用户名: 密码: 验证码:
葡萄子原花青素抗再灌注性心律失常作用的比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     早期再灌注治疗对于缺血心肌的存活至关重要。然而,再灌注治疗被Braunwald和Kloner称为“双刃剑”,因为再灌注本身可以导致加速的心肌损伤和缺血单独导致的心肌损伤之外的新生的心肌损伤。这就导致了一系列再灌注相关的病理过程,统称为再灌注损伤(reperfusion injury)。再灌注损伤在各种各样的再灌注治疗中都可以观察到,包括经皮冠状动脉介入治疗(percutaneous coronary intervention, PCI)、溶栓治疗和冠状动脉旁路移植手术。再灌注损伤的不同临床表现包括心肌坏死、心肌凋亡、再灌注性心律失常(reperfusion arrhythmias)、心肌顿抑和内皮细胞功能障碍、微血管功能障碍包括无复流现象。然而,再灌注性心律失常尤其是再灌注导致的室性心动过速简称室速(ventricular tachycardia, VT)和心室纤颤简称室颤(ventricular fibrillation,VF)仍然是再灌注后猝死的最主要原因。因此,必须尽最大努力减少再灌注性心律失常引起的猝死事件。再灌注性心律失常的分子机制包括心肌传导恢复的异质性和非完全再灌注的抵抗期、折返机制、异常激动和由Ca2+超载、自由基引起的损伤。再灌注性心律失常到目前为止仍然没有得到令人满意的治疗。
     葡萄子原花青素(grape seed proanthocyanidin extracts, GSPE)是从葡萄籽中获得的一种天然的具有生物活性的多酚类黄酮复合物,具有显著的自由基清除能力。GSPE起药理作用的主要成分是低聚体原花青素。众所周知,自由基和氧化应激在一系列心血管疾病的病理生理过程中有着举足轻重的作用,包括心衰、心脏瓣膜病、心肌病、心肌肥大、冠状动脉粥样硬化性心脏病。由于GSPE出色的抗氧化能力,GSPE表现出一定的心血管保护作用,包括抗动脉粥样硬化、降低血压、调节血脂等。
     国内外研究发现,GSPE还具有保护心肌缺血再灌注损伤的作用。实验和临床研究发现,缺血再灌注损伤主要与氧自由基损伤及钙超载相关。GSPE作为一种强大的抗氧化剂,具有出色的自由基清除能力,对于心肌缺血再灌注损伤有着一定的保护作用,它可以促进再灌注后心功能的恢复,减少心肌梗死面积,抑制心肌细胞的凋亡等。
     在研究GSPE保护缺血再灌注损伤的实验中,人们发现,GSPE具有抗再灌注性心律失常的作用。研究表明,在离体大鼠心脏缺血再灌注模型中,GSPE可以降低再灌注引起的VT、VF的发生。然而,此保护作用的分子机制目前还不十分清楚。心脏组织的比较蛋白质组学研究能够提供心肌对于各种心脏性疾病所作反应的特定早期分子机制,因此,比较蛋白质组学研究对于心血管疾病的特效、有效的诊断和治疗可能有着重要的启示。随着蛋白质组学技术的发展,一种新的比较蛋白质组学技术-同位素标记相对和绝对定量技术(isobaric tags for relative and absolute quantification, iTRAQ)被开发出来。iTRAQ技术是一种新的、功能强大的可以同时对四种样品进行绝对和相对定量研究的方法。iTRAQ试剂是可以与氨基酸N端及赖氨酸侧链反应的胺标记同重元素。在质谱图中,任何一种iTRAQ试剂标记的不同样本中的同一肽段表现为相同的质荷比。而在串联质谱中,报道离子表现为不同质荷比(114-117)的峰,因此,根据波峰的高度及面积,就可以得到蛋白质的定量信息。虽然荧光差异凝胶电泳(difference gel electrophoresis, DIGE)和同位素亲和标记(isotope-coded affinity tags, ICAT)技术已经广泛应用于蛋白质研究,但是iTRAQ作为一种新的蛋白质绝对和相对定量技术,具有很好的精确性和重复性,弥补了DIGE及ICAT的不足,迅速被广大学者接受。
     GSPE抗再灌注性室性心律失常作用的分子机制可能涉及到减少自由基损伤、减轻钙超载等多个不同的分子机制,目前仍不十分清楚,还需要进一步的研究。目前已知的资料中,有关GSPE对大鼠在体缺血再灌注性心律失常的作用并没有文献报道。不同种属决定了他们对于缺血、再灌注和组织损伤程度耐受度的不同,考虑到这一方面,相比犬和人类,由于缺乏功能性冠状动脉侧支,大鼠心脏对于缺血再灌注损伤更为敏感。因此,本实验构建大鼠在体心脏缺血再灌注模型,观察GSPE抗大鼠在体心肌再灌注性室性心律失常的作用。此模型模拟临床上心肌梗死或者冠状动脉内血栓形成的环境,对于再灌注性室性心律失常较为敏感,且具有较高的可复制性。
     蛋白质组学技术日趋完善与成熟,因而,借助先进的分子生物学手段,研究GSPE对缺血再灌注心律失常的保护作用,深入探讨GSPE在细胞水平的生物学作用机制,寻找其作用靶蛋白和靶位相关蛋白,进一步明确临床对缺血再灌注性心律失常病理生理学机制的认识,寻找药物治疗的新靶位,开辟新的心血管疾病治疗途径具有重要的理论和实际意义。
     研究目的
     (1)本实验通过建立大鼠在体心肌缺血再灌注模型,观察GSPE对大鼠在体心肌缺血再灌注损伤引起的再灌注性室性心律失常的保护作用。
     (2)应用比较蛋白质组学方法-iTRAQ,研究缺血心肌的差异蛋白质的表达,阐明GSPE抗再灌注性心律失常的分子机制,并希翼找到此保护作用的关键蛋白质,发现新的有抗再灌注性心律失常作用的药物靶点。
     研究方法
     1、建立大鼠在体心脏缺血再灌注模型
     雄性wistar大鼠66只,体重为180g-200g,随机分到3组:假手术组(sham)22只,缺血再灌注组(IR)22只,GSPE治疗组(GSPE)22只。GSPE组用GSPE溶液灌胃(200mg/kg·d)共4周,Sham组和IR组用相同体积的生理盐水灌胃共4周。IR组和GSPE组行冠状动脉左前降支(left anterior descending coronary artery, LAD)结扎术形成心肌缺血,结扎30min后松开活结恢复血流,形成再灌注模型,再灌流120min。Sham组只穿线不结扎。应用BL410生物信号采集系统记录整个实验期间ECG,采用再灌注期间的心律失常数据进行数据分析。
     实验结束后,立即处死大鼠,迅速取出心脏。切取心尖部分电镜观察心肌超微结构改变。IR组和GSPE组各取6只大鼠心脏,用NBT染色行心肌梗死面积测定。
     2、比较蛋白质组学-iTRAQ分析
     再灌注结束后,立即取出心脏,取心尖部分放入液氮罐冷冻保存以进行后期的蛋白质组学实验。将心肌组织进行差速离心,以富集蛋白,然后用trypsin进行蛋白消化得到肽段。用iTRAQ试剂标记消化后的肽段,114标记假手术组,116标记GSPE组,118标记IR组。将标记的肽段混合后运用强阳离子交换柱(strong cation exchange, SCX)和C18柱进行分级分离,最后用MALDI-TOF/TOF和microQ-TOF进行质谱鉴定。
     研究结果
     1、再灌注性VT、VF发生率
     本实验证实,在大鼠在体心肌缺血再灌注模型中,GSPE能够显著地降低再灌注引起的VT、VF的发生率。Sham组无心律失常发生。再灌注导致的VF从IR组的64%降至GSPE组的17%(P<0.05)。再灌注导致的VT发生率从IR组的91%降至GSPE组的33%(P<0.01)。
     2、透射电镜观察心肌微结构
