用户名: 密码: 验证码:
基于金属纳米结构的纳光子器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以金属纳米结构在光波波段的电磁增强所引起的奇异光学性质为基础,对于面向应用的纳光子器件进行了探索研究。从金属纳米结构在光波波段的局域增强特性、环境折射率敏感特性、亚波长光调控特性和光吸收增强特性入手,通过分析一维、二维和三维情况下金属纳米结构的不同光学性质,开展了表面等离子体传感芯片、表面增强拉曼传感芯片、芯片型表面等离子体光谱仪分光器件和宽波段光吸收器件的理论设计、器件制备以及功能验证等相关研究工作,为金属纳米光学从物理层面的性质研究向应用层面的器件发展提供了思路。
     论文的主要研究内容和结论如下:
     (1)结合表面等离子体传感在灵敏度和稳定性方面的应用需求,提出了基于一维金银双层纳米膜结构的传感芯片,基于Fresnell反射定律发展了针对这一结构的表面等离子体传感芯片参数设计方法,利用Maxwell电磁理论分析了其折射率敏感增强机理,在此基础上完成了芯片制备与系统搭建,并将其集成于表面等离子体成像传感分析仪中,使仪器的传感灵敏度达到6.64×10-7RIU。
     (2)利用亚波长金属狭缝-沟槽结构中的表面干涉特性,提出了一种可直接贴于CCD等光电阵列探测器上的薄膜型表面等离子体光谱仪分光器,结合表面等离子体共振理论和传统的傅立叶变换光谱理论,建立了针对这一光谱仪分光器件的光谱恢复方法,通过仿真实现了其光谱探测功能验证,结果表明所恢复的光谱频点准确、形状吻合。
     (3)针对二维金属纳米狭缝在表面增强拉曼传感中的高灵敏特性和可重复的阵列型纳米狭缝在结构制备方面面临的技术障碍,提出了两种可便捷、快速、低成本制备金属纳米狭缝阵列结构的工艺方法,一是基于刻蚀自组装PS球制备金属球壳纳米狭缝阵列,实验结果表明其获得的金属球壳狭缝的平均宽度仅15nm;另一种是基于压印诱导龟裂的纳米狭缝制备方法,通过有限元力学仿真对这一工艺的物理机理和参数影响进行了深入研究,实验结果表明其所制备的纳米狭缝半宽仅30nm,且深宽比超过了3:1;
     (4)结合理论与仿真手段,研究了三维金属纳米结构独特的z向耦合共振模式,分析了其z向耦合共振激发的光场局域增强和光吸收增强的特点,在此基础上提出了基于三维金属/介质/金属孔阵列结构的表面增强拉曼传感芯片和金属/介质/金属纳米球阵列结构的宽波段、高效率光吸收器件,对于拉曼增强芯片,实验结果表明其增强因子比其相同参数的二维结构高3.85倍,对于光吸收器件,优化参数下其在350nm-670nm的光谱范围内获得了93.9%的光吸收效率。
     (5)在三维金属复合纳米结构方面进行了探索研究,提出了一种基于金属锥尖-粒子复合结构二次局域增强的表面增强拉曼传感芯片,通过对其初级局域和二次局域的理论分析与参数优化,获得了大于109的拉曼增强因子。
Based on the fantastic optical properties raised by the electromagneticenhancement of the metallic nanostructures in the optical waveband, thenanophotonics devices in applications are researched in this paper. The work isstarted by analyzing the properties of localized enhancement, sensitive to theenvironment refractive index, optical subwavelength modulation and opticalabsorption enhancement. By using the different properties of the one-dimensional,two-dimensional and three-dimensional metallic nanostructures, the devices ofsurface Plasmon resonance sensor, surface enhanced Raman scattering sensing chips,chip typed surface Plasmon spectrometer and wideband optical absorption chip areresearched, which are carried out with the theory designs, the devices fabricationsand function demonstrations by simulations or experiments. This work raises thenew ways to push the metallic nanooptics from physical property study to deviceapplication.
