用户名: 密码: 验证码:
桉树抗青枯病的鉴定及其抗病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验通过采用不同的接种方法对18个桉树种和无性系进行抗抗病性测定,筛选出了优良的桉树抗青枯病树种和无性系,获得快捷准确的抗病性鉴定技术。同时,运用16S rDNA PCR-DGGE技术检测不同抗性桉树无性系中内生细菌种群多样性,探讨细菌多样性与抗病能力之间的关系,为桉树抗病机制探索及青枯病防治工作提供了新的线索和途径。
     1桉树抗青枯病的鉴定技术
     本研究采用菌液浸泡法、顶尖接种法对不同的桉树无性系盆栽苗和生根组培苗进行抗青枯病性能测定,并结合林间调查筛选桉树抗青枯病树种和无性系,并从根系分泌物和组织研磨液的角度研究其对桉树青枯病菌生长的抑制作用,探索不同抗性桉树无性系抗病性强弱与其根系分泌物和组织研磨液之间的关系。结果表明,供试的18个桉树无性系中,bd1、bd2、赤桉和南宁巨尾桉为抗病无性系;U6、南宁尾叶桉、雷9、钦32-29为中抗无性系;DH32-27、钦9、南宁广9、钦8、邓恩桉、钦32-22、雷2、巨桉、尾叶桉和钦广9为感病无性系。不同抗性桉树无性系根系分泌物和组织研磨液对青枯菌没有直接的抑制作用,但随着接种时间的延长,青枯病菌在抗病性强的无性系的根系分泌物及组织液中的增殖显著低于感病无性系,验证了通过茎段浸泡接种筛选出的桉树无性系的准确性,同时表明了根系分泌物和组织研磨液可以反映桉树不同无性系的抗病性强弱。
     2不同抗性桉树无性系内生细菌多样性及其与抗病性的关系研究
     利用PCR-DGGE(变性梯度凝胶电泳)与16S rDNA克隆文库的构建相结合的两种方法研究不同抗性桉树无性系(雷2,雷9,bd2)内生细菌多样性,分析其细菌种群结构,寻找优势菌群及特异性菌群,探讨细菌多样性与抗病能力之间的关系。结果表明,不同抗性桉树无性系DGGE图谱没有明显差异,各无性系条带数目相同为11条,其中2条为优势条带,将其回收测序,经Genebank比对后,为不可培养细菌;PCR产物的直接克隆3个不同抗性的桉树无性系共得到18个克隆子,对其测序结果进行分析发现,克隆产物均为同一种不可培养细菌,属于Cyanobacteria phylum。两种方法显示了该3种桉树无性系的内生细菌种群结构相同,其中以Uncultured bacterium clone为优势菌群,结果初步表明桉树无性系的抗青枯病能力与其内生菌种群之间没有必然的联系。
In this study, in order to obtain a concise, accurate detection and determination technique, the disease of resistance of Eucalyptus spp. against bacterial wilt caused by Ralstonia solanacearum was determined using different inoculation methods on 18 eucalypt species and clones, which from different sources and culturing by different reproductive mothods. The diversity of endophytic bacteria in clones with different resistance was investigated by using 16S rDNA PCR-DGGE to explore the relationship between the resistant ability and bacterial diversity, which might provide new clues and ways to understand the resistance mechanism and prevent the bacteria wilt.
     1 The resistance ability of Eucalyptus spp. against bacterial wilt caused by Ralstonia solanacearum was determined by dipping inoculation of shoot cuttings and shoot tip inoculation using potted plantlets and tissue culture seedlings, as well as field disease survey of eucalypt plantation. The inhibition effects of root exudate and supernate of tissue triturate collected from different resistant clones of Eucalyptus against R. solanacearum were performed using the methods of liquid culture to explore the relationship of root exudate, tissue triturate and the levels of disease resistance. The results showed that the clones, bd1, bd2, E. camaldulensis and E. grandis×urophylla from Nanning were highly resistant to bacterial wilt; U6, E. urophylla from Nanning,Lei9 and Qin32-29 were the mid wilt-resistant clones; DH32-27, Qin9, Nanningguang9, Qin8, E. dunnii, Qin32-22, Lei2, E. grandis, E. urophylla and Qinguang9 were susceptible clones. The results also indicated that root exudates and the supernatant of triturated tissue had no direct inhibition to the growth of R. solanacearum. However, the proliferation number of R. solanacearum in root exudate and tissue triturate from wilt-susceptible clones was markedly higher than the ones from highly wilt-resistant clones, which was in accordance with the determination results of disease resistance using dipping inoculation and tip inoculation of shoot cuttings, indicating that the resistance ability of different clones could be manifested by the growth of R. solanacearum in root exudate and supernate of triturated tissue.