     透射电镜观察到GSPE具有明显的心肌保护作用,同GSPE组的心肌组织相比,IR组的心肌组织表现出更多的受损特征。Sham组的标本表现出了正常心肌细胞的特征。IR组的标本观察到明显的细胞核分布的不正常,心肌纤维的断裂和缺失也可以观察到,很多排列紊乱的线粒体代替了心肌纤维,还可以观察到线粒体空泡化。而在GSPE组,可以观察到明显的改善,心肌细胞受损的表现减少,只有少部分的线粒体和细胞核表现不正常,心肌细胞得到了保护。3、心肌梗死面积测定
     实验结果发现,GSPE能够显著减少缺血再灌注心肌梗死面积。心肌梗死面积从IR组的26.7%±2.3%下降至GSPE组的13.3%±3.3%(P<0.01)
     4、差异蛋白的鉴定
     将心肌组织进行差速离心富集蛋白,然后用trypsin进行蛋白消化得到肽段。用iTRAQ试剂标记消化后的肽段,114标记假手术组, 116标记GSPE组,118标记IR组。将标记的肽段混合后运用强阳离子交换柱和C18柱进行分级分离,最后用MALDI-TOF/TOF和microQ-TOF进行质谱鉴定。最终发现91个差异蛋白点,其中两个或两个以上肽段进行定量鉴定的蛋白有67个,采用单个肽段进行定量鉴定的蛋白有24个。分别用DATA ANALYSIS 4.0和WARP-LC软件分析质谱数据,MASCOT搜索质谱匹配蛋白标本差异表达蛋白点,在鉴定出的91个蛋白中,以sham组为对照,43种蛋白质的表达在IR组下降,而在GSPE组中则被显著上调;以sham组为对照,21种蛋白质的表达在IR组上升,而在GSPE组则被明显下调;余下的27种蛋白在GSPE组与IR组的变化不明显。这91个差异蛋白的功能涉及到离子转运、脂肪酸的氧化、钙离子结合、细胞粘附、凋亡的调节和信号转导等,这预示着这些过程可能参与了GSPE抗再灌注损伤。
     结论
     1、本实验构建大鼠在体心脏缺血再灌注损伤模型,首次观察到GSPE具有抗大鼠在体心脏再灌注性室性心律失常VT、VF的保护作用。此模型模拟临床上心肌梗死或者冠状动脉内血栓形成的环境,提示GSPE有可能成为有效的抗再灌注性心律失常药物。
     2、比较蛋白质组学-iTRAQ,具有较好的精确性、重复性和定量效果,能够对多组样本同时进行比较分析,可以用于研究GSPE抗再灌注性心律失常作用的分子机制,找到此保护作用的关键蛋白,发现新的有抗再灌注性心律失常作用的药物靶点。
     3、应用iTRAQ,鉴定出91个差异蛋白,其功能涉及到离子转运、脂肪酸的氧化、钙离子结合、细胞粘附、凋亡的调节和信号转导等,这预示着这些过程可能参与了GSPE抗再灌注损伤。
     4、在这些差异蛋白中,以sham组为对照,Na+/k+-ATPaseα1亚基和HSP60的表达在IR组明显下降,在GSPE组则显著地提高,这2个蛋白可能是GSPE抗再灌注性心律失常作用的关键蛋白。Na+/K+-ATPaseα1亚基的增加可能导致Na+/K+-ATP酶活性的升高,继而引起心肌细胞内Ca2+超载的减少;提高再灌注后心肌细胞的HSP60的表达,可能会抑制再灌注后心肌细胞的凋亡。GSPE可能通过这2个途径最终减少了再灌注性心律失常的发生。
Research background
     Early reperfusion is crucial for the survival of ischemic myocardium. However, reperfusion has been referred by Braunwald and Kloner as the "double edged sword" because reperfusion itself may lead to accelerated and additional myocardial injury beyond that generated by ischemia alone. This results in a spectrum of reperfusion-associated pathologies, collectively called "reperfusion injury". Reperfusion injury has been observed in each of reperfusion therapies including percutaneous coronary intervention (PCI), thrombolysis and coronary bypass grafting. The different clinical manifestations of this injury include myocardial necrosis, myocardial apoptosis, reperfusion arrhythmias, myocardial stunning and endothelial-and microvascular dysfunction including the no-reflow phenomenon. However, VT and VF induced by reperfusion remain the most important causes of sudden death following spontaneous restoration of antegrade flow. Therefore, every effort must be made to minimize sudden cardiac death caused by reperfusion arrhythmias. The mechanisms of reperfusion arrhythmias may include heterogeneous recovery of conduction and a refractory period of incomplete reperfusion, reentry, abnormal automaticities, and activities triggered by Ca2+ overload and free radicals. However, the details of the mechanisms remain unclear and reperfusion arrhythmia has not received satisfactory treatment.
     GSPE is a natural, standardized, water-ethanol extract from red grape seeds which has great free radical scavenging ability. The main pharmacological effective components of GSPE are oligomeric proanthocyanidins. Free radicals and oxidative stress play a crucial role in the pathophysiology of abroad spectrum of cardiovascular diseases including congestive heart failure, valvular heart disease, cardiomyopathy, hypertrophy, atherosclerosis and ischemic heart disease. A series of studies were conducted using GSPE to demonstrate its cardioprotective ability in animals and humans.
