用户名: 密码: 验证码:
人参皂苷生物合成关键酶基因MVD和βAS的克隆及βAS的反义表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参是我国道地中药植物,其活性成分主要是次生代谢过程中产生的人参皂苷。深入研究人参皂苷生物合成途径关键酶基因的结构与功能,以及利用基因工程手段调控这些关键酶基因活性,达到调控提高人参皂苷含量的目的,将具有重要的理论和实际应用价值。本论文选择二个具有代表性的基因为研究对象,开展了基因克隆及利用反义RNA技术调控人参皂苷生物合成的尝试工作。这二个基因分别是人参皂苷生物合成上游关键酶基因,既催化异戊二烯途径第一个前体物-异戊烯二磷酸(IPP)合成焦磷酸甲羟戊酸脱羧酶基因(MVD),另一个基因是人参皂苷生物合成下游关键酶基因β-香树素合成酶基因(βAS),该基因编码的β-香树素合成酶是催化人参皂苷R0(人参次要活性成分)合成的关键酶。
     本论文用SMART RACE技术扩增人参MVD基因的保守序列,3’片段和5’片段,结果经过序列比对分析和拼接得到一个ORF为1254bp的片段,用此基因的ORF两端设计引物,扩增得到其cDNA全长。人参MVD基因在大肠杆菌中成功表达,其编码的蛋白分子量大小是46kd,与基因序列分析结果一致。(MVD基因在GenBank中的登录号:GQ455989)。
     利用反义表达策略,首次研究了βAS基因在人参皂苷生物合成中的功能。通过构建反义pBI121-AβAS植物表达载体,转入工程菌A4后转化人参根,对转化条件进行了筛选,获得反义人参发根系A5,A9,A19,A24和A30,Southern杂交结果显示目的基因拷贝数都是单拷贝。Northern杂交显示5株反义发根中的βAS转录水平显著下降,也说明反义βAS的导入确实可降低βAS的转录量,最多比对照组降低1/3。对酶活分析显示,反义发根系βAS活性均降低,同时,转基因发根系DAS活性被上调,DAS活性在所有的转化组中都获得增加,尤其在A19中增加了1.2倍。化学分析结果显示皂苷合成前体物2,3氧化鲨烯的积累增加。人参皂苷含量分析结果表明,齐敦果烷型人参皂苷R0含量均降低,最多降40%,转化发根的达玛烷型人参皂苷含量最高增加到原来的1.3倍,并且单体皂苷Rb1, Rb2, Rc, Rd,Re,Rf和Rg1均不同程度增加。这些研究成果对于促进MVD的异源表达、提高人参皂苷含量的种质资源的研究具有重要的指导作用,为调控人参皂苷的含量及人参代谢工程的研究奠定了理论和实践基础,具有广阔的应用前景。
Panax ginseng is a famous medicinal plant and used extensively because of its significant pharmaceutical activities. Ginsenosides are the major component including dammarene-type and oleanane-type saponins. So far, more than 60 kinds of ginsenosides have been found. All the ginsenosides except ginsenoside R B belong to dammarene-type saponins, which have many physiological and pharmaceutical effects, including immune system modulation, antistress, antihyperglycemic, anti-inflammatory, antioxidant and anticancer effects. Nowadays, pharmaceutical effects of ginsenosides and novel ginsenosides are still under research. Besides, Panax ginseng is consumed more and more all over the world. It is estimated that the raw Panax ginseng saled is beyond 1 billion dollars.
