用户名: 密码: 验证码:
液相还原法可控合成钴微晶及其催化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的物理、化学性质既不同于微观的原子、分子,也不同于宏观物体,它具备很多传统材料不具备的特殊性质,近年来成为纳米科技领域中最有活力、研究内涵最为丰富的学科分支之一。而超细钴粉由于具有大的比表面积、表面原子数、表面能和表面张力,显示出许多优异的性能,在催化、高密度存储材料、太阳能材料、生物抗癌药物和磁性传感器材料等诸多方面具有广泛的应用前景,因而近年来引起广大学者的普遍关注。纳米材料的制备方法很多,不同的制备方法对于控制纳米材料的微观结构和性能具有重要的影响。纳米钴的制备方法主要有:金属有机物高温分解法、高温液相醇解法、脉冲电镀法、微乳液法以及用水合肼、硼氢化钠、金属锂等做还原剂的液相还原法等。在众多制备方法中,液相还原法由于具有工艺流程简单、廉价具有很大的工业应用前景等特点而备受关注。
     高氯酸铵(AF)是复合固体火箭推进剂中常用的氧化剂利高能组分,在AP系推进剂中占主要成分。AP的性质对固体火箭推进剂的总体性能有重要影响,尤其是其热分解特性与推进剂燃烧特性密切相关,通过研究AP的热分解特性可推测推进剂的燃烧性能。纳米金属及金属氧化物,如Ni、CuO、MgO对AP的热分解表现出很好的催化效果,但是关于Co催化剂在AP热分解中的应用研究较少。
     本文利用联氨还原法及溶剂热还原法,考察了影响反应过程的诸多因素,渴望实现不同形貌及晶型钴微晶的可控合成。将自制的钴催化剂应用于AP的热分解反应中,获得钴催化剂形貌、含量等对催化性能的影响规律。主要开展了以下三方面的研究:
     1.利用联氨液相还原法可控合成钴微晶。主要考察了反应温度、Co(NO_3)_2在乙醇中的浓度、反应介质、还原剂用量、反应方式、钴盐前驱体等的影响。反应温度在0到80℃之间,Co(NO_3)_2浓度为0.050 g·mL~(-1),还原剂用量20 mL时,制备出具有hcp晶相结构的钴微晶,在不同的温度下产物形貌有所差异。Co(NO_3)_2浓度为0.025 g·mL~(-1)时能制备出均一雪花状钴微晶。乙二醇和1,2-丙二醇介质中得到球状的钴微晶。根据以上结论可以通过对反应条件的调变可控合成不同形貌及晶型的钴微晶。
     2.利用1,2-丙二醇作为反应介质及还原剂,采用溶剂热还原法在高温高压下将金属离子还原成单质,通过对反应时间、NaOH用量、反应温度等条件考察,利用XRD、SEM、TEM等表征手段可知:反应时间为24 h,NaOH用量为5 mmol,反应温度为120℃时,1,2-丙二醇即可将钴盐完全彻底还原成钴单质。另一种二元醇,乙二醇做还原剂时,在一定条件下也能将钴盐还原成钴单质,但是所得产物的形貌与1,2-丙二醇作还原剂时有所不同。这说明不同的二元醇的还原能力有所不同。
     3.利用差示扫描量热法(DSC)初步考察了自制钴微晶催化AP热分解反应的特性。主要研究了雪花状、花菜状和球状钴微晶的催化行为,发现无论钴催化剂的形貌如何对AP分解的过程都有显著的催化效果,但是雪花状钴催化剂在降低分解反应温度方面效果最好,使AP分解温度降低了157.8℃,球状钴微晶催化剂在提高AP分解的表观分解热方面效果最明显,其分解热比未加入催化剂时提高1.4470 kJ·g~(-1);对于催化剂的用量也进行了考察,选择催化剂含量分别为1、2、5和10%,当催化剂含量为2%时,对于降低分解温度的效果最佳,而含量越高对其表观分解热的提高越明显,当含量为10%时,其表观分解热比未加入催化剂时提高6倍以上。
Nano-materials are intensely studied currently and become the most dynamic region in nanotechnology due to their special chemical/physical properties.Cobalt nanocrystals are of great interest over a long time for researchers from a wide range of fields,including catalysis,high density information storage,solar energy absorption,drug delivery,and magnetic sensors,etc,because they have many excellent characters,such as high specific surface area,huge atomicity,high surface tension.There are numerous techniques of preparing ultrafine particles,but different methods have great influences on the microstructure and properties.So far,the investigated methods for preparing Co nanocrystals are pyrolysis of the cobalt carbonyls,microemulsion synthesis,liquid-phase reduction of cobalt salts by hydrazine hydrate,sodium borohydride or metallic lithium,pulse current electro-deposition,etc.Among these methods,the liquid-reduction route is an ambitious method due to its simple and inexpensive nature.