     Proteomics is the large scale study of proteins, usually by biochemical methods. Many studies of cardiovascular disease and cancer have used proteomics techniques. Nonetheless, proteomics has already revolutionized the discovery process for antimicrobial drugs by accelerating target identification and evaluation, assay development and the follow-up support for medicinal chemistry programs. It is important to note that proteomics techniques could discover not only novel biomarkers, but also proteins that may actively participate in cardiovascular process. Proteomic studies of heart tissues can provide new insights into the specific early molecular mechanisms'that underlie the responses to IR injury and therefore may have vital implications for the specificity and efficacy of diagnosis and treatment. Our previous work had shown GSPE reduced reperfusion-induced arrhythmias in rabbits. In isolated rat hearts GSPE had been proved to reduce the incidence of reperfusion-induced VF and VT. However the mechanism of this protection against reperfusion-induced VT, VF by GSPE remained unclear. With the development of proteomic techniques a quantitative proteomics- isobaric tags for relative and absolute quantification (iTRAQ) was introduced. iTRAQ employs primary amine reactive isobaric tags to derivatize peptides at the N-termini and lysine side-chains. Therefore, theoretically, iTRAQ labels most of the peptide fragments in a digested mixture. Although the peptides labeled with any of the iTRAQ reagents are indistinguishable in single MS analysis, tag fragmentation during MS/MS analysis produces reporter ions (m/z=114,115,116, and 117), which provide quantitative information upon integration of the peak areas.
     An important starting point for drug discovery is to supply a validated therapeutic target, and the proteomic study of GSPE using iTRAQ on reperfusion arrhythmias may yet provide insights into the mechanism of reperfusion-induced ventricular arrhythmias, and provide new starting points for antiarrhythmia drugs.
     Aims
     1. We illustrated the ischemia/reperfusion modal in rats in vivo to observe whether GSPE could reduce the accidents of reperfusion-induced VT, VF.
     2. We applied iTRAQ combined with mass spectrometry to identify alterations in the expression of proteins in myocardial tissue in order to elucidate the potential molecular mechanism of the protective effects of GSPE on reperfusion-induced VT, VF and find potential new drug targets for reperfusion arrhythmias.
     Materials and methods
     1. IR Protocol in Rats in vivo Sixty six rats were randomly assigned to three groups:Sham group (n=22), IR group (n=22) and GSPE group (n=22). Twenty two Rats in GSPE group were fed with GSPE (200 mg/kg·d for 4 weeks, intragastricly) while the other 44 rats were given 0.9% NaCl intragastricly only for 4 weeks. Rats (280-340g) were anaesthetized with 20% Urethane(0.5ml/100g, i.p.). Body temperature was routinely monitored via a rectal thermometer using a heated operating platform and appropriate heating lamps. Subdermal electrodes were placed to allow the determination of a leadⅡelectrocardiogram (ECG) which was recorded continuously throughout the experiment by the BL410 multichannel acquisition system (Chengdu Taimeng, China) for physiological signals. The incidence of reperfusion-induced VF and VT during reperfusion was analyzed. A 4-0 polypropylene suture through a 3-mm long polyethylene tube (PE-10) was then placed around the left anterior descending coronary artery (LAD), proximal to its main branching point. Then the LAD was ligated with the 4-0 suture. The coronary artery was occluded by tightening of the occluder. After 30min of ischemia, in the IR and GSPE groups, the suture around the LAD was removed and the occurrence of reperfusion was assessed by the observation of blood flow in the epicardial coronary arteries through a surgical microscope. The ischemic myocardium was reperfused for 120min. Sham group were made following an identical procedure but without the actual tying of the polypropylene suture. At the end of each experiment, the heart was excised. Ultrathin sections cut from the ischemic area were stained with uranylacetate and lead citrate and were examined with an H-800 electron microscope (Hitachi, Japan). With NBT stain, infarct sizes of IR group and GSPE group were assessed.
     2. iTRAQ Proteomics
     The proteins-enriched fractions were digested by tripsin. The resulting complex peptide mixtures were labeled with iTRAQ reagents (114 for the peptides of Sham group,116 for the peptides of GSPE group, and 118 for the peptides of IR group respectively), and then separated by SCX and C18 fractionation. And 6 SCX fractions were analyzed by MALDI-TOF/TOF and microQ-TOF.
     Results
     1. Reduction of the Incidence of Reperfusion-induced VT, VF by GSPE Our results demonstrated that GSPE can significantly reduce the incidence of reperfusion-induced VT, VF in rats in vivo. There was no arrhythmia happened in Sham group. The incidence of reperfusion-induced VF was reduced from 64% in rats without GSPE-treated (IR group) to 17% in rats treated with GSPE (GSPE group) (P< 0.05). The incidence of reperfusion-induced VT was reduced from 91% in rats without GSPE-treated to 33% in rats with GSPE-treated (P<0.01).
     2. Results of Transmission Electron Microscopic Observation
     Specimens from sham group showed normal features:the cardiac cells were rich in mitochondria arranged between myofibrils in rows with myofibrils arranged evenly and normal intercalated disks. The sarcomere was of the same length. Nuclear membrane was integrated and chromatin was normally distributed. In IR group, the structure abnormalities of nuclear were apparently observed. Disarrangement, breakage and local absence of myofibrils were observed. Numerous disarranged mitochondria substituted for myofibrils. Mitochondria vacuolization and crista loss were observed. In GSPE group there were more apparent differences. The protective effect was acquired in that there were only moderate mitochondrial and nucleolus abnormalities in cardiac myocytes.
     3. Infarct size Infarct size was noticeably reduced in the GSPE-fed group [13.3%±3.3%) as compared to the IR group (26.7%±2.3%) (P<0.01).
     4. Identification of Proteins
     We identified 91 differential proteins among which the expression of 53 proteins was significantly changed. The expression of 21 proteins were increased in IR group when compared to sham group, while these were significantly down-regulated in GSPE group and the expression of 43 proteins were decreased in IR group when compared to sham group while these were significantly up-regulated in GSPE group. The function of all 91 proteins consists of ion transport, fatty acid oxygenation, calcium binding, cellular adhesion, regulation of apoptosis and signal transport which indicated that these functions maybe involved in the protective effects of GSPE on ischemia/reperfusion injury.
     Conclusions
     1. Our results demonstrated for the first time that GSPE can significantly reduce the incidence of reperfusion-induced VT, VF in rats in vivo. Since ischemia/reperfusion models of rat in vivo mimic clinical myocardial infarction or intracoronary thrombolysis or angioplasty situations, it is expected that GSPE may become effective drugs against reperfusion-induced arrhythmias.
     2. Comparative proteome-iTRAQ is more accurate and reproducible which can be used to elucidate the potential molecular mechanism of the protective effects of GSPE on reperfusion-induced VT, VF and find potential new drug targets for reperfusion arrhythmias.
     3. Using we identified 91 differential proteins. The function of all 91 proteins consists of ion transport, fatty acid oxygenation, calcium binding, cellular adhesion, regulation of apoptosis and signal transport which indicated that these functions maybe involved in the protective effects of GSPE on ischemia/reperfusion injury.
     4. We found that Na+/K+ ATPaseα1 subunit and HSP60 were decreased in IR group while it was significantly increased in GSPE group compared to sham group. These two proteins may be the key proteins involved in the protective effects of GSPE on reperfusion-induced arrhythmias. This change in subunit distribution may lead to the increase of Na+/K+-ATPase activity in GSPE treated rats which would ultimately protect hearts from reperfusion arrhythmia injury. The protection of increased expression of HSP60 in GSPE group maybe involved in against apoptotic cell death which in turn resulted in the reduction of the accidents of reperfusion-induced VT, VF in rats.