     The main contents and results of the paper are listed as bellow:
     (1) Based on the requirements of the sensitivity and stability in the surfacePlasmon resonance sensing, a sensor with one dimensional gold-silver bilayerednanofilm is proposed. The theory design method of the structure parameters and themechanism of the refractive index sensitivity enhancement are studied by analysisthe Fresnell’s law and Maxwell equations respectively. Based on the theory resultsthe sensing chip is fabricated and the system is set up. At last the chip is integratedin the surface Plasmon resonance imaging sensing instrument and a sensitivity of6.64×10-7RIU is achieved.
     (2) By utilizing the property of the surface interference in the subwavelengthmetallic slit-groove structure, a surface Plasmon thin film spectrometer, which canstick on the CCD optical detector array, is proposed. The spectrum recovery methodof this spectrometer is built by combining the surface Plasmon resonance theory andthe Fourier transform spectrum theory. By simulation, the function of thespectrometer is demonstrated and the results show that the frequencies of recoveredspectrum are correct and its shape is fit for the original spectrum.
     (3) In the surface enhanced Raman scattering sensing, the two-dimensionalmetallic nanoslit has the high sensitivity but suffers the hard fabrication of arrayed nanoslit structures. In this situation, two methods to fabricate arrayed metallicnanoslit convenient, fast and low cost are proposed in this work. One is based onprocess of etching the self-assembled polystyrene spheres to achieve the metallicnanoshell slit array. The fabrication result shows that the average width of thenanoslits is15nm. The other is based on the imprinting induced crack to achievenanoslit. The physical mechanism and parameter influence are analyzed by finiteelement simulation of the force in the structure, and the fabrication result shows thatthe width of the slit is30nm and the ratio of width to depth is larger than3:1.
     (4) Based on the theory model and simulation, the z direction couplingresonance mode of the three-dimensional nanostructure is studied. By analyzing theoptical field enhancement and absorption enhancement excited by this resonance,the sensing chip of the surface enhanced Raman scattering and the wideband, highefficiency absorption device is proposed. The experiment shows that theenhancement factor of the three-dimensional sensor is3.85times higher than thecontrol sample and the absorption device achieves the absorption ratio of93.9%atthe band of350nm-670nm.
     (5) The study of the three-dimensional composite metallic nanostructure iscarried out and the surface enhanced Raman scattering sensing device based on thesecondary localization enhancement of pyramid-particle composite structure isproposed. By analysis the theory of the primary localization and secondarylocalization, the parameters of the structure are optimized and the enhancementfactor of larger than109is obtained.
引文
[1] HUNSPERGER R G. Integrated optics: theory and technology [M]. Springer,1984.
    [2] TIEN P. Light waves in thin films and integrated optics [J]. Applied optics,1971,10(11):2395-413.
    [3] MILLER S E. Integrated optics: An introduction [J]. Bell System Technical Journal,1969,48(7):2059-69.
    [4] VLASOV Y, GREEN W M, XIA F. High-throughput silicon nanophotonicwavelength-insensitive switch for on-chip optical networks [J]. Nature Photonics,2008,2(4):242-6.
    [5] BOZHEVOLNYI S I. Plasmonic nano-guides and circuits; proceedings of the Plasmonicsand Metamaterials, F,2008[C]. Optical Society of America.
    [6] ARSENAULT A, FOURNIER-BIDOZ S, HATTON B, et al. Towards the syntheticall-optical computer: science fiction or reality?[J]. Journal of Materials Chemistry,2004,14(5):781-94.
    [7] MANNING R, DAVIES D. Three-wavelength device for all-optical signal processing [J].Optics letters,1994,19(12):889-91.
    [8] SHALAEV V M, KAWATA S. Nanophotonics with surface plasmons [M]. Elsevier,2006.
    [9] LIEBERMANN T, KNOLL W. Surface-plasmon field-enhanced fluorescence spectroscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2000,171(1):115-30.
    [10] MONZON-HERNANDEZ D, VILLATORO J. High-resolution refractive index sensing bymeans of a multiple-peak surface plasmon resonance optical fiber sensor [J]. Sensors andActuators B: Chemical,2006,115(1):227-31.