     Due to the limitation of Panax ginseng source, it requires much cost to extract ginsenosides from root of Panax ginseng. Transgenic technique is an alternative method to improve ginsenosides content in Panax ginseng by regulating the biosynthesis pathway. Enzyme reactions involved in biosynthesis are of many steps, in which the downstream of biosynthesis is many researchers’focus. (a)Clone and identification of genes associated with upstream of the pathway is available only in a few number. In order to study the mechanism of upstream of ginsenosides biosynthesis, we chose Panax ginseng MVD gene as target to clone based on homologous alignment and RACE method. Panax ginseng MVD was obtained and expressed in Hescherichia coliH, which will support the further study. (b)In the downstream of ginsenosides biosynthesis pathway, we choseβAS from several HcandidateHs to achieve antisense technique transformation. That is becauseβAS catalyzes oleanane-type saponin from 2,3-oxidosqualene, which is the important ancestor for biosynthesis of dammarene-type saponins, major bioactive component in Panax ginseng. According to the current researches, antisense technique can successfully regulate the activity of key enzymes involved in biosynthesis pathway. The result in this study is as followed:
     (1) Panax ginseng MVD gene, a key enzyme in the upstream of ginsenosides biosynthesis, was not isolated so far. Here conservative sequence, 3’fragment and 5’fragment were achieved by SMART RACE. After sequence aligning and assembling, a 1254bp of ORF was obtained.Using two primers designed according to the ORF, its total cDNA was received.
     The predicted pi of Panax ginseng MVD(PgMVD) was 7.58 analyzed by software“Computer pI/Mw Tool”.Using software blast and DNAMAN, we found that PgMVD was highly homologous with plant MVDs. It has an identity of 77%、74%、72% and 68% to that of Hevea brasiliensis、Arabidopsis thaliana、Zea mays and Ginkgo biloba, respectively.
     The analysis result of Panax ginseng MVD structure showed it has the classical characteristic of MVD gene family, haboring strictly conserved active sites including one leucine, one aspartate and three cysteine sites residues. Three dimensional structure of PgMVD was constructed based on the crystal structure of yeast MVD. Furthernmore, phylogenetic tree analysis exhibited that all the MVD genes were derived from the same ancestor. The MVD genes of Mus musculus, Rattus norvegicus, Homo sapiens and Danio rerio belong to one distinct animal branch differed from another plant branch of Panax ginseng, Ginkgo biloba, Hevea brasiliensis, Zea mays and Arabidopsis thaliana.
     PgMVD gene was expressed successfully in Hescherichia coli H. The expressed protein exhibited a molecular weight of 46kd, which is consistent with the putative result. Thus the expressed protein supports the further analysis of MVD activities in vitro. It is also meaningful to learn the metabolic engineering of Panax ginseng and make it possible to improve quality of Panax ginseng. At the mean time, it is worthy that heterogenous expression of the new gene in other species could be exploited.
     (2)Total RNA of Panax ginseng was isolated from modified Hguanidinium thiocyanate method. AntisenseβAS was subcloned into three plant expression vectors which all possessed GUS gene.
     Factors influencing the Panax ginseng transformation were studied. The concentration value 0.5 of engineering bacteria is better at OD600 ,which resulted in the highest GUS positive rate; while the GUS rate was not obviously different among the infection period of 5min,10min,20min and 30min; Preculture is important because the GUS rate is more in 2 days preculture than in 1 or 3 days preculture; Three days coculture is appropriate and no Hagrobacterium H infection present; Light condition and AS concentration were researched during transformation: the result of no light and 100μM AS treatment showed efficient.
     After antisenseβAS transformation, five positive hairy roots A5, A9, A19, A24 and A30 were screened out. Southern blot resulted in one copy ofβAS in all antisense hairy root lines. Nouthern blot exhibited a comprehensive decrease in all the antisenseβAS lines, which confirmed that introduction of antisenseβAS could inhibit the transcript ofβAS gene.βAS activities were all decreased significantly and the most decrease is 1/3. On the other hand, DAS were upregulated in all lines, especially in A19 with a 1.2 times as control. The oleanane-type saponin RB0 Bin AntisenseβAS Panax ginseng hairy roots lines A5, A9, A19, A24 and A30 had all dropped: it had a biggest reduction of 40% in A19, followed a 33% reduction in A30, and the least reduction of 13% was found in A5. The above result indicated that antisenseβAS could inhibit the transcript of endogenenousβAS so that it resulted in decrease of oleanane-type saponin RB0B in antisense lines. But totally inhibition ofβAS was not found because of the existance of the slight reduction in A5. Phytochemistry analysis showed that 2, 3-oxidosqualene content was elevated and dammarene-type saponins were most up to 1.3 times as control.
