用户名: 密码: 验证码:
固体发动机的药型优化与参数灵敏度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构完整性是固体发动机设计的重要指标。理论和经验表明,通过对发动机药柱的几何构型和材料参数优化,可以极大地改善发动机的结构完整性能。本文从结构优化的基本原理和方法出发,对工程中广泛使用的管形和星形药柱构型、斜槽和伞盘等典型几何特征,以及发动机各部件的材料参数进行了灵敏度分析与优化研究。
     本文主要内容如下:
     介绍了固体发动机结构完整性分析的相关概念和发展历程,探讨了结构优化的产生背景和发展现状,对本文研究的软件平台MSC.Nastran做了简单介绍。
     论述了结构优化的理论基础和一般方法。作为结构优化的基础,推导了有限单元法的基本方程以及其数值求解方法。介绍了用于结构优化的近似模型的概念和处理方法,探讨了用近似模型对结构进行优化算法的过程,并介绍了约束筛选、灵敏度分析等相关概念。
     利用MSC.Nastran的结构优化功能,对管形和星形两种典型药型进行了灵敏度分析和优化处理。讨论了形状优化中位移模式的作用及其建立的方法,对辅助模型做了重点介绍。根据固体发动机的结构和受力特点,建立了管形和星形两种药型的平面应变模型,对其进行了结构完整性分析,并对两种药型的控制参数进行了灵敏度分析,在此基础上讨论了它们的优化设计方法。
     讨论了斜槽、伞盘和人工脱粘层等三种典型几何特征对发动机结构完整性的影响。尽管固体发动机在长度方向的特征结构对结构完整性的影响,远没有平面模型控制参数来得明显,但通常这些几何特征是发动机的主体结构之一,有可能会对发动机结构完整性造成相当大的局部影响。对这些结构进行结构完整性分析和灵敏度分析,可以确定其最佳设计参数。
     探讨了各向同性和正交各向异性材料在固体发动机中应用的可能性。分别采用各向同性和正交各向异性材料对固体发动机的推进剂、绝热层和壳体材料的各参数灵敏度进行了分析。随后建立了关于材料的理想发动机模型,对发动机各部件的材料进行了优化分析。
     本文的研究成果对固体发动机的结构完整性分析和优化设计具有重要的指导作用,其中的方法和结论可供发动机设计、制造和使用部门参考。
Structural integrity is one of the vital criteria for Solid Rocket Motor (SRM) design. It is shown that, the optimization of grain shapes and material properties could greatly improve the structural integrity of SRM. In this paper, the basic discipline and method of structural optimization are discussed, several grain models and geometric features are studied, and also, the material properties are optimized.
     The main achievements are summarized as follows:
     The conspectus on SRM structural integrity is put out firstly. The significance, history, status and correlative concepts are introduced. And the overview of structural optimization is also outlined, besides the software platform, MSC.Nastran.
     Basic theory and methods of structural optimization are discussed detailedly. Finite Element Method is addressed as a main solution to the structural analysis. The approximation model, built up on analysis results, referred by optimization direction and depth search, is investigated concretely. And some arithmetic are presented also, including constrain screening, convergence detection, sensitivity analysis, and so on.
     The two grain shapes, the tube and the star, are researched. Owing to particularity of shape optimization, the Basis Vector, which would guide the optimization procedure, is introduced. And the auxiliary models, which to help generate Basis Vectors, are also conducted. Considering the characteristic of SRM and its loads conditions, the plain-strain models of the tube and the star, are built up respectively. Each of them is analyzed under complex loads and boundary conditions. Several sensitivity factors of the shape parameters are studied emphatically, and the optimal schemes are discussed later.
     SRM containing slopeing groove, umbrella slot or debonded release boot is investigated. Although length geometric features do not have obvious influence on structural integrity as the plain figures, the three are usually of main bulk structure, and often have sharp influences on local structural integrity. In order to determine their optimal shapes, some structural ananlysis and sensitivy analysis are carried out.
     The possibility of application of isotropic and orthotropic materials on SRM is studied. The main components of SRM, propellant grain, insulation and case are equipped with isotropic and orthotropic materails respectively. The structural and sensitivity analysis are performed to each modulus of any component materials. And the ideal model about materials is promoted out, discussing the utility and availability of various materials on SRM.
     The achievements obtained in this dissertation provide an important guidance to the structural integrity analysis and optimization design on SRM. The methods and conclusions would be available for the designers, manufactures and users of SRM._____
引文
[1]田四朋.固体火箭发动机药柱三维粘弹性随机有限元分析及概率贮存寿命预估[D].长沙:国防科技大学,2007
    [2]王元有.固体火箭发动机设计[M].北京:国防工业出版社,1984.