    [11] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit [J]. Nature materials,2008,7(6):435-41.
    [12] SCHAADT D, FENG B, YU E. Enhanced semiconductor optical absorption via surfaceplasmon excitation in metal nanoparticles [J]. Applied physics letters,2005,86(6):063106.
    [13] O'SHANNESSY D J, BRIGHAM-BURKE M, PECK K. Immobilization chemistriessuitable for use in the BIAcore surface plasmon resonance detector [J]. Analyticalbiochemistry,1992,205(1):132-6.
    [14] YIN L, VLASKO-VLASOV V K, PEARSON J, et al. Subwavelength focusing and guidingof surface plasmons [J]. Nano letters,2005,5(7):1399-402.
    [15] LUO X, ISHIHARA T. Subwavelength photolithography based on surface-plasmonpolariton resonance [J]. Optics express,2004,12(14):3055-65.
    [16] GRAMOTNEV D K, PILE D F. Single-mode subwavelength waveguide with channelplasmon-polaritons in triangular grooves on a metal surface [J]. Applied physics letters,2004,85(26):6323-5.
    [17] PILLAI S, CATCHPOLE K, TRUPKE T, et al. Surface plasmon enhanced silicon solarcells [J]. Journal of applied physics,2007,101(9):093105.
    [18] ISHI T, FUJIKATA J, MAKITA K, et al. Si nano-photodiode with a surface plasmonantenna [J]. Japanese Journal of Applied Physics,2005,44(3L): L364.
    [19] SHALAEV V M. Optical negative-index metamaterials [J]. Nature Photonics,2007,1(1):41-8.
    [20] ZHANG S, FAN W, PANOIU N, et al. Experimental demonstration of near-infrarednegative-index metamaterials [J]. Physical Review Letters,2005,95(13):137404.
    [21] SHALAEV V M, CAI W, CHETTIAR U K, et al. Negative index of refraction in opticalmetamaterials [J]. Optics letters,2005,30(24):3356-8.
    [22] KWON D-H, WERNER D H. Low-index metamaterial designs in the visible spectrum [J].Optics express,2007,15(15):9267-72.
    [23] ALU A, ENGHETA N, ERENTOK A, et al. Single-negative, double-negative, andlow-index metamaterials and their electromagnetic applications [J]. IEEE Transactions onAntennas and Propagation Magazine,2007,49(1):23-36.
    [24] WOOD R. XLII. On a remarkable case of uneven distribution of light in a diffractiongrating spectrum [J]. The London, Edinburgh, and Dublin Philosophical Magazine andJournal of Science,1902,4(21):396-402.
    [25] FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves onmetallic surfaces (Sommerfeld's waves)[J]. JOSA,1941,31(3):213-22.
    [26] SIMON H, MITCHELL D, WATSON J. Optical second-harmonic generation with surfaceplasmons in silver films [J]. Physical Review Letters,1974,33(26):1531-4.
    [27] CREIGHTON J A, BLATCHFORD C G, ALBRECHT M G. Plasma resonanceenhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles ofsize comparable to the excitation wavelength [J]. Journal of the Chemical Society,Faraday Transactions2: Molecular and Chemical Physics,1979,75:790-8.
    [28] HERITAGE J, BERGMAN J, PINCZUK A, et al. Surface picosecond Raman gainspectroscopy of a cyanide monolayer on silver [J]. Chemical Physics Letters,1979,67(2):229-32.
    [29] TSANG J, KIRTLEY J. Anomalous surface enhanced molecular Raman scattering frominelastic tunneling spectroscopy junctions [J]. Solid State Communications,1979,30(10):617-20.
    [30] TSANG J, KIRTLEY J, BRADLEY J. Surface-enhanced Raman spectroscopy and surfaceplasmons [J]. Physical Review Letters,1979,43:772-5.
    [31] WEBER W H, FORD G. Optical electric-field enhancement at a metal surface arising fromsurface-plasmon excitation [J]. Optics letters,1981,6(3):122-4.