引文
1 张海澄,郭继鸿:冠心病流行病学与一级预防.中国实用内科杂志2002;22
    2 Braunwald E, Kloner R A:Myocardial reperfusion:A double-edged sword? J Clin Invest 1985;76:1713-1719.
    3 Yellon DM B G:Protecting the ischaemic and reperfused myocardium in acute myocardial infarction:Distant dream or near reality? heart 2000;83:381-387.
    4 Moens A L, Claeys M J, Timmermans J P, Vrints C J:Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology 2005; 100:179-190.
    5 Manning AS H D:Reperfusion-induced arrhythmias:Mechanisms and prevention. J Mol Cell Cardiol 1984;16:497-518.
    6 Tzivoni D K A, Granot H, Gottlieb S, Benhorin J, Stern S.:Ventricular fibrillation caused by myocardial reperfusion in prinz-metal's angina. Am Heart J 1983;105:323-325.
    7 Echt D S, Liebson P R, Mitchell L B, Peters R W, Obias-Manno D, Barker A H, Arensberg D, Baker A, Friedman L, Greene H L, et al.:Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The cardiac arrhythmia suppression trial. N Engl J Med 1991;324:781-788.
    8 Awaji T, Wu Z J, Hashimoto K:Acute antiarrhythmic effects of intravenously administered amiodarone on canine ventricular arrhythmia. J Cardiovasc Pharmacol 1995;26:869-878.
    9 Xue Y X, Eto K, Akie Y, Hashimoto K:Antiarrhythmic and proarrhythmic effects of sematilide in canine ventricular arrhythmia models. Jpn J Pharmacol 1996;70:129-138.
    10 Chen J, Xue Y, Eto K, Ni C, Hashimoto K:Effects of dofetilide, a class iii antiarrhythmic drug, on various ventricular arrhythmias in dogs. J Cardiovasc Pharmacol 1996;28:576-584.
    11 Dennis S C, Coetzee W A, Cragoe E J, Jr., Opie L H:Effects of proton buffering and of amiloride derivatives on reperfusion arrhythmias in isolated rat hearts. Possible evidence for an arrhythmogenic role of na(+)-h+ exchange. Circ Res 1990;66:1156-1159.
    12 Manning A S, Coltart D J, Hearse D J:Ischemia and reperfusion-induced arrhythmias in the. rat. Effects of xanthine oxidase inhibition with allopurinol. Circ Res 1984;55:545-548.
    13 Bernier M, Hearse D J, Manning A S:Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with "Anti-free radical" Interventions and a free radical-generating system in the isolated perfused rat heart. Circ Res 1986;58:331-340.
    14 Grech E D, Dodd N J, Bellamy C M, Perry R A, Morrison W L, Ramsdale D R: Free-radical generation during angioplasty reperfusion for acute myocardial infarction. Lancet 1993;341:990-991.
    15 Liu P H C, Nagele R, Wong PY:Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol 1997;272:H2327-2336.
    16 McHugh N A, Merrill G F, Powell S R:Estrogen diminishes postischemic hydroxyl radical production. Am J Physiol 1998;274:H1950-1954.
    17 Pallandi R T, Perry M A, Campbell T J:Proarrhythmic effects of an oxygen-derived free radical generating system on action potentials recorded from guinea pig ventricular myocardium:A possible cause of reperfusion-induced arrhythmias. Circ Res 1987;61:50-54.
    18 Garlick P B, Davies M J, Hearse D J, Slater T F:Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 1987;61:757-760.
    19 Zweier J L:Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 1988;263:1353-1357.
    20 Pataki T, Bak I, Kovacs P, Bagchi D, Das D K, Tosaki A:Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. American Journal of Clinical Nutrition 2002;75:894-899.
    21 Belleville J:The french paradox:Possible involvement of ethanol in the protective effect against cardiovascular diseases. Nutrition 2002;18:173-177.
    22 Sun A Y, Simonyi A, Sun G Y:The "French paradox" And beyond: Neuroprotective effects of polyphenols. Free Radic Biol Med 2002;32:314-318.
    23 Yamakoshi J, Kataoka S, Koga T, Ariga T:Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 1999;142:139-149.
    24 Sen C K, Bagchi D:Regulation of inducible adhesion molecule expression in human endothelial cells by grape seed proanthocyanidin extract. Mol Cell Biochem 2001;216:1-7.
    25 Brunet M J, Blade C, Salvado M J, Arola L:Human apo a-i and rat transferrin are the principal plasma proteins that bind wine catechins. J Agric Food Chem 2002;50:2708-2712.
    26 Preuss H G, Montamarry S, Echard B, Scheckenbach R, Bagchi D:Long-term effects of chromium, grape seed extract, and zinc on various metabolic parameters of rats. Mol Cell Biochem 2001;223:95-102.
    27 Vinson J A, Mandarano M A, Shuta D L, Bagchi M, Bagchi D:Beneficial effects of a novel ih636 grape seed proanthocyanidin extract and a niacin-bound chromium in a hamster atherosclerosis model. Mol Cell Biochem 2002;240:99-103.
    28 Bagchi D, Bagchi M, Stohs S J, Das D K, Ray S D, Kuszynski C A, Joshi S S, Pruess H G:Free radicals and grape seed proanthocyanidin extract:Importance in human health and disease prevention. Toxicology 2000;148:187-197.
    29 Sato M, Bagchi D, Tosaki A, Das D K:Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of jnk-1 and c-jun. Free Radical Biology and Medicine 2001;31:729-737.
    30 Sato M, Maulik G, Ray P S, Bagchi D, Das D K:Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury. Journal of Molecular and Cellular Cardiology 1999;31:1289-1297.
    31 Bagchi D, Sen C K, Ray S D, Das D K, Bagchi M, Preuss H G, Vinson J A: Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 2003;523-524:87-97.
    32 Shao Z H, Wojcik K R, Dossumbekova A, Hsu C, Mehendale S R, Li C Q, Qin Y, Sharp W W, Chang W T, Hamann K J, Yuan C S, Hoek T L:Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via akt-nos signaling. J Cell Biochem 2009; 107:697-705.
    33 Liang Y, Qiu J, Gao H Q, Li B Y:Protective effect of grape seed proanthocyanidins extracts on reperfusion arrhythmia in rabbits. Journal of Nutritional Science and Vitaminology 2009;55:223-230.
    34 Bagchi D, Garg A, Krohn R L, Bagchi M, Tran M X, Stohs S J:Oxygen free radical scavenging abilities of vitamins c and e, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 1997;95:179-189.
    35 Cordis G A, Maulik N, Das D K:Detection of oxidative stress in heart by estimating the dinitrophenylhydrazine derivative of malonaldehyde. J Mol Cell Cardiol 1995;27:1645-1653.