     Being cheap and with a large amount of oxygen,ammonium perchlorate(AP,NH_4ClO_4),has extensively been used as an oxidizer in composite propellants for rocket propulsion.Indeed,much work has been done on the catalytic decomposition of AP,and the nanosized metals or metal oxides, such as Ni,CuO,and MgO,are found to be good catalysts.Among the investigated additives, metallic cobalt is less studied.
     In this study,liquid phase reducing method by hydrazine hydrate and solvent-thermal method are used for preparing the nanocrystals cobalt.The effects of preparing factors were studied in details for the purpose of controllable synthesis of metallic Co with different morphologies and crystal phases.Aiming at obtaining the effects of morphologies and contents on the catalytic performance,the cobalt catalysts were used in AP thermal decomposition.In this thesis,our research is mainly focused on the following three parts:
     1.Different morphologies of cobalt microcrystals are synthesized by the liquid phase reduction process with hydrazine hydrate as a reductive agent.The effects of synthetic conditions such as reaction temperature,concentration of Co(NO_3)_2,solvents,reducing agents,reaction modes,cobalt precursors were investigated.When the concentration of Co(NO_3)_2 was fixed at 0.050g·mL~(-1),the volume of hydrazine hydrate was 20mL,and the temperature from 0 to 80℃,we can get full hexagonal close-packed(hcp) cobalt.But the reaction temperatures have significant effects on morphologies.It is found that highly branched 6-fold "snowflakes" were synthesized when the concentration of Co(NO_3)_2 was 0.025g·mL~(-1).More regular cobalt balls were obtained in both of ethylene glycol and 1,2-propanediol solutions.Based on these studies,it is concluded that microcrystal cobalts with different shapes and different crystal structures can be obtained by changing the reaction conditions.
     2.Cobalt salts were reduced to metallic cobalt by 1,2-propanediol under high pressure and high temperature.The reaction parameters such as reaction time,the amount of NaOH,and the temperatures were investigated.The phase composition and morphological structure of the obtained Co evaluated by XRD,SEM and TEM.Results indicate that the optimum conditions for preparing nano cobalt crystals are the NaOH amount of 5mmol,and at least at 120℃for 24h.When ethylene glycol was used as a reductant,reaction products are also metallic Co but with different morphologies as compared with that in 1,2-propanediol.It means that different alcohols have different reducing capacity.
     3.The catalytic performance of as-prepared cobalt nanocrystals for the thermal decomposition of ammonium perchlorate(AP) was evaluated by the differential scanning calorimetry(DSC).No matter what shapes of the cobalt nanocrystal were added,the decomposition temperature of AP was significantly decreased.The snowflake-like cobalt showed the highest performance in the aspect of decreasing the decomposition temperature.It made the exothermic peaks reduced 157.8℃.The addition of cobalt nanocrystals with ball-like shapes significantly improved the decomposition heat of the AP.The decomposition heat is 1.4470kJ·g~(-1) more than that without catalysts.The effects of Co amounts(1,2,5 and 10%) have been studied.We can get the best effects on decreasing the decomposition temperature when the Co amount is 2%by mass additional.The apparent decomposition heat increased with the amounts of Co and the value of the heat increased to more than 6 times when the Co amount is 10%by mass additional.