     2 In order to make a further exploration about the relationship of endophytic bacteria population structure and the levels of disease resistance, the combination of PCR-DGGE (denaturing gradient gel electrophoresis) technology and 16S rDNA gene library construction method were used to study the endophytic bacteria diversity among wilt resistant and susceptible Eucalyptus clones(Lei 2, Lei 9, bd2), the relationship of bacterial population and the disease resistance ability were explored by analysing the dominant and specific bacteria group. The results showed that there was no significant difference among resistant and susceptible clones in DGGE profile, which had 11 bands with same number and position of each Eucalyptus clone. Through cutting and sequencing the two dominant bands sequence the Genebank comparion indicated that they were both uncultured bacterial clones. As for 16S rDNA gene library construction, 18 clones were obtained by cloning PCR products directly, the sequencing analysis showed that all the clones were of the same uncultural bacteria, belonging to Cyanobacteria phylum, which was in conformity with DGGE method. The result indicated that Lei2, Lei9, bd2 had same endophytic bactieria variety, the uncultured bacterium clone was the dominant group, which preliminary demonstrated there was no necessary link between the bacterial population structure and the levels of disease resistance.
引文
[1] Coutinho T A., Roux J, Riedel K H, et al. First report of bacterial wilt caused by Ralstonia solanacearum on eucalypts in South Africa[J]. Forest Pathology, 2000, 30(4): 205- 210.
    [2] Roux J, Coutinho T A., Byabashaija D M, et al. Diseases of plantation Eucalyptus in Uganda[J]. South African Journal of Science, 2001, 97(1-2): 16- 18.
    [3]曹季丹.巴西柳桉、巨桉青枯病调查初报[J].广西林业科技, 1982, (4): 30- 31.
    [4]伍慧雄,王胜坤等.桉树青枯病的发生与防治[J].广东林业科技, 2006, (3)22: 53- 55.
    [5]李逸.如何预防和防治桉树绝症[J].热带林业, 2006, 9(3): 45- 46.
    [6]李伟东.桉树青枯病在海南的发病现状与防治措施[J].海南林业科技, 1992, (3): 21- 22.
    [7]黄晖.我国营造桉树人工林的现状与发展对策[J].广西林业科技, 2004, (6):42- 43.
    [8]方中达.植病研究法[M].北京:中国农业出版社. 1998.
    [9]沈文生,黄乃秀.桉树抗青枯病的筛选技术[J].广西植保, 2000, 13(4): 34-36.
    [10]吴光金,林雪坚,石明旺,等.桉树抗青枯病树种和无性系的鉴定[J].中南林学院学报, 2003, (4): 32- 34.
    [11]施仲美,奚福生,何贵整,等.桉树品系对青枯病抗性及其稳定性的研究[J].广西林业科学, 2000, 29(1): 1- 6.
    [12]陈宏宇,李晓鸣,王敬国,等.抗病性不同大豆品种根面及根际微生物区系的变化.Ⅰ.非连作大豆(正茬)根面及根际微生物区系的变化[J].植物营养与肥料学报, 2005, 11(6): 804- 809.
    [13]冯洁,陈其煐,石磊岩.棉花幼苗根系分泌物与枯萎病关系的研究[J].棉花学报, 1991, 3(1): 89- 96.
    [14]王汝贤,杨之为,宗照锋,等.棉花枯萎病抑菌土成因初探.I.棉花根系分泌物对枯萎病菌的影响[J].西北农业学报, 1995, 4(4): 63- 68.
    [15]铃木直治(齐显章,许泳峰,张际中,等.译).近代植物病理化学[M].上海:上海科学技术出版社. 1985.