    [32] DIONNE J, SWEATLOCK L, ATWATER H, et al. Planar metal plasmon waveguides:frequency-dependent dispersion, propagation, localization, and loss beyond the freeelectron model [J]. Physical Review B,2005,72(7):075405.
    [33] LESUFFLEUR A, IM H, LINDQUIST N C, et al. Laser-illuminated nanohole arrays formultiplex plasmonic microarray sensing [J]. Optics express,2008,16(1):219-24.
    [34] YANG Z-L, LI Q-H, REN B, et al. Tunable SERS from aluminium nanohole arrays in theultraviolet region [J]. Chemical Communications,2011,47(13):3909-11.
    [35] FANG J, LIU S, LI Z. Polyhedral silver mesocages for single particle surface-enhancedRaman scattering-based biosensor [J]. Biomaterials,2011,32(21):4877-84.
    [36] GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit [J].Nature Photonics,2010,4(2):83-91.
    [37] CHEN X, JIA B, SAHA J K, et al. Broadband enhancement in thin-film amorphous siliconsolar cells enabled by nucleated silver nanoparticles [J]. Nano letters,2012,12(5):2187-92.
    [38] ZHANG Y, ASLAN K, PREVITE M J, et al. Metal-enhanced fluorescence: Surfaceplasmons can radiate a fluorophore's structured emission [J]. Applied physics letters,2007,90(5):053107.
    [39] LIU Z, DING S-Y, CHEN Z-B, et al. Revealing the molecular structure of single-moleculejunctions in different conductance states by fishing-mode tip-enhanced Ramanspectroscopy [J]. Nature communications,2011,2:305.
    [40] KIM S, JIN J, KIM Y-J, et al. High-harmonic generation by resonant plasmon fieldenhancement [J]. Nature,2008,453(7196):757-60.
    [41] FANG J, DU S, LEBEDKIN S, et al. Gold mesostructures with tailored surface topographyand their self-assembly arrays for surface-enhanced Raman spectroscopy [J]. Nano letters,2010,10(12):5006-13.
    [42] CAMDEN J P, DIERINGER J A, WANG Y, et al. Probing the structure of single-moleculesurface-enhanced Raman scattering hot spots [J]. Journal of the American ChemicalSociety,2008,130(38):12616-7.
    [43] KARAGODSKY V, TRAN T-T, WU M, et al. Double-resonant enhancement of surfaceenhanced Raman scattering using high contrast grating resonators; proceedings of theCLEO: Science and Innovations, F,2011[C]. Optical Society of America.
    [44] ALEXANDER K D, HAMPTON M J, ZHANG S, et al. A high-throughput method forcontrolled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays [J]. Journalof Raman Spectroscopy,2009,40(12):2171-5.
    [45] KRETSCHMANN E, RAETHER H. Radiative decay of non radiative surface plasmonsexcited by light(Surface plasma waves excitation by light and decay into photons appliedto nonradiative modes)[J]. Zeitschrift Fuer Naturforschung, Teil A,1968,23:2135.
    [46] OTTO A. Excitation of nonradiative surface plasma waves in silver by the method offrustrated total reflection [J]. Zeitschrift fur Physik,1968,216(4):398-410.
    [47] POLKY J N, MITCHELL G L. Metal-clad planar dielectric waveguide for integrated optics[J]. JOSA,1974,64(3):274-9.
    [48] GORDON II J, SWALEN J. The effect of thin organic films on the surface plasmaresonance on gold [J]. Optics Communications,1977,22(3):374-6.
    [49] POCKRAND I, SWALEN J, GORDON II J, et al. Surface plasmon spectroscopy of organicmonolayer assemblies [J]. Surface Science,1978,74(1):237-44.
    [50] CHAO N-M, CHU K, SHEN Y. Local refractive index measurement on a cholesteric liquidcrystal using the surface plasmon technique [J]. Molecular crystals and liquid crystals,1981,67(1):261-75.
    [51] CHU K, CHEN C, SHEN Y. Measurement of refractive indices and study ofisotropic-nematic phase transition by the surface plasmon technique [J]. Molecularcrystals and liquid crystals,1980,59(1-2):97-108.