引文
[1]顾宁,付刚.纳米技术与应用[M].北京:人民邮电出版社,2002:3-8.
    [2]Y.Xu,Y.H.Guan,Z.Y.Zheng,X.H.Tong.Microstructure and Tribological Properties of Plasma-Sprayed Nanostructure Sulfide Coating[J].J.Mater.Sci &Tech,2006,22(5):589-593.
    [3]P.Ball,L.Garwin.Science at the Atomic Scale[J].Nature,1992,355:761-766.
    [4]Z.K.Zhang,Z.L.Cui,K.Z.Chen,D.H.Zuo,L.F.Dong.Behaviour of Hydrogen in Nano-Transition Metals[J].J.Mater.Sci.Technol.,1996,12:75-77.
    [5]W.P.Halperin.Quatum Size Effects in Metal Particles[J].Rev.Modern.Phys.,1986,58:533-606.
    [6]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002:59-60.
    [7]C.Liu,Y.Y.Fan,M.Liu,H.T.Cong,H.M.Cheng,M.S.Dresselhaus.Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature[J].Science,1999,286:1127-1129.
    [8]I.Lyuksyutov,A.G.Naumovets,V.Pokrovsky.Two-Dimensional Crystall[M].Boston:Academic Press,1992:349-379.
    [9]C.Amiens,D.Caro,B.Chaudret,J.S.Bradley,R.Mazel,C.Roucau.Selective Synthesis,Characterization and Spectroscopic Studies on a Novel Class of Reduced Platinum and Palladium Particles Stabilized by Carbonyl and Phosphine Ligands[J].J.Am.Chem.Soc.,1993,115(24):11638-11639.
    [10]B.A.Korgel,D.Fitzmaurice.Self-Assembly of Silver Nanocrystals into Two-Dimensional Nanowire Arrays[J].Adv.Mater.,1998,10(9):661-665.
    [11]E.Bar-Sadeh,Y.Goldstein,C.Zhang,H.Deng,B.Abeles,O.Millo.Single-Electron Tunneling Effects in Granular Metal Films[J].Phys.Rev.,1994,50(12):8961-8964.
    [12]董吉溪,张文敏.用微波加热法制备纳米级磷酸钴球粒[J].化学通报,1995,11:32-33.
    [13]曹新富,杨毅,刘冠鹏,李凤生.树枝状纳米钴微晶对高氯酸铵热分解的影响[J].功能材料,2007,38(1):148-150.
    [14]R.Mills,A.Perera,J.P.Simonin,L.Orcil,P.Turq.Coupling of Diffusion Processes in Multicomponent Electrolyte Solutions[J].J.Phys.Chem.,1985,89(13):2722-2725.
    [15]胡瑞生,付冬,王克冰,沈岳年.铜钴复合氧化物的固相合成及二甲苯燃烧催化性能[J].石油化工,2001,30(4):266-269.
    [16]郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展[J].化学通报,1996(3):1-4.
    [17]王桂英,余加佑,廉红蕾,李雪梅,张文祥,蒋大振,吴通好.常温常湿条件下Au/Fe_2O_3催化剂上CO氧化反应的稳定性[J].催化学报,2000,21(6):569-573.
    [18]E.D.Park,J.S.Lee.Effect of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts[J].J.Catal.,1999,186(1):1-11.
    [19]邹旭华,齐世学,贺红军,安立敦,段雪.不同方法制备的Au/Fe_2O_3催化剂对CO的催化氧化[J].烟台大学学报,2000,13(3):171-175.
    [20]赵骧.催化剂[M].北京:中国物资出版社,2001,103-105.
    [21]肖霞,何新秀.我国汽车尾气污染的催化净化[J].环境科学研究,1998,11(5):26-28.
    [22]鲁文质,赵秀阁,王辉,肖文德.NO的催化氧化[J].催化学报,2000,21(5):423-427.
    [23]谢有畅,张佳平,童显忠,潘晓民,傅晋平,蔡小海,杨戈,唐有祺.一氧化碳高效吸附剂CuCl/分子筛[J].高等学校化学学报,1997,18(7):1159-1165.