     Dammarene-type ginsenosedes in antisense line A19 was accumulated most, thus we chose A19 as the target to detect the content changes of dammarene-type ginsenosedes over culture time. The growth curve of total ginsenosides was between ginsenoside group Rb and ginsenoside group Rg. The total ginsenosides in A19 was found 14.17mg/g DW in the ultimate culture cycle, increased 38.8% than that in initial culture cycle. Ginsenoside group Rb increased quickly over the last culture period. The Rb1 and Rb2 were increased obviously, with an increase of 20.3% and 23.3%, respectively. While Rc and Rd of ginsenoside group Rb had a slight increase. Besides, ginsenoside group Rg was elevated over culture and its growth trend was similar to the ginsenoside group Rb. Comparatively, the increase of ginsenoside group Rb in antisens line A19 was lower than that of ginsenoside group Rg.
     Analysis and prospect based on above result: above all, we isolated Panax ginseng MVD by SMART RACE method. With the discover of the key enzymes involved in ginsenosides biosynthesis, scientist can master the metabolic network comprehensively so as to make it possible to further utilize the key enzymes or improve plant quality through biological technique such as genetic transformation. On the other hand, we researched the regulation of ginsenosides biosynthesis by antisense transformation. Nowadays, antisense genetic technique is turning into an important method and efficient approach in identification of gene function during the transition from genomics to post-genomics. Our research showed an inspiring prospect of antisense technique exploited in plant improvement.
引文
[1]任非,马俊义,任晓丹.人参抗癌活性研究进展[J].河北中医药学报,2005,1(20):39–41.
    [2]窦德强,靳玲,陈英杰.人参的化学成分及药理活性的研究进展与展望[J].沈阳药科大学学报,1999,(4):151–156.
    [3]李君庆,张均田.年龄变化及人参皂苷Rg1对大鼠脑皮层细胞膜流动性影响[J].药学学报,1997,32(1):23–27.
    [4]Tomilova NB,Tomilov AA,Ogarkova OA,et al.Identification of a mutant gene controlling necrotic cotyledons in developing seedlings of Arabidopsis thaliana[J].Russ.J Genet,2001,37:392–400.
    [5]Tansakul P,Shibuya M,Kushiro T,et al.Dammarenediol-II synthase, the first dedicated enzymefor ginsenoside biosynthesis in Panax ginseng.FEBS Lett[J].2002,580(22):5143–5149.
    [6]Kolesnikova MD , Xiong QB , Lodeiro S , Hua L , et al . Lanosterol biosynthesis in plants[J].Arch.Biochem.Biophys.2006,447:87–95.
    [7]徐明芳.药用植物发根培养及发根培养器[J].中草药,2000 ,31 (10) :798–800.
    [8]Suzuki H,Achnine L, Xu R, et al.A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula[J].Plant J.2002,32:1033–1048.
    [9]Iturbe-Ormaetxe I , Haralampidis K , Papadopoulou K , et al . Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus[J]. Plant Mol.Biol.,2003,51:731–743.
    [10]Herrera JBR,Bartel B,Wilson WK,et al.Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene[J].Phytochemistry,1998,49:1905–1911.
    [11]Cordier H,Karst F and Berges T.Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase[J].Plant Mol Biol,1999,39(5):953–967.
    [12]Rodriguez RJ,Taylor FR,Parks LW.A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholestanol[J].Biochem Biophys Res Comm,1982,106:435–441.
