F. Epidemiology of nephrolithiasis today [J]. Urol Int,2004,72 Suppl 1:1-5.
    [5]Hesse A, Brandle E, Wilbert D, et al. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs.2000[J], Eur Urol,2003,44 (6):709-713.
    [6]Khan S R. Role of renal epithelial cells in the initiation of calcium oxalate stones[J]. Nephron Exp Nephrol,2004,98(2):e55-e60.
    [7]Thamilselvan S, Byer K J, Hackett R L, et al. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells[J]. J Urol,2000,164(1):224-229.
    [8]Verkoelen C F. Crystal retention in renal stone disease:a crucial role for the glycosaminoglycan hyaluronan?[J]. J Am Soc Nephrol,2006,17(6):1673-1687.
    [9]Toole B P. Hyaluronan in morphogenesis[J]. Semin Cell Dev Biol,2001,12(2):79-87.
    [10]Lee G M, Johnstone B, Jacobson K, et al. The dynamic structure of the pericellular matrix on living cells[J]. J Cell Biol,1993,123(6 Pt 2):1899-1907.
    [11]Golshani R, Lopez L, Estrella V, et al. Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44[J]. Cancer Res,2008,68(2):483-491.
    [12]Golshani R, Hautmann S H, Estrella V, et al. HAS1 expression in bladder cancer and its relation to urinary HA test[J]. Int J Cancer,2007,120(8):1712-1720.
    [13]Lokeshwar V B, Lopez L E, Munoz D, et al. Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells[J]. Cancer Res,2010,70 (7):2613-2623.
    [14]Verhulst A, Asselman M, Persy V P, et al. Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding-into a nonadherent epithelium[J]. J Am Soc Nephrol,2003,14(1):107-115.
    [15]Asselman M, Verhulst A, De Broe M E, et al. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys[J]. J Am Soc Nephrol,2003,14(12):3155-3166.
    [16]Asselman M, Verhulst A, Van Ballegooijen E S, et al. Hyaluronan is apically secreted and expressed by proliferating or regenerating renal tubular cells[J]. Kidney Int,2005,68 (1):71-83.
    [17]Sano N, Kitazawa K, Sugisaki T. Localization and roles of CD44, hyaluronic acid and osteopontin in IgA nephropathy[J]. Nephron,2001,89(4):416-421.
    [18]Ito T, Williams J D, Fraser D, et al. Hyaluronan attenuates transforming growth factor-betal-mediated signaling in renal proximal tubular epithelial cells[J]. Am J Pathol,2004,164(6):1979-1988.
    [19]Ito T, Williams J D, Al-Assaf S, et al. Hyaluronan and proximal tubular cell migration [J]. Kidney Int,2004,65(3):823-833.
    [20]Shum D K, Liong E. Calcium oxalate crystallizing properties of polyanions elaborated by cultured renal proximal tubular cells[J]. Urol Res,1995,23(2):103-110.
    [21]Pomara C, Fiore C, D'Errico S, et al. Calcium oxalate crystals in acute ethylene glycol poisoning:a confocal laser scanning microscope study in a fatal case[J]. Clin Toxicol (Phila),2008,46(4):322-324.
    [22]Koul S, Khandrika L, Meacham R B, et al. Genome wide analysis of differentially expressed genes in HK-2 cells, a line of human kidney epithelial cells in response to oxalate[J]. PLoS One,2012,7(9):e43886.
    [23]Chen S, Gao X, Sun Y, et al. Analysis of HK-2 cells exposed to oxalate and calcium oxalate crystals: proteomic insights into the molecular mechanisms of renal injury and stone formation[J]. Urol Res,2010,38(1):7-15.
    [1]Coe F L, Keck J, Norton E R. The natural history of calcium urolithiasis[J]. JAMA, 1977,238(14):1519-1523.
    [2]Amato M, Lusini M L, Nelli F. Epidemiology of nephrolithiasis today [J]. Urol Int, 2004,72 Suppl 1:1-5.
    [3]Khan S R. Role of renal epithelial cells in the initiation of calcium oxalate stones[J]. Nephron Exp Nephrol,2004,98(2):e55-e60.
    [4]Thamilselvan S, Byer K J, Hackett R L, et al. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells[J]. J Urol,2000,164(1):224-229.
    [5]Ponting C P, Oliver P L, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell,2009,136(4):629-641.
    [6]Ota T, Suzuki Y, Nishikawa T, et al. Complete sequencing and characterization of 21,243 full-length human cDNAs[J]. Nat Genet,2004,36(l):40-45.