    [24]王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2001,15-18.
    [25]季东,汪毅,刘涛,苏怡,李萍,高雄厚.高硅分子筛ZSM-23催化裂解C_4烷烃制乙烯丙烯的研究[J].分子催化,2007,21(3):193-199.
    [26]冯丽娟,赵字靖,陈诵英.超细粒子催化剂[J].石油化工,1991(9):633-639.
    [27]周全法,黄红缨.贵金属纳米材料及其产业化过程[J].稀有金属,2002,26(6):502-507.
    [28]M.Khoudiakov,M.C.Gupta,S.Deevi.Au/Fe_2O_3 Nanocatalysts for CO Oxidation by a Deposition-Precipitation Technique[J].Nanotechnology,2004,15(8):987-990.
    [29]X.C.Ma,N.Lun,S.L.Wen.Formation of Gold Nanoparticals Supported on Carbon Nanotubes by Using an Electroless Plating Method[J].Diamond Relat.Mater.,2005,14(1):68-73.
    [30]Y.Yabe,Y.Ohtake,T.Ishitobi,Y.Show,T.Izumi,H.Yamauchi.Synthesis of Well-Aligned Carbon Nanotubes by Radio Frequency Plasma Enhanced CVD Method[J].Diamond Relat.Mater.,2004,13(4-8):1292-1295.
    [31]W.D.Zhang,Y.Wen,S.M.Liu,W.C.Tjiu,G.Q.Xu,L.M.Gan.Synthesis of Vertically Aligned Carbon Nanoutbes on Metal Deposited Quartz Plates[J].Cabron,2002,40(11):1981-1989.
    [32]K.B.K.Teo,S-B.Lee,M.Chhowalla,V.Semet,V.T.Birth,O.Groening,M.Castignolles,A.Loiseau,G.Pirio,P.Legagneux,D.Pribat,D.G.Hasko,H.Ahmed,G.A.J.Amaratunga,W.I.Milne.Plasma Enhanced Chemical Vapour Deposition Carbon Nanoutbes/Nanofibres-How Uniform Do They Grow?[J].Nanotechnology,2003,14(2):204-211.
    [33]W.D.Zhang,Y.Wen,J.Li,Q.G.Xu,L.M.Gan.Synthesis of Vertically Aligned Carbon Nanoutbes Films on Silicon Wafers by Pyrolysis of Ethylenediamine[J].Thin Solid Films,2002,422(1-2):120-125.
    [34]崔屾,董向红,李海燕,王慧,姚琲,杜海燕.催化裂解低碳烷烃制备碳纳米管薄膜[J].化学研究与应用,2003,15(4):513-515.
    [35]P.Braos-Garcia,P.Maireles-Torres,E.Rodriguez-Castellon,A.Jimenez-Lopez.Gas-Phase Hydrogenation of Acetonitrile on Zirconium-Doped Mesoporous Silica-Supported Nickel Catalysts[J].J.Mol.Catal.A:Chem.,2003,193(1-2):185-196.
    [36]M.Takimoto,Y.Nakamura,K.Kimura,M.Mori.Highly Enantioselective Catalytic Carbon Dioxide Incorporation Reaction:Nickel-Catalyzed Asymmetric Carboxylative Cyclization of Bis-1,3-dienes[J].J.Am.Chem.Soc.,2004,126(19):5956-5957.
    [37]L.Babernics,P.Tetenyi.Investigation of Benzene Adsorption on Cobalt Catalyst[J].J.Catal.,1996,17(1):35-40.
    [38]左东华,张志琨,崔作林,董立峰.纳米镍稀土薄壳式粒子在硝基苯加氢中的催化性能fJ].催化学报,1996,17(2):166-169.
    [39]王彦妮,张志琨,崔作林.纳米粒子在乙炔聚合反应中的催化作用[J].催化学报,1995,16(4):304-307.
    [40]范崇正,李正华,焦健,周贵恩,吴缨.无光条件下天然叶绿素的催化加氢反应[J].中国科技大学学报,2000,30(6):744-747.