    36 Halestrap A P, Kerr P M, Javadov S, Woodfield K Y:Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1998; 1366:79-94.
    37 Ravingerova T, Tribulova N, Slezak J, Curtis M J:Brief, intermediate and prolonged ischemia in the isolated crystalloid perfused rat heart:Relationship between susceptibility to arrhythmias and degree of ultrastructural injury. J Mol Cell Cardiol 1995;27:1937-1951.
    38 Xue Y X, Aye N N, Hashimoto K:Antiarrhythmic effects of hoe642, a novel na(+)-h+ exchange inhibitor, on ventricular arrhythmias in animal hearts. Eur J Pharmacol 1996;317:309-316.
    39 Sewell W H, Koth D R, Huggins C E:Ventricular fibrillation in dogs after sudden return of flow to the coronary artery. Surgery 1955;38:1050-1053.
    40 Jennings R B, Sommers H M, Smyth G A, Flack H A, Linn H:Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 1960;70:68-78.
    41 Bulkely B H, Hutchins G M:Myocardial consequences of coronary artery bypass graft surgery. The paradox of necrosis in areas of revascularization. Circulation 1977;56:906-913.
    42 DeWood M A, Spores J, Notske R, Mouser L T, Burroughs R, Golden M S, Lang H T:Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980;303:897-902.
    43 Reimer K A, Lowe J E, Rasmussen M M, Jennings R B:The wavefront phenomenon of ischemic cell death.1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977;56:786-794.
    44 Spach M S, Heidlage J F:The stochastic nature of cardiac propagation at a microscopic level. Electrical description of myocardial architecture and its application to conduction. Circ Res 1995;76:366-380.
    45 钱俊,张亚臣:再灌注心律失常的发生机制、类型与治疗.心血管病学进展2008;29:567-570.
    46 Aimond F, Alvarez J L, Rauzier J M, Lorente P, Vassort G:Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction. Cardiovasc Res 1999;42:402-415.
    47 Otani H, Engelman R M, Rousou J A, Breyer R H, Das D K:Enhanced prostaglandin synthesis due to phospholipid breakdown in ischemic-reperfused myocardium. Control of its production by a phospholipase inhibitor or free radical scavengers. J Mol Cell Cardiol 1986;18:953-961.
    48 Otani H, Engelman R M, Rousou J A, Breyer R H, Lemeshow S, Das D K: Cardiac performance during reperfusion improved by pretreatment with oxygen free-radical scavengers. J Thorac Cardiovasc Surg 1986;91:290-295.
    49 Arroyo C M, Kramer J H, Dickens B F, Weglicki W B:Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone dmpo. FEBS Lett 1987;221:101-104.
    50 Prasad K, Kalra J:Oxygen free radicals and hypercholesterolemic atherosclerosis: Effect of vitamin e. Am Heart J 1993;125:958-973.
    51 Ferns G A, Forster L, Stewart-Lee A, Konneh M, Nourooz-Zadeh J, Anggard E E: Probucol inhibits neointimal thickening and macrophage accumulation after balloon injury in the cholesterol-fed rabbit. Proc Natl Acad Sci U S A 1992;89:11312-11316.
    52 Tardif J C, Cote G, Lesperance J, Bourassa M, Lambert J, Doucet S, Bilodeau L, Nattel S, de Guise P:Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and probucol study group. N Engl J Med 1997;337:365-372.
    53 Ambrosio G, Tritto I, Chiariello M:The role of oxygen free radicals in preconditioning. J Mol Cell Cardiol 1995;27:1035-1039.
    54 Zweier J L, Talukder M A:The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 2006;70:181-190.
    55 Bolli R:Preconditioning:A paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 2007;292:H19-27.
    56 Woodward B, Zakaria M N:Effect of some free radical scavengers on reperfusion induced arrhythmias in the isolated rat heart. J Mol Cell Cardiol 1985;17:485-493.
    57 Ambrosio G, Zweier J L, Jacobus W E, Weisfeldt M L, Flaherty J T: Improvement of postischemic myocardial function and metabolism induced by administration of deferoxamine at the time of reflow:The role of iron in the pathogenesis of reperfusion injury. Circulation 1987;76:906-915.
    58 Powell S, Saltman P, Uretzky G, Chevion M:The effect of zinc on reperfusion arrhythmias in the isolated perfused rat heart. Free Radic Biol Med 1990;8:33-46.
    59 Renaud S, de Lorgeril M:Wine, alcohol, platelets, and the french paradox for coronary heart disease. Lancet 1992;339:1523-1526.
    60 Feng A N, Chen Y L, Chen Y T, Ding Y Z, Lin S J:Red wine inhibits monocyte chemotactic protein-1 expression and modestly reduces neointimal hyperplasia after balloon injury in cholesterol-fed rabbits. Circulation 1999; 100:2254-2259.
    61 Demrow H S, Slane P R, Folts J D:Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 1995;91:1182-1188.
    62 Gaziano J M, Buring J E, Breslow J L, Goldhaber S Z, Rosner B, VanDenburgh M, Willett W, Hennekens C H:Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N Engl J Med 1993;329:1829-1834.
    63 Ray P S, Maulik G, Cordis G A, Bertelli A A, Bertelli A, Das D K:The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic Biol Med 1999;27:160-169.
    64 Hertog M G, Feskens E J, Hollman P C, Katan M B, Kromhout D:Dietary antioxidant flavonoids and risk of coronary heart disease:The zutphen elderly study. Lancet 1993;342:1007-1011.
    65 Bagchi D, Garg A, Krohn R L, Bagchi M, Bagchi D J, Balmoori J, Stohs S J: Protective effects of grape seed proanthocyanidins and selected antioxidants against tpa-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen Pharmacol 1998;30:771-776.
    66 Bagchi M, Balmoori J, Bagchi D, Ray S D, Kuszynski C, Stohs S J:Smokeless tobacco, oxidative stress, apoptosis, and antioxidants in human oral keratinocytes. Free Radic Biol Med 1999;26:992-1000.
    67 Ye X, Krohn R L, Liu W, Joshi S S, Kuszynski C A, McGinn T R, Bagchi M, Preuss H G, Stohs S J, Bagchi D:The cytotoxic effects of a novel ih636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol Cell Biochem 1999;196:99-108.
    68 Joshi S S, Kuszynski C A, Bagchi D:The cellular and molecular basis of health benefits of grape seed proanthocyanidin extract. Curr Pharm Biotechnol 2001;2:187-200.
    69 Bagchi D, Ray S D, Patel D, Bagchi M:Protection against drug-and chemical-induced multiorgan toxicity by a novel ih636 grape seed proanthocyanidin extract. Drugs Exp Clin Res 2001;27:3-15.
    70 Preuss H G, Wallerstedt D, Talpur N, Tutuncuoglu S O, Echard B, Myers A, Bui M, Bagchi D:Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects:A pilot study. J Med 2000;31:227-246.