    [52] http://www.instrument.com.cn/netshow/C165453.htm.
    [53] HOMOLA J, YEE S S, GAUGLITZ G. Surface plasmon resonance sensors: review [J].Sensors and Actuators B: Chemical,1999,54(1):3-15.
    [54] MATSUBARA K, KAWATA S, MINAMI S. Multilayer system for a high-precision surfaceplasmon resonance sensor [J]. Optics letters,1990,15(1):75-7.
    [55] SCHILDKRAUT J S. Long-range surface plasmon electrooptic modulator [J]. Appliedoptics,1988,27(21):4587-90.
    [56] NYLANDER C, LIEDBERG B, LIND T. Gas detection by means of surface plasmonresonance [J]. Sensors and Actuators,1983,3:79-88.
    [57] LIEDBERG B, NYLANDER C, LUNSTROM I. Surface plasmon resonance for gasdetection and biosensing [J]. Sensors and Actuators,1983,4:299-304.
    [58] EBBESEN T W, LEZEC H, GHAEMI H, et al. Extraordinary optical transmission throughsub-wavelength hole arrays [J]. Nature,1998,391(6668):667-9.
    [59] MARTIN-MORENO L, GARCIA-VIDAL F, LEZEC H, et al. Theory of extraordinaryoptical transmission through subwavelength hole arrays [J]. Physical Review Letters,2001,86(6):1114.
    [60] BETHE H. Theory of diffraction by small holes [J]. Physical Review,1944,66(7-8):163.
    [61] LIU L, HAN Z, HE S. Novel surface plasmon waveguide for high integration [J]. Opticsexpress,2005,13(17):6645-50.
    [62] CHOI H, PILE D F, NAM S, et al. Compressing surface plasmons for nano-scale opticalfocusing [J]. Optics express,2009,17(9):7519-24.
    [63] FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silversuperlens [J]. Science,2005,308(5721):534-7.
    [64] OULTON R F, SORGER V J, ZENTGRAF T, et al. Plasmon lasers at deep subwavelengthscale [J]. Nature,2009,461(7264):629-32.
    [65] XU T, WU Y-K, LUO X, et al. Plasmonic nanoresonators for high-resolution colourfiltering and spectral imaging [J]. Nature communications,2010,1:59.
    [66] STUART H R, HALL D G. Absorption enhancement in silicon-on-insulator waveguidesusing metal island films [J]. Applied physics letters,1996,69(16):2327-9.
    [67] LINK S, WANG Z L, EL-SAYED M. Alloy formation of gold-silver nanoparticles and thedependence of the plasmon absorption on their composition [J]. The Journal of PhysicalChemistry B,1999,103(18):3529-33.
    [68] ECHTERMEYER T, BRITNELL L, JASNOS P, et al. Strong plasmonic enhancement ofphotovoltage in graphene [J]. Nature communications,2011,2:458.
    [69] KIM S-S, NA S-I, JO J, et al. Plasmon enhanced performance of organic solar cells usingelectrodeposited Ag nanoparticles [J]. Applied physics letters,2008,93(7):073307.
    [70] LANDY N, SAJUYIGBE S, MOCK J, et al. Perfect metamaterial absorber [J]. PhysicalReview Letters,2008,100(20):207402.
    [71] HU C, ZHAO Z, CHEN X, et al. Realizing near-perfect absorption at visible frequencies [J].Optics express,2009,17(13):11039-44.
    [72] HU C, LIU L, ZHAO Z, et al. Mixed plasmons coupling for expanding the bandwidth ofnear-perfect absorption at visible frequencies [J]. Optics express,2009,17(19):16745-9.
    [73] AYDIN K, FERRY V E, BRIGGS R M, et al. Broadband polarization-independent resonantlight absorption using ultrathin plasmonic super absorbers [J]. Nature communications,2011,2:517.
    [74] PALIK E D. Handbook of optical constants of solids [M]. Academic press,1998.
    [75] JOHNSON P B, CHRISTY R-W. Optical constants of the noble metals [J]. PhysicalReview B,1972,6(12):4370.