    [16]黄奔立,许云东,伍烨,等.两个不同抗性黄瓜品种和云南黑籽南瓜根系分泌物对黄瓜枯萎病发生的影响[J].应用生态学报, 2007, 18(3): 559- 563.
    [17]李洪连,袁红霞,王烨,等.根际微生物多样性与棉花品种对黄萎病抗性关系研究-Ⅰ根际微生物数量与棉花品种对黄萎病抗性的关系[J].植物病理学报, 1998, 28(4): 341- 345.
    [18]王守正,王海燕,李洪连,等.植物微生物区系和植物抗病性研究[J].河南农业科学, 2001, 5: 20- 23.
    [19]王贻莲,陈燕平,黄伟,等.苦瓜活性组分物质抑菌活性测定[J].植物保护, 2008, 34(2): 67- 71.
    [20] Cimanga K, Kambu K, Tona L, et al. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo[J]. Journal of Ethnopharmacology, 2002, 79(2): 213- 220.
    [21] Di Fiore S, Del Gallo M. Endophytic bacteria: their possible role in the host plants. In:Azospirillum VI and related microorganisms[J]. (Ed.: Fendrik I, GalloM D, Vanderleyden J, Zamaroczy M). Springer - Verlag, Berlin, Heidelberg, New York, 1995, 169- 187.
    [29]冯永君,宋未.植物内生细菌[J].自然杂志, 2001, 23(5): 249- 252.
    [30]韩继刚,宋未.植物内生细菌研究进展及其应用潜力[J].自然科学进展, 2004, 14(4): 374- 379.
    [31]刘云霞.植物内生细菌的研究与应用[J].植物保护, 1994, 20(5): 30- 32.
    [32]文才艺,吴元华,田秀玲.植物内生菌研究进展及其存在的问题[J].生态学杂志, 2004, 23(2): 86- 91.
    [33]孔庆科,丁爱云.内生细菌作为生防因子的研究进展[J].山东农业大学学报, 2003, 32(2): 256- 260.
    [34]阎孟红,蔡正求,韩继刚,等.植物内生细菌在防治植物病害中的应用研究[J].生物技术通报, 2004, 3: 6- 12.
    [29] Reinhold-Hurek B, Hurek T. Life in grasses diazotrophic endophytes[J]. Trends in Microbiology, 1998, 6: 139.
    [30] Sturz A V, Christie B R, Matheson B G, et al. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliages and their influence on host growth[J]. Biology and Fertility of Soils, 1997, 25: 13.
    [31] Sturz A V, Matheson B G. Population of endophytic bacteria which influence host resistance to erwinio induced bacteria soft rot in potato[J]. Plant and Soil, 1996, 184: 256- 271.
    [32] Tervet I W, Hollis J P. Bacteria in the storage organs of healthy plants[J]. Phytopathology, 1948, 38: 960- 967.
    [33] Hollis J P. Bacteria in healthy potato tissue[J]. Phytopathology, 1951, 41: 350- 366.
    [34] Mundt J O, Hinkle N F. Bacteria within ovules and seeds[J]. Applied and Environmental Microbiology, 1976, 32: 694- 698.
    [35] Kobayashi D Y, Palumbo J D. Bacterial endophytes and their effects on plant and uses in agriculture[M]. Charles W. B, James F W. In: Microbial Endphtes. New York: Marcel Dekker, 2000, 199- 205.
    [36] O'Sullivan D J, O'gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens[J]. Microbiology and Molecular Biology, 1992, 56: 662-672.
    [37] Fenton A M, Stephens P M, Crowley J, et al. Exploitation of gene(s) involved in 2, 4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain[J]. Applied and Environental Microbiology, 1992, 58: 3873- 3878.
    [38] Bangera M G, Thomashow L S. Characterization of a genomic locus required for synthesis of the antibiotic 2, 4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87[J]. Molecular Plant-Microbe Interactions, 1996, 9: 83- 90.
    [39] Keel C, Schnider U, Maurhofer M, et al. Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucionl[J]. Molecular Plant-Microbe Interactions, 1992, 5: 4- 12.
    [40] Glick B R. The enhancement of plant growth by free living bacteria[J]. Canadian Journal of Microbiology, 1995, 41: 109- 117.