    71 Lin K M, Lin B, Lian I Y, Mestril R, Scheffler I E, Dillmann W H:Combined and individual mitochondrial hsp60 and hsp10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 2001; 103:1787-1792.
    72 Yoshida Y, Hirai M, Yamada T, Tsuji Y, Kondo T, Inden Y, Akahoshi M, Murakami Y, Tsuda M, Tsuboi N, Hirayama H, Okamoto M, Ito T, Saito H, Toyama J:Antiarrhythmic efficacy of dipyridamole in treatment of reperfusion arrhythmias: Evidence for camp-mediated triggered activity as a mechanism responsible for reperfusion arrhythmias. Circulation 2000;101:624-630.
    73 Ferrier G R, Moffat M P, Lukas A:Possible mechanisms of ventricular arrhythmias elicited by ischemia followed by reperfusion. Studies on isolated canine ventricular tissues. Circ Res 1985;56:184-194.
    74 Poole-Wilson P A:Measurement of myocardial intracellular ph in pathological states. J Mol Cell Cardiol 1978;10:511-526.
    75 Couper G S, Weiss J, Hiltbrand B, Shine K I:Extracellular ph and tension during ischemia in the isolated rabbit ventricle. Am J Physiol 1984;247:H916-927.
    76 Tosaki A, Koltai M, Braquet P:Effects of low extracellular sodium concentration on reperfusion induced arrhythmias:Changes in the myocardial sodium, potassium and calcium contents in isolated guinea pig hearts. Cardiovasc Res 1989;23:993-1000.
    77 Johnson E F, Schwab G E, Vickery L E:Positive effectors of the binding of an active site-directed amino steroid to rabbit cytochrome p-450 3c. J Biol Chem 1988;263:17672-17677.
    78 Armiger L C, Gavin J B:Changes in the microvasculature of ischemic and infarcted myocardium. Lab Invest 1975;33:51-56.
    79 Marban E, Koretsune Y, Corretti M, Chacko V P, Kusuoka H:Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation 1989;80:Ⅳ17-22.
    80 Zucchi R, Ronca F, Ronca-Testoni S:Modulation of sarcoplasmic reticulum function:A new strategy in cardioprotection? Pharmacol Ther 2001;89:47-65
    1 Wilkins M R,, Sanchez J C, Gooley A A, Appel R D, Humphery-Smith I, Hochstrasser D F, Williams K L:Progress with proteome projects:Why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996; 13:19-50.
    2 Anderson N L, Anderson N G:Proteome and proteomics:New technologies, new concepts, and new words. Electrophoresis 1998;19:1853-1861.
    3 Cordwell S J, Humphery-Smith Ⅰ:Evaluation of algorithms used for cross-species proteome characterisation. Electrophoresis 1997; 18:1410-1417.
    4 Humphery-Smith I, Cordwell S J, Blackstock W P:Proteome research: Complementarity and limitations with respect to the ma and DNA worlds. Electrophoresis 1997; 18:1217-1242.
    5 Hanash S:Disease proteomics. Nature 2003;422:226-232.
    6 Hamdan M, Righetti P G:Modern strategies for protein quantification in proteome analysis:Advantages and limitations. Mass Spectrom Rev 2002;21:287-302.
    7 Patton W F:Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2002;771:3-31.
    8 Wu W W, Wang G, Baek S J, Shen R F:Comparative study of three proteomic quantitative methods, dige, cicat, and itraq, using 2d gel- or lc-maldi tof/tof. J Proteome Res 2006;5:651-658.
    9 Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R:Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17:994-999.
    10 Ross P L, Huang Y N, Marchese J N, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin D J:Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004;3:1154-1169.
    11 Moens A L, Claeys M J, Timmermans J P, Vrints C J:Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology 2005;100:179-190.
    12 钱俊,张亚臣:再灌注心律失常的发生机制、类型与治疗.心血管病学进展2008;29:567-570.
    13 Manning AS H D:Reperfusion-induced arrhythmias:Mechanisms and prevention. J Mol Cell Cardiol 1984;16:497-518.
    14 Tzivoni D K A, Granot H, Gottlieb S, Benhorin J, Stern S.:Ventricular fibrillation caused by myocardial reperfusion in prinz-metal's angina. Am Heart J 1983;105:323-325.
    15 Belleville J:The french paradox:Possible involvement of ethanol in the protective effect against cardiovascular diseases. Nutrition 2002;18:173-177.
    16 Sun A Y, Simonyi A, Sun G Y:The "French paradox" And beyond: Neuroprotective effects of polyphenols. Free Radic Biol Med 2002;32:314-318.
    17 Bagchi D, Bagchi M, Stohs S J, Das D K, Ray S D, Kuszynski C A, Joshi S S, Pruess H G:Free radicals and grape seed proanthocyanidin extract:Importance in human health and disease prevention. Toxicology 2000; 148:187-197.
    18 Yamakoshi J, Kataoka S, Koga T, Ariga T:Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 1999;142:139-149.
    19 Preuss H G, Montamarry S, Echard B, Scheckenbach R, Bagchi D:Long-term effects of chromium, grape seed extract, and zinc on various metabolic parameters of rats. Mol Cell Biochem 2001;223:95-102.
    20 Preuss H G, Wallerstedt D, Talpur N, Tutuncuoglu S O, Echard B, Myers A, Bui M, Bagchi D:Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects:A pilot study. J Med 2000;31:227-246.
    21 Sato M, Maulik G, Ray P S, Bagchi D, Das D K:Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury. Journal of Molecular and Cellular Cardiology 1999;31:1289-1297.
    22 Sato M, Bagchi D, Tosaki A, Das D K:Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of jnk-1 and c-jun. Free Radical Biology and Medicine 2001;31:729-737.
    23 Pataki T, Bak I, Kovacs P, Bagchi D, Das D K, Tosaki A:Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. American Journal of Clinical Nutrition 2002;75:894-899.
    24 Liang Y, Qiu J, Gao H Q, Li B Y:Protective effect of grape seed proanthocyanidins extracts on reperfusion arrhythmia in rabbits. Journal of Nutritional Science and Vitaminology 2009;55:223-230.
    25 Shao Z H, Wojcik K R, Dossumbekova A, Hsu C, Mehendale S R, Li C Q, Qin Y, Sharp W W, Chang W T, Hamann K J, Yuan C S, Hoek T L:Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via akt-nos signaling. J Cell Biochem 2009;107:697-705.
    26. Bagchi D, Sen C K, Ray S D, Das D K, Bagchi M, Preuss H G, Vinson J A: Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 2003;523-524:87-97.
    27 Bagchi D, Garg A, Krohn R L, Bagchi M, Tran M X, Stohs S J:Oxygen free radical scavenging abilities of vitamins c and e, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 1997;95:179-189.
    28 Abbott A:And now for the proteome. Nature 2001;409:747.
    29 Fields S:Proteomics. Proteomics in genomeland. Science 2001;291:1221-1224.
    30 Zhang H, Yan W, Aebersold R:Chemical probes and tandem mass spectrometry: A strategy for the quantitative analysis of proteomes and subproteomes. Curr Opin Chem Biol 2004;8:66-75.