    [76] GAO H, SHI H, WANG C, et al. Surface plasmon polariton propagation and combinationin Y-shaped metallic channels [J]. Optics express,2005,13(26):10795-800.
    [77] CHOO H, KIM M-K, STAFFARONI M, et al. Nanofocusing in a metal-insulator-metal gapplasmon waveguide with a three-dimensional linear taper [J]. Nature Photonics,2012,6(12):838-44.
    [78]孙德新,杨存武.静止型傅里叶变换成像光谱仪技术的发展[J].红外月刊1,2001,1:9-13.
    [79]范世福.光谱技术和光谱仪器的近期发展[J].现代科学仪器,2006,5:14-9.
    [80]鞠挥,吴一辉.微型光谱仪的发展微型光谱仪的发展[J].微纳电子技术,2003,30(1):30-7.
    [81]方肇伦,方群.微流控芯片发展与展望[J].现代科学仪器 ,2001,4:1-6.
    [82]张慧云,马兴坤.线阵CCD的光谱测量[J].物理实验,2006,25(10):10-3.
    [83] SIN J, LEE W H, POPA D, et al. Assembled Fourier transform micro-spectrometer;proceedings of the Proc SPIE, F,2006[C].
    [84] ANTOSZEWSKI J, KEATING A, WINCHESTER K, et al. Tunable Fabry-Perot filtersoperating in the3to5um range for infrared micro-spectrometer applications; proceedingsof the Photonics Europe, F,2006[C]. International Society for Optics and Photonics.
    [85] CHEBEN P, SCHMID J, DELAGE A, et al. A high-resolution silicon-on-insulator arrayedwaveguide grating microspectrometer with sub-micrometer aperture waveguides [J].Optics express,2007,15(5):2299-306.
    [86] SMIT M K. New focusing and dispersive planar component based on an optical phasedarray [J]. Electronics Letters,1988,24(7):385-6.
    [87] YANKOV V, BABIN S, IVONIN I, et al. Digital planar holography andmultiplexer/demultiplexer with discrete dispersion; proceedings of the ITCom2003, F,2003[C]. International Society for Optics and Photonics.
    [88] LINDBERG J, LINDFORS K, SETALA T, et al. Spectral analysis of resonant transmissionof light through a single sub-wavelength slit [J]. Optics express,2004,12(4):623-32.
    [89] SCHOUTEN H F, VISSER T D, LENSTRA D, et al. Light transmission through asubwavelength slit: Waveguiding and optical vortices [J]. Physical Review E,2003,67(3):036608.
    [90] SHI H, LUO X, DU C. Young's interference of double metallic nanoslit with differentwidths [J]. Optics express,2007,15(18):11321-7.
    [91] LALANNE P, HUGONIN J P. Interaction between optical nano-objects atmetallo-dielectric interfaces [J]. Nature Physics,2006,2(8):551-6.
    [92] CHEN L, ROBINSON J T, LIPSON M. Role of radiation and surface plasmon polaritons inthe optical interactions between a nano-slit and a nano-groove on a metal surface [J].Optics express,2006,14(26):12629-36.
    [93] LALANNE P, HUGONIN J, RODIER J. Theory of surface plasmon generation at nanoslitapertures [J]. Physical Review Letters,2005,95(26):263902.
    [94] PACIFICI D, LEZEC H J, ATWATER H A. All-optical modulation by plasmonic excitationof CdSe quantum dots [J]. Nature Photonics,2007,1(7):402-6.
    [95] TEMNOV V V, NELSON K A, ARMELLES G, et al. Femtosecond surface plasmoninterferometry [J]. Optics express,2009,17(10):8423-32.
    [96] TEMNOV V V. Ultrafast acousto-magneto-plasmonics [J]. Nature Photonics,2012,6(11):728-36.
    [97] MARTIN-BECERRA D, TEMNOV V V, THOMAY T, et al. Spectral dependence of themagnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metalfilms [J]. Physical Review B,2012,86(3):035118.