    [41]刘磊力,李凤生,谈玲华,李敏,杨毅.纳米金属粉对高氯酸铵热分解特性 的影响[J].应用化学,2004,21(5):488-492.
    [42]P.H.Cuong,V.Ricardo,L.Benoit,C.Alain,L.Marc.About the Octopus-Like Growth Mechanism of Carbon Nanofibers over Graphite Supported Nickel Catalyst[J].J.Catal.,2006,240(2):194-202.
    [43]C.Bock,C.Paquet,M.Couillard,G.A.Botton,B.R.MacDougall.Size-Selected Synthesis of PtRu Nano-Catalysts:Reaction and Size Control Mechanism[J].J.Am.Chem.Soc.,2004,126(25):8028-8037.
    [44]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2004,121-128.
    [45]李晓伟,赵惠忠,汪厚植,罗浪里,殷嗣杰.MnO_x/ZrO_2纳米催化剂的制备及对CO-SCR-NO性能研究[J].真空电子技术,2005,2:16-19.
    [46]贾庆明,郑茂盛,王亚明.磁性纳米催化剂SO_4~(2-)/TiO_2-Fe_3O_4的制备及表征[J].西安交通大学学报.2005,39(7):779-752.
    [47]徐弈德.二氧化碳选择性氧化乙烷制乙烯稀土氧化物/氧化锌催化剂[P].1998-11-25.
    [48]李酽.纳米分子筛的合成与应用进展[J].材料导报,2004,18(2):12-15.
    [49]王岚,孟霜鹤,谭志诚,梁东白,郭新闻,王祥生.纳米分子筛ZSM-5的热稳定性研究[J].催化学报,2001,22(5):491-493.
    [50]H.Hatori,T.Kobayashi,S.Hishiki,Y.Yamada,S.Matsuno,T.Nishio.Nano-Space Structure of Carbon from Polyimide Containing Nickel Nitrate and Their Function on Catalytic Reaction[J].Synth.Met.,2002,125(2):183-188.
    [51]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003:28-133.
    [52]陈慧玉,汤皎宁,辛剑,杨火电.磁性钴纳米粒子的制备和应用[J].化工新型材料,2005,33(1):24-26.
    [53]周家容.钴纳米粒子的制备、特性及应用[J].广州化工,1999,27(4):10-12.
    [54]胡志荣,余焕潮,蒙铭祖,陈广球.含钴元素的纳米材料的进展[J].广州化工,2000,28(4):165-169.
    [55]彭子飞,于霞飞.纳米钴系列产品的应用及其展望[J].中国高新技术企业,2000,6:36-37.
    [56]M.S.Hegde,D.Larcher,L.Dupont,B.Beaudoin,K.Tekaia-Elhsissen,J.M.Tarascon.Synthesis and Chemical Reactivity of Polyol Prepared Monodisperse Nickel Powders[J].Solid State Ionics,1997,93(1-2):33-50.
    [57]D.P.Dinega,M.G.Bawendi.A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt[J].Angew.Chem.Int.Ed.,1999,38(12): 1788-1791.
    [58]J.P.Chen,K.M.Lee,C.M.Sorensen,K.J.Klabunde,G.C.Hadjipanayis.Magnetic Propertied of Microemulsion Synthesized Cobalt Fine Particles[J].J.Appl.Phys.,1994,75:5876-5878.
    [59]W.Liu,W.Zhong,X.L.Wu,N.J.Tang,Y.W.Du.Hydrothermal Microemulsion Synthesis of Cobalt Nanorods and Self-Assembly into Square-Shaped Nanostructures[J].J.Cryst.Growth,2005,284(3-4):446-452.
    [60]F.Guo,H.G.Zheng,Z.P.Yang,Y.T.Qian.Synthesis of Cobalt Nanoparticles in Ethanol Hydrazine Alkaline System(EHAS) at Room Temperature[J].Mater.Lett.,2002,56(6):906-909.
    [61]郑化桂,曾京辉,梁家和.Fe,Co,Ni纳米化学还原制备机理的光谱研究[J].金属学报,1999,35(8):837-840.
