用户名: 密码: 验证码:
犬左心室不同激动顺序下容量与压力的超声研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:心室激动顺序是决定心脏收缩功能的重要因素。异常的左心室激动顺序常导致室壁运动异常、左室整体和局部心功能降低。临床常用的心脏起搏模式常导致心房激动延迟混乱、房室同步性丧失,和心室激动顺序异常,从而影响起搏治疗效果。为进一步阐明不同激动顺序时左室整体、局部心功能和左室压力等血流动力学变化趋势及其相关关系,拟采用三维全容积成像技术评价正常犬心脏不同激动顺序下收缩期左室整体和17节段射血分数(ejection fraction,EF)、左室压力及左室不同步化指数(systolic dyssynchrony index,SDI)变化趋势及其相关关系,为优化心脏起搏模式提供实验数据。
     材料与方法:19只健康比格犬,雌性17只,雄性2只,体质量10~12kg。超声引导下经左侧颈总动脉插测压导管到左室流出道,经右颈静脉插起搏电极到右心耳(rihgt atrial appendage, RAA)。胸骨左缘4、5肋间切口开胸,悬吊心包,在右室心尖(right ventricular apex, RVA),左室侧壁(left ventricular lateral wall, LVL)和左室心尖(left ventricular apex, LVA)放置双极起搏电极。分别于基础状态(BASE)、RAA、RVA、LVL及LVA状态采集左室全容积图像及左室压力曲线图像。用TomTec 4D Cardio-view TM CAP 1.5工作站脱机分析左室整体及17节段舒张未容积(end diastolic volume,EDV)、收缩未容积(end systolic volume,ESV),计算左室整体及17节段EF及左室17节段达最小容积时间离散度SDI。通过压力时间曲线,测量左室收缩未压力(end-systolic pressure,ESP)、左室舒张未压力(end-diastolic pressure,EDP)并计算收缩期左室压力上升平均速率(+△P/△T)、舒张期左室压力平均下降速率(-△P/△T)。分别进行各参数比较及相关分析。
     结果:(1)RAA组左室整体EF、EDV小于BASE组,SDI、ESP大于BASE组(P<0.05);ESV、EDP、+△P/△T、-△P/△T与BASE组间差异无统计学意义(P>0.05);(2)RVA组及LVA组左室整体EF、EDV、ESP、+△P/△T、-△P/△T小于BASE组,SDI大于BASE组(P<0.05),ESV、EDP与BASE组间差异无统计学意义(P>0.05); LVL组左室整体EF、+△P/△T、-△P/△T小于BASE组(P<0.05),SDI大于BASE组(P<0.05),ESV、EDV、ESP、EDP与BASE组间无统计学差异(P>0.05);(3)RVA组左室整体EF、ESP、+△P/△T、-△P/△T较RAA组减低,SDI较RAA组增大(P<0.05);LVL组及LVA组ESP、+△P/△T、-△P/△T均较RAA组减低,SDI均较RAA组增大,差异有统计学意义(P<0.05)整体EF与RAA组间均无差异(P>0.05);(4)LVL组及LVA组EF均较RVA组增高, LVL组SDI较RVA组减低,差异有统计学意义(P<0.05),LVA组SDI与RVA组间差异无统计学意义;(5)LVL组整体EF、SDI、ESP、+△P/△T、-△P/△T与LVA组间差异无统计学意义;(6)节段室壁收缩功能:RVA组前、后间隔、心尖(除侧壁外)节段EF较RAA组减低,差异有统计学意义(P<0.05);LVL组侧壁、前壁节段EF较RAA组减低;LVA起搏组前壁、前间隔、心尖节段EF较RAA组减低,差异有统计学意义(P<0.05);LVA组室间隔、心尖节段EF较LVL组减低(P<0.05);(7)左室整体和节段容积参数与左室流出道压力参数间未能建立线性相关关系。
     结论:
     1.窦性心律及RAA起搏17节段达到最小容积时间基本一致;心室不同位点起搏后左室各节段最小容积时间不一致;
     2.RAA起搏左室整体及少数节段收缩功能低于正常窦性心律;RAA起搏左室收缩与舒张功能均优于心室起搏:LVL起搏左室整体收缩功能明显优于RVA起搏;
     3.心室起搏后,起搏位点周围左室节段收缩功能下降;
     4.左室容积与压力参数间未能建立线性相关关系。
Objective: Ventricular activation sequence is an important factor related to cardiac systolic function. Abnormal left ventricular activation sequence often induces abnormal ventricular wall movement, and reduces left ventricular global and regional function. The cardiac pacing patterns that are frequently used in clinical service induce a consequence of disordered atrial activation, asynchrony between atrium and ventricle, and abnormal ventricular activation. To further study the trend of global and regional function and pressure of left ventricle and relationships between them in different cardiac electro-mechanical patterns, the research is proposed to study global and 17 segmental ejection fraction (EF), left ventricular pressure and systolic dyssynchrony index (SDI) and the relationships among them in different LV electro-mechanical patterns using full volume three-dimensional echocardiography for the establishing datebase to optimize cardiac pacing pattern and cardiac function.