    [41] Ran L X, Liu C Y, Wu G J, et al. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China[J]. Biological Control, 2005, 32: 111- 120.
    [42]弓明钦,陈羽,王凤珍,等.外生菌根对桉树青枯病的防治效应[J].林业科学研究, 1999, 12(4): 339- 345.
    [43]向妙莲,冉隆贤.桉树青枯病的研究进展[J].中国森林病虫, 2004, 1(1): 37- 40.
    [44]弓明钦,陈羽,王凤珍. AM菌根化的两种桉树苗对青枯病的抗性研究[J].林业科学研究, 2004, 17(4): 441- 446.
    [45] Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DAN in vitro: the polymerase chain reaction [J]. Cold Spring Habor Symposia Quantitative Biology, 1986, 51(1): 263- 273.
    [46]王克日,庞辉.泡桐组织苗丛枝病原体PCR检测[J].林业科学研究, 1995, 8(2): 215- 218.
    [47]李江山,金开璇.用PCR扩增16 SrDNA检测泡桐组织苗丛枝病菌质体[J].林业科学, 1996, 32(6): 569- 572.
    [48]邓晓玲,梁志慧,唐伟文.快速检测病病柑桔黄龙原的研究[J].华南农业大学学报, 1999, 20(1): 1- 4.
    [49]孔维文,邓晓玲,梁志慧.病病柑桔黄龙原DNA片段的克隆及序列分析[J].植物病理学报, 2000, 30(1): 71- 75.
    [50]田亚南,李韬,徐平东.应用电镜与PCR技术检测王官溪蜜柚黄龙病病原[J].植物病理学报, 2000, 30(1): 76- 81.
    [51]王海妮,吴云锋,安凤秋,等.枣疯病和酸枣丛枝病植原体16S rDNA和tuf基因的序列同源性分析[J].中国农业科学, 2007, 40(10): 2200- 2205.
    [52]丁芳,洪霓,钟云,等.中国柑橘黄龙病病原16S rDNA序列研究[J].园艺学报, 2008, 35(5) 649- 654.
    [53] Fischer S G., Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proceedings of the National Academy of Sciences, 1983, 80: 1579- 1583.
    [54] Lerman L S, Fischer S G, Hurley I, et al. Sequence-determined DNA separations. Annual Review of Biophysics and Bioengineering, 1984, 13: 399- 423.
    [55] Myers R M, Fischer S G, Lerman L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis[J]. Nucleic Acids Research, 1985, 13(9): 3131- 3145.
    [56] Myers R M, Fischer S G, Maniatis T, et al. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis[J]. Nucleic Acids Research, 1985, 13(9): 3111- 3129.
    [57] Muyzer G, De Waal E C, Uitterlinden A G, et al. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genescoding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3): 695- 700.
    [58] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. Current Opinion in Microbiology, 1999, 2: 317- 322.
    [59] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie Van Leeuwe -nhoek, 1998, 73: 127- 141.
    [60]臧红梅,樊景凤,王斌,等.海洋微生物多样性的研究进展[J].洋环境科学, 2006, 35(3): 96- 100.
    [61] Kowalchuk G A, Stephen J R, De Boer W, et al. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments[J]. Applied and Environmental Microbiology, 1997, 63(4): 1489- 1497.
    [62] Sekiguchi H, Tomioka N, Nakahara T, et al. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis[J]. Biotechnology Letters, 2001, 23: 1205- 1208.
    [63] Tannock G, Munro W K, Bibiloni R, et al. Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans[J]. Applied and Environental Microbiology, 2004, 70(4): 2129- 2136.
    [64] Farrelly V, Rainey F A., Stackebrandt E. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species[J]. Applied and Environmental Microbiology, 1995, 61(7): 2798- 2801.
    [65] Picard C, Ponsonnet C, Paget E, et al. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction[J]. Applied and Environental Microbiology, 1992, 58: 2717- 2722.
    [66] Maarit Niemi R, Heiskanen I, Wallenius K, et al, Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia[J]. Journal of Microbio -logical Methods, 2001, 3(45): 155- 165.
    [67] Martin-Laurent F, Philippot L, Hallet S, et al. DNA extraction from soils: old bias for new microbial diversity analysis methods[J]. Applied and Environmental Microbiology, 2001, 67: 2354- 2359.