    [62]D.L.Leslie-Pelecky,M.Bonder,T.Martin,E.M.Kirkpatrick,Y.Liu,X.Q.Zhang,S.H.Kim,R.D.Rieke.Using High-Temperature Chemical Synthesis to Produce Metastable Nanostructured Cobalt[J].Chem.Mater.,1998,10(11):3732-3736.
    [63]M.Aslam,R.Bhobe,N.Alem,S.Donthu,V.P.Dravid.Controlled Large-Scale Synthesis and Magnetic Properties of Single-Crystal Cobalt Nanorods[J].J.Appl.Phys.,2005,98:74311-74317.
    [64]G.H.Lee,S.H.Huh,J.W.Park,H.C.Ri,J.W.Jeong.Arrays of Ferromagnetic Iron and Cobalt Nanocluster Wires[J].J.Phys.Chem.B,2002,106(9):2123-2126.
    [65]R.Xu,H.C.Zeng.Dimensional Control of Cobalt-Hydroxide-Carbonate Nanorods and Their Thermal Conversion to One-Dimensional Arrays of Co_3O_4Nanoparticles[J].J.Phys.Chem.B,2003,107(46):12643-12649.
    [66]W-W.Ma,Y.Yang,C-T.Chong.Synthesis and Magnetic Behavior of Self-Assembled Co Nanorods and Nanoballs[J].J.Appl.Phys.,2004,95(11):6801-6803.
    [67]M.Boutnonet,J.Kizlig,P.Stenivs.The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions[J].Colloids Surf.,1982,5:209-225.
    [68]金春飞,景苏,忻新泉.低热固态化学反应与材料合成[J].无机化学学报,2002,18(9):859-870.
    [69]曹亚丽,贾殿赠,刘浪,肖定全,忻新泉.草酸钴纳米棒的一步固相化学合 成及其表征[J].化学学报,2005,63(2):175-178.
    [70]贾殿赠,曹亚丽,刘浪,周杰,肖定全.氢氧化钴纳米棒的室温固相化学合成及其表征[J].无机化学学报,2005,21(4):535-537.
    [71]W.Gong,H.Hua,Z.R.Zhao,J.C.Chen.Ultrafine Particles of Fe,Co,and Ni Ferromagnetic Metals[J].J.Appl.Phys.,1991,69(8):5119-5121.
    [72]苏轶坤,汤皎宁.单分散钴纳米晶的制备及其二维自组装[J].现代化工,2006,26(5):38-41.
    [73]H.T.Feng,K.J.Mintz,R.A.Augsten.Thermal Analysis of Brached GAP[J].Thermochim.Acta,1998,3(11):105-110.
    [74]H.Arisawa,T.B.Brill.Structure-Decomposition and Kinetic Relationships in Flash Pyrolysis of Glycidyl Azide Polymer(GAP)[J].Combust Flame,1998,112:533-538.
    [75]张汝冰,刘宏英,李凤生.含能催化复合纳米材料的制备研究[J].火炸药学报,2000,3:9-15.
    [76]罗元香,陆路德,刘孝恒,杨绪杰,汪信.纳米CuO的制备及对NH_4ClO_4热分解的催化性能[J].无机化学学报,2002,18(12):1211-1214.
    [77]Y.W.Tian,X.H.Dai,Y.F.Li,D.B.Zhu.Preparation of Gold,Platinum,Palladium and Silver Nanoparticles by the Reduction of Their Salts with a Weak Reductant-Potassium Bitartrate[J].J.Mater.Chem.,2003,13(5):1069-1075.
    [78]B.L.Cushing,V.L.Kolesnichenko,C.J.O'Connor.Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles[J].Chem.Rev.,2004,104(9):3893-3946.
    [79]C.Burda,X.B.Chen,R.Narayanan,M.A.El-Sayed.Chemistry and Properties of Nanocrystals of Different Shapes[J].Chem.Rev.,2005,105(4):1025-1102.
    [80]I.Balint,A.Miyazaki,K.Aika.NO Reduction by CH_4 over Well-Structured Pt Nanocrystals Supported on γ-Al_2O_3[J].Appl.Catal.B,2002,37(3):217-229.