     Method: Nineteen healthy beagle dogs were employed for this study, seventeen of them were female, two of them were male. Body weight 10 to 12 kg. Pressure catheter was inserted under the ultrasound-guidance into left ventricular outflow tract through left common carotid artery. Bi-polar pacing electrode was deployed at right atrial appendage through right internal jugular vein. The chest was opened via left thoracotomy in the fourth or fifth intercostal space. The pericardium was opened and sewn to the chest wall to form a cradle for the cardiac ultrasonic scanning. Bi-polar pacing electrodes were deployed at right ventricular apex (RVA), left ventricular lateral (LVL) wall and left ventricular apex (LVA) respectively. The full volume imaging of left ventricular and pressure curve were acquired at baseline (BASE) and RAA, RVA, LVL and LVA pacing respectively. Left ventricular global and 17 segmental volume at end diastole end systole were analyzed by a delicated 4D Cardio-view TM CAP 1.5 work station of TomTec, left ventricular global and 17 segmental EF and the dispersion of the time to minimal volume of 17 segments (SDI) were calculated. The end-systolic pressure(ESP) and end-diastolic pressure (EDP) were measured through pressure-time curve ,and the average ascending rate of left ventricular pressure (+△P/△T) during systolic and average descending rate of left ventricular pressure were calculated. All the parameters were compared. The linear co-relationships between them were analyzed.
     Results: (1) Global EF and EDP during RAA pacing were lower than those at BASE (P<0.05); SDI of left ventricle and ESP during RAA pacing were higher than those at BASE, There were no significant difference of ESV, EDP, +△P/△T and -△P/△T between BASE and RAA pacing. (2) Global EF, end-diastolic volume (EDV), ESP, +△P/△T and -△P/△T were lower during RVA pacing and LVA pacing than those at BASE; SDI of left ventricle was higher than that at BASE(P<0.05); There was no significant difference of end systolic volume (ESV) and EDP between BASE and RVA and LVA pacing(P>0.05); Global EF, +△P/△T and -△P/△T were lower during LVL pacing than those at BASE; SDI of left ventricle was higher than that at BASE(P<0.05); There were no significant differences of ESV, EDV, ESP and ESP between BASE and LVL pacing(P>0.05); (3) Global EF, ESP and +△P/△T and -△P/△T during RVA pacing were lower than those during RAA pacing(P<0.05); SDI during RVA pacing was higher than that during RAA pacing(P<0.05); ESP, +△P/△T and -△P/△T during LVL and LVA pacing were lower than those during RAA pacing (P<0.05); SDI during LVL and LVA pacing was higher than that during RAA pacing; There were no significant difference of global EF between RAA , LVL and LVA pacing respectively; (4) Global EF during LVL and LVA pacing was higher than that during RVA pacing (P<0.05), SDI of left ventricle during LVL pacing was lower than that during RVA pacing (P<0.05); There was no significant difference of SDI between RVA and LVA pacing; (5) There was no significant difference of global EF, SDI, ESP, +△P/△T and -△P/△T between LVA and LVL pacing; (6) Left ventricular segmental systolic function: Segmental EF of anterior and post septum and all apical segments (except lateral wall) during RVA pacing were lower than that during RAA pacing (P<0.05); Segmental EF of lateral and anterior wall during LVL pacing were lower than that during RAA pacing (P<0.05); Segmental EF of anterior wall and anterior septum during LVA pacing were lower than that during RAA pacing (P<0.05). (6) No linear co-relationship was established between the volumetric and left ventricular pressure parameters.