    [68] Jensen M A., Straus N. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions[J]. PCR Methods and Applications, 1993, 3: 186- 194.
    [69] Qiu X Y, Wu L Y, Huang H S, et al. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning[J]. Applied and Environmental Microbiology, 2001, 67(2): 880- 887.
    [70] Reysenbach A. L, Giver L J, Wickham G S, et al. Differential amplification of rRNA genes by polymerase chain reaction[J]. Applied and Environmental Microbiology, 1992, 58: 3417- 3418.
    [71] Normander B, Prosser J I. Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions[J]. Applied and Environmental Microbiology, 2000, 66(10) :4372- 4377.
    [72] Seghers D, Wittebolle L, Top E M, et al. Impact of agricultural practices on the Zea mays L. endophytic community[J]. Applied and Environmental Microbiology, 2004, 70(3): 1475- 1482.
    [73] Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed[J]. Applied and Environental Microbiology, 2001, 67(10): 4742- 4751.
    [74] Eichner C A., Erb R W, Timmis K N, et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community[J]. Applied and Environmental Microbiology, 1999, 65: 102- 109.
    [75] Watanabe K, Teramoto M, Futamata H, et al. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge[J]. Applied and Environmental Microbiology, 1998, 64(11): 4396- 4402.
    [76] Simpson J M, McCracken V J, White B A., et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J]. Journal of Microbiological Methods, 1999, 36: 167- 179.
    [77] Zoetendal E G, Akkermans A. D, De Vos W M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria[J]. Applied and Environmental Microbiology, 1998, 64: 3854- 3859.
    [78] Ferris M J, Muyzer G, Ward D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environental Microbiology, 1996, 62: 340- 346.
    [79] Teske A. C, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments[J]. Applied and Environmental Microbiology, 1996, 62(4): 1405- 1415.
    [80] Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis[J]. Applied and Environental Microbiology, 2002, 68: 5142- 5150.
    [81] Watanabe K, Kodama Y, Syutsubo K, et al. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities[J]. Applied and Environmental Microbiology, 2000, 66: 4803- 4809.
    [82] Gomes N C M, Heuer J H, Sch?nfeld J, et al. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis[J]. Plant and soil. 2001, 232(1-2): 167- l80.
    [83] Tholozan J M, Tissier J P, Delattre G, et al. Physiological charcterization of viable-but-nonculturable Campylobacter jejuni cells[J]. Applied and Environmental Microbiology, 1999, 65, 1110- 1116.
    [84] Garbeva P, Van Overbeek L S, Van Vuurde J W L. Analysis of endophytic bacterial communities of potato by planting and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA basad PCR fragments[J]. Microbiology and Ecology, 2001, 41: 369- 383.
    [85] Sessitsch A, Reiter B, Pfeifer U, et al. Cultivation-independent population analysis of bacteria endophytes in three potato varieties based on eubacterial and Actinomyeetes-specific PCR of 16S rDNA genes[J]. Federation of European Microbiological Societies Microbiological Ecology, 2002, 39: 23- 32.
    [86] Araujo W L, Macron J, Maccheroni W, et al. Diversity of endophytic bacterial populations and their interaction with xylella fastidiaras in Citrus plants[J]. Applied and Environmental Microb -iology, 2002, 68: 4906- 4914.
    [87] Torsvik V, Goksoyr J, Daae F L. High Diversity in DNA of Soil Bacteria[J]. Applied and Environmental Microbiology, 1990, 56(3): 782- 787.
    [88]郑斯平,陈彬,关雄,等.小叶满江红内生细菌多样性的PCR-DGGE及电子显微镜分析[J].农业生物技术学报, 2008, 16(3): 508- 514.
    [89] Katherine C D, John R S, William E F. Molecular profiling of microbial communities associated with seeds of Beta vulgaris subsp. Vulgaris (sugar beet)[J]. Journal of Microbiological Methods, 2004, 56(1): 17- 26.
    [90]马俊孝,孔健,季明杰.利用PCR-DGGE技术分析乳制品中的乳酸菌[J].应用与环境生物学报, 2009, 15(4): 534- 539.