    31 O'Farrell P H:High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975;250:4007-4021.
    32 李伟:Itraq多重化学标记串联质谱技术在比较蛋白质组学中的应用.生命的化学2006;26:453-456.
    33 Latterich M, Abramovitz M, Leyland-Jones B:Proteomics:New technologies and clinical applications. Eur J Cancer 2008;44:2737-2741.
    34 Sui J, Zhang J, Ching C B, Chen W N:Comparative proteomic analysis of extracellular proteins reveals secretion of t-kininogen from vascular smooth muscle cells in response to incubation with s-enantiomer of propranolol. Mol Pharm 2008;5:885-890.
    35 Sui J, Zhang J, Tan T L, Ching C B, Chen W N:Comparative proteomics analysis of vascular smooth muscle cells incubated with s-and r-enantiomers of atenolol using itraq-coupled two-dimensional lc-ms/ms. Mol Cell Proteomics 2008;7:1007-1018.
    36 Sui J, Tan T L, Zhang J, Ching C B, Chen W N:Itraq-coupled 2d lc-ms/ms analysis on protein profile in vascular smooth muscle cells incubated with s-and r-enantiomers of propranolol:Possible role of metabolic enzymes involved in cellular anabolism and antioxidant activity. J Proteome Res 2007;6:1643-1651.
    37 Brotherus J R, Jacobsen L, Jorgensen P L:Soluble and enzymatically stable (na+ +k+)-atpase from mammalian kidney consisting predominantly of protomer alpha beta-units. Preparation, assay and reconstitution of active na+, k+ transport. Biochim Biophys Acta 1983;731:290-303.
    38 Fambrough D M, Lemas M V, Hamrick M, Emerick M, Renaud K J, Inman E M, Hwang B, Takeyasu K:Analysis of subunit assembly of the na-k-atpase. Am J Physiol 1994;266:C579-589.
    39 Mercer R W, Biemesderfer D, Bliss D P, Jr., Collins J H, Forbush B,3rd: Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the na,k-atpase. J Cell Biol 1993;121:579-586.
    40 Martin-Vasallo P, Ghosh S, Coca-Prados M:Expression of na,k-atpase alpha subunit isoforms in the human ciliary body and cultured ciliary epithelial cells. J Cell Physiol 1989;141:243-252.
    41 Shamraj O I, Lingrel J B:A putative fourth na+,k(+)-atpase alpha-subunit gene is expressed in testis. Proc Natl Acad Sci U S A 1994;91:12952-12956.
    42 Malik N, Canfield V A, Beckers M C, Gros P, Levenson R:Identification of the mammalian na,k-atpase 3 subunit. J Biol Chem 1996;271:22754-22758.
    43 Shamraj O I, Melvin D, Lingrel J B:Expression of na,k-atpase isoforms in human heart. Biochem Biophys Res Commun 1991; 179:1434-1440.
    44 Stengelin M K, Hoffman J F:Na,k-atpase subunit isoforms in human reticulocytes:Evidence from reverse transcription-pcr for the presence of alphal, alpha3, beta2, beta3, and gamma. Proc Natl Acad Sci U S A 1997;94:5943-5948.
    45 James P F, Grupp I L, Grupp G, Woo A L, Askew G R, Croyle M L, Walsh R A, Lingrel J B:Identification of a specific role for the na,k-atpase alpha 2 isoform as a regulator of calcium in the heart. Mol Cell 1999;3:555-563.
    46 Corbalan R, Verrier R L, Lown B:Differing mechanisms for ventricular vulnerability during coronary artery occlusion and release. Am Heart J 1976;92:223-230.
    47 Meng H P, Pierce G N:Protective effects of 5-(n,n-dimethyl)amiloride on ischemia-reperfusion injury in hearts. Am J Physiol 1990;258:H1615-1619.
    48 Opie L H:Reperfusion injury and its pharmacologic modification. Circulation 1989;80:1049-1062.
    49 Poole-Wilson P A:Measurement of myocardial intracellular ph in pathological states. J Mol Cell Cardiol 1978; 10:511-526.
    50 Couper G S, Weiss J, Hiltbrand B, Shine K I:Extracellular ph and tension during ischemia in the isolated rabbit ventricle. Am J Physiol 1984;247:H916-927.
    51 Lazdunski M, Frelin C, Vigne P:The sodium/hydrogen exchange system in cardiac cells:Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal ph. J Mol Cell Cardiol 1985;17:1029-1042.
    52 Tosaki A, Koltai M, Braquet P:Effects of low extracellular sodium concentration on reperfusion induced arrhythmias:Changes in the myocardial sodium, potassium and calcium contents in isolated guinea pig hearts. Cardiovasc Res 1989;23:993-1000.
    53 Bers D M, Barry W H, Despa S:Intracellular na+ regulation in cardiac myocytes. Cardiovasc Res 2003;57:897-912.
    54 Pogwizd S M:Clinical potential of sodium-calcium exchanger inhibitors as antiarrhythmic agents. Drugs 2003;63:439-452.
    55 Benndorf K, Friedrich M, Hirche H:Reoxygenation-induced arrhythmogenic transient inward currents in isolated cells of the guinea-pig heart. Pflugers Arch 1991;418:248-260.
    56 Ferrier G R, Moffat M P, Lukas A:Possible mechanisms of ventricular arrhythmias elicited by ischemia followed by reperfusion. Studies on isolated canine ventricular tissues. Circ Res 1985;56:184-194.
    57 Kirchhoff S R, Gupta S, Knowlton A A:Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 2002; 105:2899-2904.
    58 Gupta S, Knowlton A A:Hsp60, bax, apoptosis and the heart. J Cell Mol Med 2005;9:51-58.
    59 Itoh H, Komatsuda A, Ohtani H, Wakui H, Imai H, Sawada K, Otaka M, Ogura M, Suzuki A, Hamada F:Mammalian hsp60 is quickly sorted into the mitochondria under conditions of dehydration. Eur J Biochem 2002;269:5931-5938.
    60 Hansen J J, Bross P, Westergaard M, Nielsen M N, Eiberg H, Borglum A D, Mogensen J, Kristiansen K, Bolund L, Gregersen N:Genomic structure of the human mitochondrial chaperonin genes:Hsp60 and hsp10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 2003;112:71-77.
    61 Machado N G, Alves M G, Carvalho R A, Oliveira P J:Mitochondrial involvement in cardiac apoptosis during ischemia and reperfusion:Can we close the box? Cardiovasc Toxicol 2009;9:211-227.
    62 Loos B, Engelbrecht A M:Cell death:A dynamic response concept. Autophagy 2009;5:590-603.
    63 张晓敏:缺血再灌注与心肌细胞凋亡的研究进展.广东医学2002;23:203-205.