     Conclusion:(1) The global and minority segmental systolic function of left ventricular during RAA pacing are depressed compared with that of normal sinus rhythm. (2) All the ventricular pacing patterns worsen left ventricular systolic and diastolic function compared with that of RAA pacing. Left ventricular systolic function during LVL pacing is superior to that of RVA pacing. (3) During ventricular pacing, the systolic function at nearby segments of the pacing site is negatively affected. (4) No linear co-relationship is established among the volumetric and left ventricular pressure parameters.
引文
[1] Kisslo J, Fierk B, Ota T, et al. Real-time volumetric echocar- diography:the technology and the possibilities[J]. Echocardio- graphy.2000,17(8):773~779
    [2] Ota T, Kisslo J, von Ramm OT, et al. Real-time volumetric echocar- diography:useful- ness of volumetric scanning for the assessment of cardiac volume and function [J].J Cardiol.2001,37(1): 93~101
    [3]王新房.实时三维超声心动图—超声技术领域内的新突破[J].中华超声影像学杂志.2003,12(2):71~75
    [4] Kapetanakis S, Kearney MT, Siva A, et al. Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony[J].Circulation.2005,112(7): 992~1000
    [5] Tomioka H, Liakopoulos OJ, Buckberg GD, et al. The effect of ventricular sequential contraction on helical heart pacing: high septal pacing versus biventricular pacing[J].Eur J Cardiothorac Surg.2006,29(4):198~206
    [6] Belham MR,Gill J,Gammage MD,et al. The electromechanical effects of pacing at different sites within the right atrium[J]. Europace. 2002,4(4):431~437
    [7] Bernheim A, Ammann P, Sticherling C,et al. Right Atrial Pacing Impairs Cardiac Function During Resynchronization Therapy: Acute Effects of DDD Pacing Compared to VDD Pacing[J].J Am Coll Cardiol.2005,45(9): 1482~1487
    [8] Altemose GT, Zipes DP, Weksler J,et al. Inhibition of the Na+/H+ Exchanger Delays the Development of Rapid Pacing–Induced Atrial Contractile Dysfunction[J].Circulation.2001,103(5):762~783
    [9] Skanes AC, Krahn AD, Yee R, et al. Progression to chronic atrial fibrillation after pacing: the Canadian Trial of Physiologic Pacing. CTOPP Investigators[J].J AM Coll cardial.2001,38(1):167~172
    [10] Nahlawi M, Waligora M, Spies SM, et al.Left ventricular function during and after right ventricular pacing[J]. J Am Coll Cardiol.2004,44(9): 1883~1888
    [11] Duncan AM, O'Sullivan CA, Carr-White GS, et al. Long axis electromechanics during dobutamine stress in patients with coronary artery disease and left ventricular dysfunction[J]. Heart.2001,86(4): 397~404
    [12] Lieberman R, Padeletti L, Schreuder J, et al. Ventricular pacing lead location alters systemic hemodynamics and left ventricular function in patients with and without reduced ejection fraction[J]. J Am Coll Cardiol.2006,48(8):1634~1641
    [13] Vanagt WY, Verbeek XA, Delhaas T, et al. Acute Hemodynamic Benefit of Left Ventricular Apex Pacing in Children[J]. Ann Thorac Surg.2005,79(3):932~936
    [14] Kavanagh KM, Belenkie I, Duff HJ. Transmural temporospatial left ventricular activation during pacing from different sites: potential implications for optimal pacing[J]. Cardiovasc Res.2008,77(1):81~88
    [15] Wyman BT, Hunter WC, Prinzen FW,et al. Mapping propagation of mechanical activation in the paced heart with MRI tagging[J]. Am J Physiol.1999,276(3):H881~H891
    [16] Lafitte S, Garrigue S, Perron JM., et al. Improvement of left ventricular wall synchronization with multisite ventricular pacing in heart failure: a prospective study using Doppler tissue imaging[J].Eur J Heart Fail2004,6(2):203-212
    [17] Vanagt WY, Verbeek XA, Delhaas T, et al. Acute hemodynamic benefit of left ventricular apex pacing in children[J]. Ann Thorac Surg.2005,79:932~936