    [91] Chelius M K, Triplett E W. Immunolocalization of Dinitrogenase Reductase Produced by Klebsiella pneumoniae in Association with Zea mays L.[J]. Applied and Environmental Microbiology, 2000, 66(2): 783- 787.
    [92]胡元森,吴坤,李翠香,等.黄瓜连作对土壤微生物区系影响II-基于DGGE方法对微生物种群的变化分析[J].中国农业科学, 2007, 40(10): 2267- 2273.
    [93]孙军德,赵春燕,黄小星,等.保护地番茄根际微生物区系分析[J].土壤通报, 2005, 36(6): 943- 945.
    [94]李艳琴,中泉,刘彬彬,等.番茄内生菌分离及其ERIC-PCR指纹图谱分析[J].微生物学通报, 2003, 30(5): 89- 94.
    [95] Sun L, Qiu F B, Zhang X X, et al. Endophytic bacterial diversity in rice(Oryza sativa L.)roots estimated by 16S rDNA sequence analysis[J]. Microbial Ecology, 2008, 55: 415- 424.
    [96]高增贵,庄敬华,陈捷.玉米根系内生细菌种群及动态分析[J].应用生态学报, 2004, 15(8): 1344- 1348.
    [97]徐艳霞,王光华,金剑,等.大豆根际未培养与培养细菌群落结构差异比较研究[J].大豆科学, 2007, 12: 907- 913.
    [98] Larkin R P, Hopkins D L, Martin F N. Effect of successive watermelon plantings on Fusarium Oxysporum and other microorganisms in soils suppressive and conducive to Fusarium Wilt of watermelon[J]. Phytopathology, 1993, 83: 1097- 1105.
    [99]殷世松.蔬菜连作障害及防治对策[J].蔬菜, 2001, 10: 31- 32.
    [100]周宝利,姜荷.不同砧木嫁接茄子抗黄萎病特性及其与根系分泌物关系[J].沈阳农业大学学报, 2001, 32(6): 414- 417.
    [101]刘素萍,王汝贤,张荣,等.根系分泌物中糖和氨基酸对棉花枯萎菌的影响[J].西北农业大学学报, 1998, 12: 30- 35.
    [102]袁虹霞,李洪连,王烨,等.棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响[J].植物病理学报, 2002, 5: 127- 131.
    [103]王琦,鲁素云,梅汝鸿.棉花微观组织内生细菌分析之一:不同抗性品种含菌动态与土质和生育期的关系[J].中国微生态学杂志, 1997, 9(1): l48- 152.
    [104] Yabuuchi E, Kosako Y, Yano I, et al. Validation of the published names and new combinations previously effectively published outside the IJSB[J]. International Journal of Systematic Bacteriology, 1996, 46: 625- 626.
    [105] Kelman A. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium[J]. Phytopathology, 1954, 44: 683- 685.
    [106]解文科,王小青,李斌,等.植物根系分泌物研究综述[J].山东林业科技, 2005, 5: 63- 67.
    [107]潘凯,姚友.不同黄瓜品种根系分泌物对根际土壤微生物及土壤养分的影响[J].北方园艺, 2008, 8: 18- 20.
    [108] Buxton E W. Root Exudates from banana and their relationship to strains of the Fusarium causing Panama wilt[J]. Annals of Appiled Biology, 1962, 50(2): 269- 282.
    [109]温哲屹,师光禄,苏学友,等.瑞香狼毒提取物对病原菌及桃酶的生物活性研究[J].北京农学院学报, 2008, 23(1): 25- 29.
    [110]赵纯森,黄俊斌,周茂繁.厚朴叶中抑菌活性成分鉴别及其防病效果[J].华中农业大学学报, 1994, 13(1): 373- 377.
    [111]朱正良,樊建,赵天瑞,等.青刺果提取液的抑菌对比研究[J].云南师范大学学报, 2002, 22(6): 49- 54.
    [112]李永刚,文景芝. 30种中药抑菌活性的筛选试验初报[J].植物保护学报, 2003, 3(1): 109- 110.
    [113]方舟.大叶桉叶精油化学成分及其抑菌活性[J].福建林学院学报, 2007, 27(1): 48- 51.
    [114] Van Buren A M, Andre C, Ishimaru C A. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato[J]. Phytopathology, 1993, 83: 1406- 1410.