    64 Kerr J F, Wyllie A H, Currie A R:Apoptosis:A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-257.
    65 Leri A, Claudio P P, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P:Stretch-mediated release of angiotensin ⅱ induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the bcl-2-to-bax protein ratio in the cell. J Clin Invest 1998; 101:1326-1342.
    66 Ray R, Chen G, Vande Velde C, Cizeau J, Park J H, Reed J C, Gietz R D, Greenberg A H:Bnip3 heterodimerizes with bcl-2/bcl-x(1) and induces cell death independent of a bcl-2 homology 3 (bh3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem 2000;275:1439-1448.
    67 Kajstura J, Cheng W, Reiss K, Clark W A, Sonnenblick E H, Krajewski S, Reed J C, Olivetti G, Anversa P:Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86-107.
    68 Kerr J F, Winterford C M, Harmon B V:Apoptosis. Its significance in cancer and cancer therapy. Cancer 1994;73:2013-2026.
    69 Martin S J, Green D R, Cotter T G:Dicing with death:Dissecting the components of the apoptosis machinery. Trends Biochem Sci 1994;19:26-30.
    70 范作文,王均志,黄从新:线粒体与心肌细胞凋亡的研究进展.中华心血管病杂志2002;30:317-322.
    71 James T N:Congenital disorders of cardiac rhythm and conduction. J Cardiovasc Electrophysiol 1993;4:702-718.
    72 James T N, St Martin E, Willis P W,3rd, Lohr T O:Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the av node, sinus node, and internodal pathways. Circulation 1996;93:1424-1438.
    73 Bokeriiai L A, Beskrovnova N N, Tsyplenkova V G, Golukhova E Z, Beskrovnova F V:[morphologic analysis of arrhythmogenic and non-arrhythmogenic zones of subendocardial areas of the heart in patients with rhythm disorders]. Arkh Patol 1995;57:51-56.
    74 Kajstura J, Liu Y, Baldini A, Li B, Olivetti G, Leri A, Anversa P:Coronary artery constriction in rats:Necrotic and apoptotic myocyte death. Am J Cardiol 1998;82:30K-41K.
    75 Mani K:Programmed cell death in cardiac myocytes:Strategies to maximize post-ischemic salvage. Heart Fail Rev 2008; 13:193-209.
    76 Fliss H, Gattinger D:Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996;79:949-956.
    77 Hayakawa Y, Chandra M, Miao W, Shirani J, Brown J H, Dorn G W,2nd, Armstrong R C, Kitsis R N:Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of galpha(q) transgenic mice. Circulation 2003; 108:3036-3041.
    78 Lin K M, Lin B, Lian I Y, Mestril R, Scheffler I E, Dillmann W H:Combined and individual mitochondrial hsp60 and hsp10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 2001; 103:1787-179
    1 Wilkins M R, Sanchez J C, Gooley A A, Appel R D, Humphery-Smith I, Hochstrasser D F, Williams K L:Progress with proteome projects:Why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996;13:19-50.
    2 Anderson N L, Anderson N G:Proteome and proteomics:New technologies, new concepts, and new words. Electrophoresis 1998;19:1853-1861.
    3 Jervell A, Lange-Nielsen F:Congenital deaf-mutism, functional heart disease with prolongation of the q-t interval and sudden death. Am Heart J 1957;54:59-68.
    4 Sanguinetti M C, Jiang C, Curran M E, Keating M T:A mechanistic link between an inherited and an acquired cardiac arrhythmia:Herg encodes the ikr potassium channel. Cell 1995;81:299-307.
    5 Anderson C L, Delisle B P, Anson B D, Kilby J A, Will M L, Tester D J, Gong Q, Zhou Z, Ackerman M J, January C T:Most 1qt2 mutations reduce kv11.1 (herg) current by a class 2 (trafficking-deficient) mechanism. Circulation 2006; 113:365-373.
    6 Zhou Z, Gong Q, Ye B, Fan Z, Makielski J C, Robertson G A, January C T:Properties of herg channels stably expressed in hek 293 cells studied at physiological temperature. Biophys J 1998;74:230-241.
    7 Petrecca K, Atanasiu R, Akhavan A, Shrier A:N-linked glycosylation sites determine herg channel surface membrane expression. J Physiol 1999;515 (Pt 1):41-48.
    8 Gong Q, Anderson C L, January C T, Zhou Z:Role of glycosylation in cell surface expression and stability of herg potassium channels. Am J Physiol Heart Circ Physiol 2002;283:H77-84.
    9 Ficker E, Dennis A T, Wang L, Brown A M:Role of the cytosolic chaperones hsp70 and hsp90 in maturation of the cardiac potassium channel herg. Circ Res 2003;92:e87-100.
    10 Gong Q, Jones M A, Zhou Z:Mechanisms of pharmacological rescue of trafficking-defective herg mutant channels in human long qt syndrome. J Biol Chem 2006;281:4069-4074.
    11 McClellan A J, Tam S, Kaganovich D, Frydman J:Protein quality control:Chaperones culling corrupt conformations. Nat Cell Biol 2005;7:736-741.
    12 Walker V E, Atanasiu R, Lam H, Shrier A:Co-chaperone fkbp38 promotes herg trafficking. J Biol Chem 2007;282:23509-23516.
    13 Kopecky S L, Gersh B J, McGoon M D, Whisnant J P, Holmes D R, Jr., Ilstrup D M, Frye R L:The natural history of lone atrial fibrillation. A population-based study over three decades. N Engl J Med 1987;317:669-674.
    14 Wijffels M C, Kirchhof C J, Dorland R, Allessie M A:Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995;92:1954-1968.
    15 Goette A, Honeycutt C, Langberg J J:Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation 1996;94:2968-2974.
    16 Schotten U, Ausma J, Stellbrink C, Sabatschus I, Vogel M, Frechen D, Schoendube F, Hanrath P, Allessie M A:Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation 2001;103:691-698.
    17 Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M:Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 1997;96:3157-3163.
    18 Barth A S, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kaab S, Hinterseer M, Kartmann H, Kreuzer E, Dugas M, Steinbeck G, Nabauer M: Reprogramming of the human atrial transcriptome in permanent atrial fibrillation:Expression of a ventricular-like genomic signature. Circ Res 2005;96:1022-1029.
    19 Mayr M, Yusuf S, Weir G, Chung Y L, Mayr U, Yin X, Ladroue C, Madhu B, Roberts N, De Souza A, Fredericks S, Stubbs M, Griffiths J R, Jahangiri M, Xu Q B, Camm A J: Combined metabolomic and proteomic analysis of human atrial fibrillation. Journal of the American College of Cardiology 2008;51:585-594.
    20 钱俊,张亚臣:再灌注心律失常的发生机制、类型与治疗.心血管病学进展2008;29:567-570.
    21 贾钰华,周玉平,孙学刚:定心方防治心肌缺血再灌注心律失常大鼠的心肌蛋白质组初步研究.辽宁中医杂志 2007;34:1212-1214.
    22 Hanash S:Disease proteomics. Nature 2003;422:226-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700