    [18] Prinzen FW, Hunter WC, Wyman BT,et al. Wyman,et al. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging[J]. J Am Coll Cardiol.1999,33(6):1735~1742
    [19] Van Oosterhout MF, Prinzen FW, Arts T, et al. Asynchronous Electrical Activation Induces Asymmetrical Hypertrophy of the Left Ventricular Wall[J]. Circulation.1998,98(6):588~595
    [20] Nielsen JC, B?ttcher M, Nielsen TT, et al. Regional myocardial blood flow in patients with sick sinus syndrome randomized to long-term single chamber atrial or dual chamber pacing--effect of pacing mode and rate[J].J Am Coll Cardiol,2000;35(6):1453~1461
    [21] Helmer GA, McKirnan MD, Shabetai R,et al. Regional deficits of myocardial blood flow and function in left ventricular pacing-induced heart failure[J].Circulation.1996,94(9):2260~2267
    [22] Joho S, Ishizaka S, Sievers R, et al. Left ventricular pressure-volume relationship in conscious mice[J]. Am J Physiol Heart Circ Physiol.2007,292(1):369-377
    [1] Belham MR, Gill J, Gammage MD,et al. The electromechanical effects of pacing at different site within the right atrium[J]. Europace.2002,4(4):431~437
    [2] Daubert C, Gras D, Berder V, et a1. Permanent atrial resynchronization by synchronous bi-atrial pacing in the preventive treatment of atrial flutter associated with high degree interatrial block[J]. Arch Mal Coeur Vaiss.1994,87(11):1535~1546
    [3] Brecker SJ, Xiao HB, Sparrow J, et al. Effects of dual-chamber pacing with short atrioventricular delay in dilated cardiomyopathy[J]. Lancet19.92,340:1308~1312
    [4] Melzer C, Knebel F, Ismer B, et al. Influence of the atrio-ventricular delay optimization on the intra left ventricular delay in Cardiac Resynchronization Therapy[J]. Cardiovasc Ultrasound.2006,26(4):5
    [5] Innes D, Leitch JW, Fletcher PJ. VDD pacing at short atrioventricular intervals does not improve cardiac output in patients with dilated heart failure[J]. Pacing Clin Electrophysiol.1994,17(5):959~965
    [6] Linde C, Gadler F, Edner M, et al. Results of atrioventricular synchronous pacing with optimized delay in patients with severe congestive heart failure[j]. Am J Cardiol.1995,75(14):919~923
    [7] Duncan AM, O'Sullivan CA, Carr-White GS, et al. Long axis electromechanics during dobutamine stress in patients with coronary artery disease and left ventricular dysfunction[J]. Heart.2001,86(4):397~404
    [8] Henning RJ, Levy MN. Effects of autonomic nerve stimulation asynchrony and load on dp/dtmax and dp/dtmin. Am J Physiol.1991,260(4):1290~1298
    [9] Kolettis TM, Kyriakides ZS, Tsiapras D,et al.Improved left ventricular relaxation during short-term right ventricular outflow tract compared to apical pacing[J]. Chest.2000,117(1):60~64
    [10]尹立雪,蔡力,李春梅,等.心腔内超声评价希氏束起搏心脏血流动力学和解剖结构重构[J].中国医学影像技术.2004,20(5):670~672
    [11] Leclercq C, Cazeau S, Le Breton H, et al. Acute hemodynamic effects of biventricular DDD pacing in patients with end-stage heart failure[J]. J Am Coll Cardiol.1998,32(7):1825~1831
    [12] Hamdan MH, Zagrodzky JD, Joglar JA, et al. Biventricular pacing decreases sympathetic activity compared with right ventricular pacing in patients with depressed ejection fractionl[J]. Circulation.2000,102(9):1027~1032
    [13] Sassara M, Achilli A, Bianchi S, et al. Long-term effectiveness of dual site left ventricular cardiac resynchronization therapy in a patient with congestive heart failure[J].Pacing Clin Electrophysiol. 2004,27(6):805~807
    [14] Lenarczyk R, Kowalski O, Pruszkowska-Skrzep P, et al. Triple site biventricular pacing in a patient with congestive heart failure and severe mechanical dyssychrony[J].Interv Card Electrophysiol. 2007,18(2):187~190.