    [115]崔林,孙振,孙福在,等.马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定[J].植物病理学报, 2003, 33(4): 353- 358.
    [116]杨海莲,孙晓璐,宋未,等.水稻内生阴沟肠杆菌MR12的鉴定及其固氮和防病作用研究[J].植物病理学报, 2001, 31(l): 92- 93.
    [117] Brooks D S, Gonzalez C F, Appel D N, et al. Evaluation of endophytic bacteria as potential biological controll agents for oak wilt[J]. Biological Control, 1994, 4(4): 373- 381.
    [118]夏正俊,顾本康,吴蔼民.植物内生及根际土壤细菌诱导棉花对大丽轮枝菌抗性的研究[J].中国生物防治, 1996, 12(1): 7- 10.
    [119]吴蔼民,顾本康,付正擎,等.内生菌对棉花黄萎病的田间防效及增产作用[J].江苏农业科学, 2000(5): 38- 39.
    [120]丁国春,付鹏,李红梅,等.枯草芽孢杆菌AR11菌株对南方根结线虫的生物防治[J].南京农业大学学报, 2005, 28(2): 46- 49.
    [121]吴蔼民,顾本康,傅正擎,等.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究[J].植物病理学报, 2001, 31(4): 289- 294.
    [122]韩玉杰,贾炜珑,王自霞,等.几种提取植物DNA方法的比较[J].山西农业科学, 2008, 36(7): 17- 19.
    [123]邢德峰,任南琪,宋佳秀,等.不同16S rDNA靶序列对DGGE分析活性污泥群落的影响[J].环境科学, 2006, 27(7): 1424- 1428.
    [124] Holger H, Martin K, Paul B, et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients[J]. Analysis of Actinomycete Communities, 1997, 63(8): 3233- 3241.
    [125]刘宪华,鲁逸人.环境生物化学实验教程[M].北京:科学出版社, 2006, 276- 278.
    [126]乐晓萍,杜鹏,张钦宪,等.聚丙烯酰胺凝胶银染技术改良[J].河南医科大学学报, 2001, 36(4): 395- 396.
    [127] Samish Z, Etinger-Tulczynska T, Bick M. The microflora within the tissue of fruits and vegetable[J]. Food Science, 1963, 28(11): 259- 266.
    [128]赵发清,马海燕.棉苗微生态学研究I.正常棉苗内生菌分离和某些生化特性测定[J].应用生态学报, 1999, 10(1): 71- 73.
    [129] Philipson M N, Blair I D. Bacteria in clover root tissue[J]. Canadian Journal of Microbiology, 1957, 3(2): 125- 129.
    [130] Patriquin D G, D?bereiner. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil[J]. Canadian Journal of Microbiology, 1978, 24(6): 734- 742.
    [131]宋亚娜,林智敏,林捷.不同品种水稻土壤氨氧化细菌和氨氧化古菌群落结构组成[J].中国生态农业学报, 2009, 17(6): 1211- 1215.
    [132]孙晓棠,王燕,龙良鲲,等.番茄根际微生物种群动态变化及多样性[J].微生物学通报, 2008, 35(11): 1744- 1749.
    [133]赵庆节,梁丹涛,沈根祥,等.五种人工湿地植物根际细菌多样性的研究[J].三峡环境与生态, 2008, 3(1): 11- 13.
    [134]雷娟利,寿伟松,董文其.抗感枯萎病西瓜根际细菌群落多样性比较[J].微生物学通报, 2008, 35(12): 1905- 1908.
    [135] Tholozan J L, Cappelier J M., Tissier J P, et al. Physiological Characterization of Viable-but-Nonculturable Campylobacter jejuni Cells[J]. Applied and Environmental Microbiology, 1999, 65(3): 1110- 1116.
    [136]高启禹,吴襟,徐光翠,等.寡糖对SPF大鼠肠道微生物多性影响的研究[J].生物技术, 2006, 16(5): 28- 30.
    [137] Mocali S, Bertelli E, Di Cello F, et al. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs[J]. Research in Microbiology, 2003, 154(2):105- 114.
    [138]宋子红,丁立孝,马伯军,等.花生内生菌的种群及动态分析[J].植物保护学报, 1999, 12(26): 310- 314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700