    [13]Kelly R,Miller SM,Lai MH.Cloning and characterization of the 2,3-oxidosqualene cyclase-coding gene of Candida albicans[J].Gene,1990,87:177–183.
    [14]Goldstein JL,Brown MS.Regulation of the mevalonate pathway[J].Nature,1990,343:425-430.
    [15]罗志勇,陆秋恒,刘水平,等.人参植物皂苷生物合成相关新基因的筛选与鉴定.生物化学与生物物理学报,2003,35(6) :554–560.
    [16]张崇禧,郑友兰,张春红,等.不同方法提取人参总皂苷工艺的优化研究.人参研究,2003,(4 ) :5–8.
    [17]Cunillera N,Arro M,Delourme D,et al.Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes[J].J Biol Chem,1996,271:7774–7780.
    [18]Chambon C,Ladevèze V,Blanchard L,et al.Sterol pathway in yeast.Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase[J].Lipids,1991,26:633–636.
    [19]Dassanayake RS,Cao L,Samaranayake LP,et al .Characterization,heterologous expression and functional analysis of mevalonate diphosphate decarboxylase gene ( MVD ) of Candida albicans[J].Mol Genet Genomics,2002,267:281–290.
    [20]Chappell J.Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants[J].Annu Rev Plant Physiol Plant Mol Biol,1995,46:521–547.
    [21]Sturley SL.Conservation of eukaryotic sterol homeostasis:new insights from studies in budding yeast[J].Biochim Biophys Acta,2000,1529:155–163.
    [22]Jabalquinto AM,Alvear ME,Cardemil E.Physiological aspects and mechanism of action of mevalonate 5-diphosphate decarboxylase[J].Comp Biochem Physiol,1988,908:671–677.
    [23]Byres E,Alphey MS,Smith TK,et al.Crystal structures of Trypanosoma brucei and Staphylococcus aureus mevalonate diphosphate decarboxylase inform on the determinants of specificity and reactivity[J].J Mol Biol,2007,371:540–553.
    [24]Lees ND,Skaggs B,KirshDR,et al.Cloning of the lategenes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae[J].Lipids,1995,30:221–226.
    [25]Cordier H, Karst F, Berges T.Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase[J].Plant Mol Biol,1999,39:953–967.
    [26]Bailey AM,Mahapatra S,Brennan PJ,et al.Identification,cloning,purification,and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase[J].Glycobiol,2002,12:813–820.
    [27]Krepkiy D,Miziorko HM.Identification of active site residues in mevalonate diphosphate decarboxylase:Implications for a family of phosphotransferases[J].Protein Science,2002,13:1875–1881.
    [28]Dhe-Paganon S , Magrath J , Abeles RJ . Mechanism of mevalonate pyrophosphate decarboxylase:evidence for a carbocationic transition state[J].Biochem,1994,33:13355–13362.
    [29]Field F,Osbourn AE.Metabolic diversification-independent assembly of operon-like gene clusters in different plants[J].Science,2008,320:543–547.
    [30]Shan H,Wilson WK,Phillips DR,et al.Trinorlupeol:a major nonsterol triterpenoid in Arabidopsis[J].Org.Lett.2008,10:1897–1900.
    [31]Xu R,Fazio GC,Matsuda T.On the origins of triterpenoid skeletal diversity[J].Phytochemistry,2004,65:261–291.
    [32]Phillips DR,Rasbery JM,B Bartel,et al.Biosynthetic diversity in plant triterpene cyclization[J].Curr.Opin.Plant Biol,2006,9:305–314.
    [33]Ebizuka Y, Katsube Y,Tsutsumi T,et al. Functional genomics approach to the study of triterpene biosynthesis[J].Pure Appl.Chem,2003,75:369–374.
    [34]Caspary F,Hartig A,Schuller HJ.Constitutive and carbon source-responsive promoter elements are involved in the regulated expression of the Saccharomyces cerevisiae malate synthase gene MLS1[J].Mol Gen Genet,1997,255:619–627.