    [3]沈怀荣.固体推进剂的粘弹性损伤分析及有关理论探讨[D].长沙:国防科技大学,1985
    [4]W.J.L.Finite elements in linear viscoelasticity[R].In Proceedings 2nd Conference Matrix Methods in Structural Mechanics,1968
    [5]Z.O.C,W.M,K.I.P.A numerical method of visco-elastic stress analysis[J].International Journal of Mechanics Science,1968,10(10):807-827
    [6]S.H.R,L.R.W.A t'mite element method for themoviscoelastic analysis of plane problem[J].Computer Methods in Applied Mechanics and Engineering,1981,25(1):21-23
    [7]J.M.K,R.K,R.G.V.A Method of Nonlinear Viscoelastic Analysis of Solid Propellant Grains for Pressure Load[J].Computers and Structures,1994,52(1):64-67
    [8]尚世英.固体推进剂线粘弹性有限元分析[J].推进技术,1987,8(4):19-28
    [9]冯志刚,周建平.长期贮存固体火箭发动机的温度应力分析[J].推进技术,1994,15(6):42-49
    [10]冯志刚,周建平.固体火箭发动机药柱的长期老化效应分析[J].航空学报,1994,15(12):1507-1511
    [11]唐国金,周建平.自由装填药柱的结构完整性分析[J].固体火箭技术,1994,17(2):13-19
    [12]李录贤,叶天麒,沈亚鹏.三维药柱的热粘弹性有限元分析[J].推进技术,1997,18(3):45-50
    [13]朱智春,蔡峨.固体火箭发动机药柱三维温度场应力场有限元分析[J].推进技术,1997,18(2):21-26
    [14]王锟,田维平.固体火箭发动机前、后翼药柱三维有限元分析[J].推进技术,1997,18(4):36-4l
    [15]蒙上阳.XX型号空一空导弹发动机结构完整性评估[D].长沙:国防科技大学,2000
    [16]唐国金,周建平.某装填式发动机药柱的寿命预估[A].国防科技大学校庆 40周年论文集[C].长沙,国防科技大学1993.
    [17]陈汝训.固体火箭发动机设计与研究[M].北京:宇航出版社,1992.
    [18]刘明谦,雷勇军,唐国金,等.不同几何构型对固体发动机结构完整性的影响[J].试验技术与试验机,2007,47(2):1-3
    [19]蒙上阳.基于粘弹性有限元方法的固体火箭发动机结构完整性分析[D].长沙:国防科技大学,2005
    [20]蒙上阳,唐国金,雷勇军.低温环境下固体发动机药柱伞盘结构设计[J].推进技术,2004,25(5):397-400
    [21]S.-W.Chyuan.Studies of poisson's ratio variation for solid propellant grains under ignition pressure loading[J].International Journal of Pressure Vessels and Piping,2003,80(12):871-877
    [22]蒙上阳,唐国金,雷勇军.材料性能对固体发动机结构完整性的影响[J].国防科技大学学报,2002,24(5):10-15
    [23]蔺文峰,雷勇军,唐国金.绝热层对固体发动机结构完整性的影响[A].宇航推进技术会议[C].宜昌,2006.
    [24]田俊良,朱祖念,张善祁,等.复合材料壳体固体发动机药柱工作内压三维结构分析[J].固体火箭技术,2001,24(3):34-38
    [25]史红斌,朱念祖,张善祁.多种材料人工脱粘应力场分析[J].固体火箭技术,1995,18(1):24-29
    [26]李晓斌,张为华,王中伟.装药几何参数不确定性优化设计[J].推进技术,2006,27(2):132-136
    [27]张海联.固体火箭发动机药柱的粘弹性不确定结构分析[D].长沙:国防科学技术大学,2002
    [28]李为吉,宋笔锋,孙侠生,等.飞行器结构优化设计[M].北京:国防工业出版社,2005.
    [29]方国尧,张中钦,余立风,等.固体火箭发动机总体优化设计[M].北京:北京航空航天大学出版社,1986.
    [30]李炳威.结构的优化设计[M].北京:科学出版社,1979.
    [31]邢耀国,金广文,许学春,等.某型固体火箭发动机综合性能试验与寿命评估[J].推进技术,2004,25(2):176-179
    [32]徐红玉,王燕霜,陈殿云,等.固体发动机复合材料壳体破坏分析及优化[J].河南科技大学学报,2005,26(4):8-11
    [33]王栋,张卫红,姜节胜.桁架结构形状与尺寸组合优化[J].应用力学学报,2002,19(3):73-76
    [34]刘涛,邓子辰.桁架结构尺寸和形状、拓扑的渐进优化方法[J].西北工业大学 学报,2004,22(3):739-743
    [35]周健生,蔡荫林.基于强度和刚度可靠度的结构优化设计[J].强度与环境,2002,29(1):27-34
    [36]彭超义,曾竞成,肖加余,等.航天器发动机推力支架桁架结构的有限元分析与优化设计[J].宇航材料工艺,2003,(6):21-38
    [37]苏建河,尤军锋.ANSYS程序优化技术在固体火箭发动机设计中的应用[J].固体火箭技术,2006,29(8):337-340
    [38]张永昌.MSC.Nastran有限元分析理论基础与应用[M].北京:科学出版社,2004
    [39]G.J.Moore.MSC/Nastran design sensitivity and optimization[M].Los Angeles:The Macneal-Schwendler Corporation,1994.
    [40]MSC.Software.MSC.Nastran 2005 quick reference guide[M].Santa Ana:The MSC Software Corporation,2005.
    [41]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [42]唐焕文,秦学志.最优化方法[M].大连:大连理工大学出版社,1994.
    [43]王铮,胡永强.固体火箭发动机[M].北京:国防出版社,1993.
    [44]李磊.XX发动机温度载荷作用下前伞盘设计参数优选分析总结报告[R].2006
    [45]蔺文峰,雷勇军,唐国金.绝热层对固体发动机结构完整性的影响[A].宇航推进技术会议[C].宜昌,2006.
    [46]梁彦,张弛,张明.固体火箭发动机燃烧室绝热层的设计与研究[J].飞航导弹,2004,(9):60-64
    [47]沈观林,胡更开.复合材料力学IM].北京:清华大学出版社,2006.
    [48]阮崇智.大型固体火箭发动机研制的关键技术[J].固体火箭技术,2005,28(1):23-28
    [49]李顺林,王兴业.复合材料结构设计基础[M].武汉:武汉工业大学出版社,1993.
    [50]中国航空研究院编.复合材料结构设计手册[M].北京:航空工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700