    [81]郑忠.胶体科学导论[M].北京:高等教育出版社,1989:56-60.
    [82]沈俭一,胡征,张黎峰,陈懿.镍-磷非晶合金超细微粒子的制备和物性研究[J].化学学报,1992,50:566-570.
    [83]沈勇,张宗涛,赵斌,朱裕贞,胡黎明,戴慕仉.高分子保护溶液还原法制备球形超细镍粉[J].化学学报,1996,1:41-42.
    [84]郑化桂,李亚栋,李成韦,赵化章,刘元辉,钱逸泰.铜胶体的制备及光谱研究[J].物理化学学报,1997,13(11):974-977.
    [85]郑化桂,曾京辉,梁家和,刘方新.溶剂化银胶体的制备与表征[J].物理化学学报,1999,15(11):980-985.
    [86]N.R.Jana,L.Gearheart,C.J.Murphy.Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template[J].Adv.Mater.,2001,13(18):1389-1393.
    [87]M.P.Pileni,J.Tanori,A.Filankembo,J.C.Dedieu,T.Gulik-Krzywicki.Template Design of Microreactors with Colloidal Assemblies:Control the Growth of Copper Metal Rods[J].Langmuir,1998,14(26):7359-7363.
    [88]E.Leontidis,K.KIetiou,T.Kyprianidour-Leodidiou,V.Bekiari,P.Lianos.Gold Colloids from Cationic Surfactant Solutions.1.Mechanisms that Control Particle Morphology[J].Langmuir,2002,18(9):3659-3668.
    [89]张克从.近代晶体学基础[M].北京:科学出版社,1987:76-118.
    [90]王兴,徐龙伢,王清遐,高玉华,高深,牟民.苯和C_(10-14)直链烯烃烷基化催化剂的研究进展[J].石油化工,1997,26(4):267-272.
    [91]V.F.Puntes,D.Zanchet,C.K.Erdonmez,A.P.Alivisatos.Synthesis of hcp-Co Nanodisks[J].J.Am.Chem.Soc.,2002,124(43):12874-12880.
    [92]马礼敦.近代X射线多晶体衍射[M].北京:化学工业出版社,2004:475-480.
    [93]Y.C.Zhu,H.G.Zheng,Q.Yang,A.L.Pan,Z.P.Yang,Y.T.Qian.Growth of Dendritic Cobalt Nanocrystals at Room Temperature[J].J.Cryst.Growth,2004,260:427-434.
    [94]J.Park,V.Privman,E.Matijevic.Model of Formation of Monodispersed Colloids[J].J.Phys.Chem.B,2001,105(47):11630-11635.
    [95]S.Sun,C.B.Murray.Synthesis of Monodisperse Cobalt Nanocrystals and Their Assembly into Magnetic Superlattices(invited)[J].J.Appl.Phys.,1999,85(8):4325-4330.
    [96]刘如冰.晶体生长[M].北京:中国建筑工业出版社,1981:436-443.
    [97]Z.R.Tian,J.Liu,J.A.Voigt,H.Xu,M.J.Mcdermott.Dendritic Growth of Cubically Ordered Nanoporous Materials through Self-Assembly[J].Nano Lett.,2003,3(1):89-92.
    [98]陈震,陈日耀,郑曦,兰瑞芳,林智虹,黄子祥,吴锵金.金属硫族化合物[Ni(en)_3](Hen)SbSe_4,[Sb(en)_3]In_3Te_7的溶剂热生长及晶体结构[J].高等学校化学学报,2001,22(11):1785-1789.
    [99]B.Li,Y.Xie,J.X.Huang,Y.T.Qian.Solvothermal Synthesis to Cu_2SnSe_4 Nanocrystals at Low Temperature[J].Solid State Ionics,1999,126(3-4):359-362.
