用户名: 密码: 验证码:
SiO_2胶体微球自组装光子晶体的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体具有调节光子运动状态的独特功能,是实现光子计算机和光通讯的基础,是信息功能材料研究的前沿。目前,发展光子晶体的关键在于光子晶体的制备,而如何制备可见光和近红外波段的光子晶体更是这一问题的难点。本论文采用垂直沉积法,以单分散二氧化硅胶体微球为组成单元,利用其自组装特性制备得到近红外和可见光波段的胶体光子晶体。具体研究内容及取得的主要成果如下:
     首先,利用碱催化法制备出不同直径的单分散SiO_2胶体微球。利用透射电子显微镜对其微观形貌进行了表征。主要研究了反应物配比的改变对于生成SiO_2胶体微球微观形貌的影响。此实验的研究结果对大批量成功制备单分散性SiO_2胶体微球有重要意义。
     其次,选用不同直径以及同一直径不同浓度的SiO_2胶体微球,利用垂直沉积法制得了三维光子晶体薄膜。利用扫描电子显微镜对胶体晶体的微观形貌、结构特征进行观察,并利用分光光度计测试其透射光谱,对其光学特性进行观察分析。研究发现:(1)制得的光子晶体薄膜具有六角密排有序结构,表面存在一些线缺陷和点缺陷,且当胶体颗粒粒径减小时,表面裂纹也会减少;(2)结合SiO_2胶体微球的制备方法,实验发现在自组装前,先在适当温度下煅烧SiO_2胶体微球使其脱水,然后再进行自组装制得的光子晶体薄膜缺陷明显减少,通过这样处理得到的胶体晶体具有更好的品质;(3)透过光谱分析说明,制得的三维胶体光子晶体,在近红外和可见光波段具有光子带隙,其位置主要受胶体微球粒径的影响,中心波长都符合布拉格散射定律;(4)研究发现,随着自组装过程中二氧化硅胶体微球溶液浓度的增大,制得的光子晶体薄膜光子带隙深度增加,特性更好,但是,当浓度超过10%时,带隙深度反而会降低。
Photonic crystals have the special feature of modulating the propagation of lightwave, are one of the basis of photonic communication technology and photonic computer and also the frontier of functional materials. Presently, the fabrication of photonic crystals, especially those using for visible or near-infrared region, is the key to the development of photonic crystals. In this thesis, SiO_2 colloidal spheres were prepared by the base-catalyzed method and self-assembled into photonic crystals films of visible or near-infrared region by the vertical deposition method. The main contents and results are as follows:
     First, SiO_2 colloidal spheres were synthesized by the base-catalyzed method. Influence of the composition ratios of the reactants on the SiO_2 particle size and size deviation was mainly investigated.
     Second, silica gel microspheres with different diameter and concentrations were self-assembled into a variety of photonic crystal films through the vertical deposition method, their microstructure and optical properties are characterized by scanning electron microscopy and UV-visible-near infrared spectrophotometer. The results showed that: (1) The films were three-dimensionally ordered crystal structure, there were obvious point and line defects on the surface, and the line defects decreased as the decreasing of the size of microspheres. (2) We found that the silica spheres being dehydrated at a suitable temperature first, the defects of the films significantly reduced. (3)Self-assembly photonic crystal films showed photonic band gap whose position depended on the diameter and structure of microspheres, and the central wavelength of the band-gap is agreement with the theoretical value which results from Bragg Reflection Law. (4) The depth of photonic band gap increased as increasing concentration of microspheres, which mean better photonic band gap properties, but when the concentration is more than 10%, the depth of the band gap will be reduced.
引文
[1]张友俊,杨庆祥.光子晶体的发展和应用[J].上海大学学报(自然科学版).2004,10(3): 284-287.
    [2]张道中.光子晶体[J].物理.2000,23(3): 44-47.
    [3]快素竺,草俞之.光子晶体的能带结构、潜在应用和制备方法[J].无机材料学报.2001,18(2): 194-198.