    [7]Tupy J L, Bailey A M, Dailey G, et al. Identification of putative noncoding polyadenylated transcripts in Drosophila melanogaster[J]. Proc Natl Acad Sci U S A,2005,102(15):5495-5500.
    [8]Taft R J, Pang K C, Mercer T R, et al. Non-coding RNAs:regulators of disease[J]. J Pathol,2010,220(2):126-139.
    [9]Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs: functional surprises from the RNA world[J]. Genes Dev,2009,23(13):1494-1504.
    [10]Shum D K, Liong E. Calcium oxalate crystallizing properties of polyanions elaborated by cultured renal proximal tubular cells[J]. Urol Res,1995,23(2):103-110.
    [11]Pomara C, Fiore C, D'Errico S, et al. Calcium oxalate crystals in acute ethylene glycol poisoning: a confocal laser scanning microscope study in a fatal case[J]. Clin Toxicol (Phila),2008,46(4):322-324.
    [12]Feng J, Bi C, Clark B S, et al. The Evf-2 noncoding RNA is transcribed from the D1x-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator[J]. Genes Dev,2006,20(11):1470-1484.
    [13]Willingham A T, Orth A P, Batalov S, et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT[J]. Science,2005,309(5740):1570-1573.
    [14]Petrovics G, Zhang W, Makarem M, et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients[J]. Oncogene,2004,23(2):605-611.
    [15]Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer[J]. Nucleic Acids Res, 2010,38(16):5366-5383.
    [16]Bussemakers M J, van Bokhoven A, Verhaegh G W, et al. DD3:a new prostate-specific gene, highly overexpressed in prostate cancer[J]. Cancer Res,1999, 59(23):5975-5979.
    [17]Yu G, Yao W, Wang J, et al. LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray[J]. PLoS One,2012,7(8):e42377.
    [18]Gupta R A, Shah N, Wang K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature,2010,464(7291):1071-1076.
    [19]Koul S, Khandrika L, Meacham R B, et al. Genome wide analysis of differentially expressed genes in HK-2 cells, a line of human kidney epithelial cells in response to oxalate[J]. PLoS One,2012,7(9):e43886.
    [20]Chen S, Gao X, Sun Y, et al. Analysis of HK-2 cells exposed to oxalate and calcium oxalate crystals:proteomic insights into the molecular mechanisms of renal injury and stone formation[J]. Urol Res,2010,38(1):7-15.
    [21]Thongboonkerd V, Semangoen T, Sinchaikul S, et al. Proteomic analysis of calcium oxalate monohydrate crystal-induced cytotoxicity in distal renal tubular cells[J]. J Proteome Res,2008,7(11):4689-4700.
    [1]Taft R J, Pheasant M, Mattick J S. The relationship between non-protein-coding DNA and eukaryotic complexity [J]. Bioessays,2007,29(3):288-299.
    [2]Birney E, Stamatoyannopoulos J A, Dutta A, et al. Identification and analysis of functional elements in 1%of the human genome by the ENCODE pilot project[J]. Nature, 2007,447(7146):799-816.
    [3]Ponting C P, Oliver P L, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell,2009,136(4):629-641.
    [4]Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs:functional surprises from the RNA world[J]. Genes Dev,2009,23(13):1494-1504.
    [5]Feng J, Bi C, Clark B S, et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a D1x-2 transcriptional coactivator[J]. Genes Dev,2006,20(11):1470-1484.
    [6]Willingham A T, Orth A P, Batalov S, et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT[J]. Science,2005,309(5740):1570-1573.
    [7]Calin G A, Liu C G, Ferracin M, et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas[J]. Cancer Cell,2007,12(3):215-229.
    [8]Cazalla D, Yario T, Steitz J A. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA[J]. Science,2010,328(5985):1563-1566.
    [9]Lukiw W J, Handley P, Wong L, et al. BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD)[J]. Neurochem Res,1992,17(6):591-597.
    [10]Faghihi M A, Modarresi F, Khalil A M, et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase[J]. Nat Med,2008,14(7):723-730.
    [11]Bussemakers M J, van Bokhoven A, Verhaegh G W, et al. DD3:a new prostate-specific gene, highly overexpressed in prostate cancer[J]. Cancer Res,1999, 59(23):5975-5979.
    [12]Petrovics G, Zhang W, Makarem M, et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients[J]. Oncogene,2004,23(2):605-611.
    [13]Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer [J]. Nucleic Acids Res,2010,38(16):5366-5383.
    [14]Yu G, Yao W, Wang J, et al. LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray[J]. PLoS One,2012,7(8):e42377.
    [15]Gupta R A, Shah N, Wang K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature,2010,464(7291):1071-1076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700