    [100]L.Iordanidis,M.G.Kanatzidis.Novel Quaternary Lanthanum Bismuth Sulfides Pb_2La_xBi_(8-x)S_(14),Sr_2La_xBi_(8-x)S_(14),and Cs_2La_xBi_(10-x)S_(16) with Complex Structures[J].Inorg.Chem.,2001,40(8):1878-1887.
    [101]米远祝,刘应亮,肖勇,袁定胜,张静娴.溶剂热制备条件对镍晶体结构的影响[J].无机化学学报,2005,21(4):603-605.
    [102]石华强.萃取法制备有机纳米流体及萃取溶剂热合成纳米材料[D].青岛:青岛科技大学,2005.
    [103]刘鹏成,王玉棉,侯新刚.新型超细钴粉的制备及添加剂对其性能影响[J].甘肃冶金,2006,28(1):24-26.
    [104]刘飚,官建国,王琦,张清杰。多元醇还原制备Co纳米粉产品表征及机理研究[J].化学工程,2005,33(4):38-40.
    [105]王平棉,俞建明,李军强.多元醇液相还原制备超细钴粉[J].有色金属,2005,57(3):38-40.
    [106]陈慧玉,汤皎宁,辛剑,杨火电.高温液相二醇还原法制备钴纳米粒子[J].合成化学,2005,13(2):137-140.
    [107]E.Godocikova,P.Balaz,Z.Bastl,L.Brabec.Spectroscopic Study of the Surface Oxidation of Mechanically Activated Sulphides[J].Appl.Surf.Sci.,2002,200(1-4):36-47.
    [108]陈爱成,孙世刚.乙二醇在铂电极上吸附和氧化过程的现场FTIR反射光谱研究(Ⅱ)-碱性介质[J].高等化学学报,1994,15(4):548-551.
    [109]T.Sugimoto.Formation of Monodispersed Nano- and Micro-Particles Controlled in Size,Shape,and Internal Structure[J].Chem.Eng.Technol.,2003,26(3):313-321.
    [110]G.Viau,F.Fievet-Vincent,F.Fievet.Nucleation and Growth of Bimetallic CoNi and FeNi Monodisperse Particles Prepared in Polyols[J].Solid State Ionics,1996,84(3-4):259-270.
    [111]Z.T.Zhang,D.A.Blom,Z.Gai,J.R.Thompson,J.Shen,S.Dai.High-Yield Solvothermal Formation of Magnetic CoPt Alloy Nanowires[J].J.Am.Chem.Soc.,2003,125(25):7528-7529.
    [112]Z.X.Deng,C.Wang,X.M.Sun,Y.D.Li.Structure-Directing Coordination Template Effect of Ethylenediamine in Formation of ZnS and ZnSe Nanocrystallites via Solvothermal Route[J].Inorg.Chem.,2002,41(4):869-873.
    [113]李鹏,官建国,张清杰,赵文俞,袁润章.1,2-丙二醇液相还原法制备纳米镍粉的研究[J].材料科学与工艺,2001,9(3):259-262.
    [114]A.Al-Harthi,A.Williams.Effect of Fuel Binder and Oxidizer Particle Diameter on the Combustion of Ammonium Perchlorate Based Propellants[J].Fuel,1998,77(13):1451-1468.
    [115]任务正,王泽山.火炸药理论与实践[M].北京:中国北方化学工业总公司,2001:59-63.
    [116]G.Singh,I.P.S.Kapoor,S.M.Mannan,J.Kaur.Studies on Energetic Compounds Part 8:Thermolysis of HNO_3 and HClO_4[J].J.Hazardous Mater.A,2000,79(1-2):1-18.
    [117]W.F.Chen,F.S Li,L.L.Liu,Y.X.Li.Synthesis of Nano-Sized Yttria via a Sol-Gel Process Based on Hydrated Yttrium Nitrate and Ethylene Glycol and Its Catalytic Performance for Thermal Decomposition of NH_4ClO_4[J].J.Rare.Earths,2006,24:543-548.
    [118]P.W.M.Jacobs,A.Russell-Jones.Sublimation of Ammonium Perchlorate the Thermal Decomposition of Ammonium Perchlorate[J].J.Phys.Chem.,1968,72(1):202-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700