    [15] Ashikaga H, Omens JH, Ingels NB Jr, et al. Transmural mechanics at left ventricular epicardial pacing site[J]. Am J Physiol Heart Circ Physiol.2004,286(6):2401~2407
    [16] Tomioka H, Liakopoulos OJ, Buckberg GD, et al.The effect of ventricular sequential contraction on helical heart pacing:high septal pacing versus biventricular pacing[J]. Eur J Cardiothorac Surg.2006,29 (4):198~206
    [17] Lieberman R, Padeletti L, Schreuder J, et al. ventricular pacing lead location alters systemic hemodynamics and left ventricular function in patients with and without reduced ejection fraction[J]. J Am Coll Cardiol.2006,48(8):1634~1641
    [18] Breithardt OA, Stellbrink C, Kramer AP, et al. Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy[J]. J Am Coll Cardiol.2002,40(3):536~545
    [19] Kawaguchi M, Murabayashi T, Fetics BJ, et al. Quantitation of basal dyssynchrony and acute resynchronization from left or biventricular pacing by novel echo-contrast variability imaging[J].J Am Coll Cardiol.2002,39(12):2052~2058
    [20] Kapetanakis S, Kearney MT, Siva A, et al. Real-time three-dimensionalechocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony[J].Circulation.2005,112(7): 992~1000
    [21] Kim WY, S?gaard P, Mortensen PT,et al. Three dimensional echocardiography documents haemodynamic improvement by biventricular pacing in patients with severe heart failure[J].Heart.2001,85(5): 514~520
    [22]尹立雪,陆兆龄,李春梅,等.心脏起搏动态三维心室超声组织多普勒速度与灰阶解剖融合成像的初步研究[J].中华超声医学杂志(电子版).2004,1(5):194~198
    [23]王蔚,孟素荣,陈哲明,等.组织多普勒成像评价右室心尖部起搏与右室流出道起搏对心功能的影响[J].心脏杂志.2007,9(2):226~229
    [24]方凌云,谢明星,王新房,等.速度向量成像技术评价室性心率失常的研究[J].中华超声影像学杂志.2007,16(3):185~-188
    [25] Vannan MA, Pedrizzetti G, Li P, et al. Effect of cardiac resynchronization therapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: description and initial clinical application of a novel method using high-frame rate B-mode echocardiographic images[J]. Echocardiography .2005,22 (10):826~830
    [26] Helm RH, Leclercq C, Faris OP, et al. Cardiac dyssynchrony analysis using Circumferential versus longitudinal strain:implications for assessing cardiac resynchronization[J]. Circulation.2005, 111 (21):2760~2767
    [27] Tops LF, Suffoletto MS, Bleeker GB, et al. Speckle-Tracking radial strain reveals left ventricular dyssynchrony in patients with permanent right ventricular pacing[J]. J Am Coll Cardiol.2007,50(12):1180~1188
    [28]邓燕,尹立雪,李春梅,等.超声斑点跟踪显像评价房室顺序起搏患者左心室收缩功能[J].中华超声影像学杂志.2007,16(1):9~12
    [29]罗安果,尹立雪,李春梅,等.超声斑点跟踪显像技术对左心室收缩期旋转角度的初步研究.中华超声影像学杂志.2006,15(9):641~645

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700