    [98] TEMNOV V V, ARMELLES G, WOGGON U, et al. Active magneto-plasmonics in hybridmetal-ferromagnet structures [J]. Nature Photonics,2010,4(2):107-11.
    [99] MARTIN-BECERRA D, GONZALEZ-DIAZ J B, TEMNOV V V, et al. Enhancement ofthe magnetic modulation of surface plasmon polaritons in Au/Co/Au films [J]. Appliedphysics letters,2010,97(18):183114.
    [100] FAN S. Nanophotonics: magnet-controlled plasmons [J]. Nature Photonics,2010,4(2):76-7.
    [101] WANG H H, LIU C Y, WU S B, et al. Highly Raman-Enhancing Substrates Based onSilver Nanoparticle Arrays with Tunable Sub-10nm Gaps [J]. Advanced Materials,2006,18(4):491-5.
    [102] LIM D-K, JEON K-S, HWANG J-H, et al. Highly uniform and reproduciblesurface-enhanced Raman scattering from DNA-tailorable nanoparticles with1-nm interiorgap [J]. Nature nanotechnology,2011,6(7):452-60.
    [103] JEBRIL S, ELBAHRI M, TITAZU G, et al. Integration of Thin-Film-Fracture-BasedNanowires into Microchip Fabrication [J]. small,2008,4(12):2214-21.
    [104] NAM K H, PARK I H, KO S H. Patterning by controlled cracking [J]. Nature,2012,485(7397):221-4.
    [105] AUSIELLO P, APICELLA A, DAVIDSON C L. Effect of adhesive layer properties onstress distribution in composite restorations-a3D finite element analysis [J]. DentalMaterials,2002,18(4):295-303.
    [106] THAMES S F, YU H. Cationic UV-cured coatings of epoxide-containing vegetable oils[J]. Surface and Coatings Technology,1999,115(2):208-14.
    [107] VALENTINE J, ZHANG S, ZENTGRAF T, et al. Three-dimensional optical metamaterialwith a negative refractive index [J]. Nature,2008,455(7211):376-9.
    [108] LIU N, GUO H, FU L, et al. Three-dimensional photonic metamaterials at opticalfrequencies [J]. Nature materials,2008,7(1):31-7.
    [109] DREGELY D, TAUBERT R, DORFMULLER J, et al.3D optical Yagi-Uda nanoantennaarray [J]. Nature communications,2011,2:267.
    [110] GAJC M, SURMA H B, KLOS A, et al. Nanoparticle Direct Doping: Novel Method forManufacturing Three-Dimensional Bulk Plasmonic Nanocomposites [J]. AdvancedFunctional Materials,2013,23(27):3443-51.
    [111] WU Y-N, LI F, ZHU W, et al. Metal-Organic Frameworks with a Three-DimensionalOrdered Macroporous Structure: Dynamic Photonic Materials [J]. Angewandte ChemieInternational Edition,2011,50(52):12518-22.
    [112] LI W-D, DING F, HU J, et al. Three-dimensional cavity nanoantenna coupled plasmonicnanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area [J].Optics express,2011,19(5):3925-36.
    [113] MARK A G, GIBBS J G, LEE T-C, et al. Hybrid nanocolloids with programmedthree-dimensional shape and material composition [J]. Nature materials,2013,12(9):802-7.
    [114] WEI X, LUO X, DONG X, et al. Localized surface plasmon nanolithography withultrahigh resolution [J]. Optics express,2007,15(21):14177-83.
    [115] MONESTIER F, SIMON J-J, TORCHIO P, et al. Modeling the short-circuit currentdensity of polymer solar cells based on P3HT: PCBM blend [J]. Solar Energy Materialsand Solar Cells,2007,91(5):405-10.
    [116] GOPINATH A, BORISKINA S V, PREMASIRI W R, et al. Plasmonic nanogalaxies:multiscale aperiodic arrays for surface-enhanced Raman sensing [J]. Nano letters,2009,9(11):3922-9.
    [117] CHUL KIM H, CHENG X. Gap surface plasmon polaritons enhanced by a plasmonic lens
    [J]. Optics letters,2011,36(16):3082-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700