    [4]方俊仓.固体物理学[M].上海:上海科学技术出版社,2001.10-48.
    [5]赵狄,汪晨峰.SiO2胶体晶体的自组装结构及其帯隙特征[J].材料导报.2008,22(4): 119-123.
    [6]许吉英,王佳.光子晶体的光学特性与近场光学测量表征[J].光学技术.2003, 29(1): 8-15.
    [7]T.G.Euser, W.L.Vos. Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors[ J].Appl. Phys. 2005, 97(3): 3102-3104.
    [8]G.S.Pan, R.Kesavamoorthy. Optically nonlinear Bragg diffracting nanosecond optical switches[J]. Phys. Rev. Lett.1997, 78(20): 3860-3863.
    [9] J.D. Joannopoulos,P.R.Villeneuve.Photonic crystals:Putting a new twist on light[J].Nature. 1997,386(6621): 145-149.
    [10]金崇君,程丙英,李兆霖.光子晶体的研究进展[J],量子电子学报.1999,16(6): 28-32.
    [11]高旸.光子晶体应用分析[J].中国科技信息.2007,15(2): 275-276.
    [12]J.C.Knight,T.A.Birks.All-silica single-mode optical fiber with photonic crystal cladding[J].Opt.Lett. 1996,21: 1547-1549.
    [13]J.C.Knight,J.Broeng.Optical properties of a low-less polarization-maintaining photonic crystal fiber[J].Science.1998,282: 1476-1478
    [14]R.F.Cregan,B.J.Mangan,J.C.Knight,et al.Single-mode photonic band gap guidance of light in air[J].Science.1999,285: 1537-1539.
    [15]黄芳云,杨东.光子晶体液晶光纤的光波导特性[J].光电子技术.2009,29(1): 47-50.
    [16] D.Scymgeour,N.Malkova,S.Kim,et al.Electro-optic control of the superprism effect in photonic crystals[J].Appl.Phys.Lett.,2003,82: 3176-3178.
    [17]闫俊杰,蔡祥宝.二维液晶光子晶体滤波器的可行性分析[J].技术前沿.2009,11(5): 77-79.
    [18]S. Noda, A. Chutinan, M. Imada, et al.Trapping and emission of photons by a single defect in photonic bandgap structure[J].Nature,2000,407: 608-610.
    [19]O.Painter,R.K.Lee,A.Scherer,et al.Two-dimensional photonic band-gap defect mode laser[J].Science,1999,284: 1819-1821.
    [20]W.D.Zhou,J.Sabarinathan.Electrically injected single-defect photon bandgap surface emitting laser at room temperature[J].Electron.Lett.2000,36(10): 1541-1542.
    [21]K. W. Quoi, R. A. Lieberman. Rare-earth doped optical fibers for temperature sensing [J]. Lightwave.Technol..1992, 10(6): 847-852.
    [22]G. Kolbe. Das Komplexchemische Verhalten der Kieselsaure[M]. Dissertation Jena, 1956
    [23]W. St?ber, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range[ J]. Colloid Interface Sci.1968, 26: 62~69.
    [24]T. Matsoukas, E. Gulari. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate[ J]. Colloid Interface Sci. 1988, 124: 252-261.
    [25]A. Van Bladeren, J. Van Geest. Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism[J]. Colloid Interface Sci..1991, 154: 481-501.
    [26]董鹏.由硅溶胶生长单分散颗粒的研究[J].物理化学学报.1998, 14(2):110-114.
    [27]E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett.1987, 58 (20): 2059~2062.
    [28]S. John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett.1987, 58 (20): 2486~2489.
    [29]A. van Blaaderen. From the de Broglie to visible wavelengths: manipulating electrons and photons with colloids[J]. MRS Bull.1998, 23(10): 39~43.
    [30]S. H. Park, D. Qin. Crystallization of mesoscale particles over large areas[J]. Adv. Mater.1998, 10(13): 1028~1032.
    [31]M. Trau, D. A. Saville. Field induced layering of colloidal crystals[J]. Science.1996, 272: 706~709.
    [32]A. S. Dimitrov, K. Nagayama. Continuous convective assembling of fine particles intotwo-dimensional arrays on solid surfaces[J]. Langmuir, 1996, 12(5): 1303~1311.
    [33]E. Yablonovitch, T. J. Gmitter. Photonic band structure: the case-centered cubic case[J]. Phys. Rev. Lett. 1989, 63 (18): 1950~1953.
    [34]M. Campbell, D. N. Sharp, M. T. Harrison, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404 (6773): 53~56.
    [35]S. Shoji, S. Kawatas. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a phopolymerizable resin[J]. Appl. Phys. Lett.2000, 76 (19): 2668~2671.
    [36]谭春华,范广涵,许静等.人工欧泊填充InP后的形貌和反射谱特性[J].光子学报. 2005,34(6):905~908.
    [37]M. H. Qi, E. Lidorikis. A three-dimensional optical photonic crystal with designed poing defects[J]. Nature. 2004, 429 (3): 538~542.
    [38]陈娟,蒋继富,赵宗彦等.纳米多孔SiO2功能薄膜制备方法的研究进展[J].材料导报.2007,21: 58-60.
    [39]许培池,李小甫,余海湖.SiO2静电自组装增透膜光学性质的研究[J].光学与光电技术.2003,4 (4): 61-64.
    [40]艾桃桃.光子晶体及SiO2光子晶体的制备技术[J].中国陶瓷.2008,4 (1): 6-9.
    [41]周倩,董鹏,程丙英. SiO2胶体颗粒的三维有序自组装[J].化学通报.2004, (4): 290-284.
    [42]李小甫,余海湖,姜德生.光波导用TiO2/SiO2复合薄膜的制备及其性能研究[J].光电子技术与信息.2003,16(2):20-25.
    [43]余海湖,伍宏彪,李小甫.二氧化硅纳米粒子薄膜的制备及光学性能[J].物理化学学报.2001,17(12):1057-1061.
    [44]曹洁明,常欣,郑明波等.SiO2欧泊模板溶剂热法制备硫化锌光子晶体[J].物理化学学报.2005,21(5):562-564.
    [45]Marek Orlik,Self-organization in nonlinear dynamical systems and its relation to the materials science[J].Solid State Electrochem.2009,13 (2): 245-261.
    [46]丁敬,高继宁,唐芳琼.胶体晶体自组装排列进展[J].化学进展.16(3):322-325.
    [47]Wen-jiang LI,Preparation of movable 3D periodic structures of silica spheres[J].Zhejiang UnivSCIENCE A.2006,7(2): 345-349.
    [48]郭红霞,范吉军,赵晓鹏.光子晶体及其制备方法研究进展[J].功能材料.2003,34(1):5-8.
    [49]李树棠.晶体X射线衍射学基础[]M].北京:冶金工业出版社, 1990.54.
    [50]王东栋,王永生.光子晶体量子阱的光谱特性研究[J].光谱学与光谱分析.2008, 28(5): 19-22.
    [51]J. F. Bertone, P. Jiang, K. S. Kwang, et al. Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals[J]. Phys. Rev. Lett.1999, 83(2): 300-303.
    [52]汪静,李康,钱卫平等.垂直沉积法制备二氧化硅胶体晶体及其表征[J].东南大学学报.2003, 33(2): 208-210.
    [53]赵丽.纳米微米二氧化硅球形颗粒的制备与表征[D].武汉:武汉理工大学, 2004.
    [54]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社, 1997. 16.
    [55]M. Ocana, R. Rodriguez-Clemente. Uniform colloidal particles in solution formation mechanism[J]. Adv. Mater.1995, 7: 212-216.
    [56]Y.N.Xia,G.Byron.Monodispersed colloidal spheres:old materials with new applications[J]. Adv.Mater.2000,129(10): 694-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700