    [35]Toth MJ,Huwyler L.Molecular cloning and expression of the cDNAs encoding human and yeast mevalonate pyrophosphate decarboxylase[J].J Biol Chem,1996,271:7895–7898.
    [36]Toth MJ , Huwyler L , Park J . Purification of rat liver mevalonate pyrophosphate decarboxylase[J].Prep Biochem Biotechnol,1996,26:47–51.
    [37]Villalba JM,Palmgreen MG,Berberian GE,et al.Functional expression of plant plasma membrane HC-ATPase in yeast endoplasmic reticulum[J].J Biol Chem,1991,267:12341–12349.
    [38]Vojtek AB , Hollenberg SM , Cooper JA . Mammalian Ras interacts directly with the serine/threonine kinase Raf[J].Cell,1993,74:205–214.
    [39]Zhang L,Ma B,Wang L,Xu Y.Greedy method for inferring tandem duplication history[J].Bioinformatics,2003,19:1497–1504.
    [40]Shibuya M,Zhang H,Endo A,et al.Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases[J].Eur.J.Biochem,1999,266:302–307.
    [41]Wu TK , Griffin JH . Conversion of a plant oxidosqualenecycloartenol synthase to an oxidosqualene-lanosterol cyclase by random mutagenesis[J].Biochemistry,2002,41:8238–8244.
    [42]Xiang T,Shibuya M, Katsube Y, et al.A new triterpene synthase from Arabidopsis thaliana produces a tricyclic triterpene with two hydroxyl groups[J].Org.Lett,2006,8:2835–2838.
    [43]Zhang H,Shibuya M,Yokota S,et al.Oxidosqualene cyclases from cell suspension culturesof Betula platyphylla var.japonica:molecular evolution of oxidosqualene cyclases in higherplants[J].Biol.Pharm.Bull,2003,26:642–650.
    [44]Kolesnikova MD,Wilson WK,Lynch DA,et al.Matsuda,Arabidopsis camelliol C synthase evolved from enzymes that make pentacycles[J].Org.Lett,2007,9:5223–5226.
    [45]Ebizuka Y,Katsube Y,Tsutsumi T,et al.Functional genomics approach to the study of triterpene biosynthesis[J].Pure Appl,Chem,2003,75:369–374.
    [46]Zhang L,Ma B,Wang L,Xu Y.Greedy method for inferring tandem duplication history[J].Bioinformatics,2003,19:1497–1504.
    [47]Tomilova NB,Tomilov AA,Ogarkova OA,et al.Identification of a mutant gene controlling necrotic cotyledons in developing seedlings of Arabidopsis thaliana[J].Russ.J.Genet,2001,37:392–400.
    [48]Hayashi H,Huang PY,Kirakosyan A, et al.Cloning and characterization of a cDNA encoding b-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice[J].Biol.Pharm.Bull,2001,24:912–916.
    [49]Poralla K,Hewelt A,Prestwich GD,et al.A specific amino-acid repeat in squalene and oxidosqualene cyclases[J].Trends Biochem Sci,1994,19:157–158.
    [50]张毅,刘彦,王红,等.转青蒿反义鲨烯合酶基因对烟草鲨烯合酶基因表达的影响.农业生物技术学报,2005,13 ( 4 ) :416-422.
    [51]姚琴,丛玲,罗立挺,等.拟南芥psy基因cDNA的克隆及其植物表达载体的构建.生物技术,2006,16 (1) :5-7.
    [52]Abe I, Prestwich GD.Squalene epoxidase and oxidosqualene: lanosterol cyclase; key enzymes in cholesterol biosynthesis.In:Barton,D.H.R.,Nakanishi,K.(Eds.) [J].Comprehensive Natural Products Chemistry,1999,2:267–298.
    [53]Baker CH,Ting AY,Cheng H.Molecular cloning of a Schizosaccharomyces pombe cDNA encoding lanosterol synthase and investigation of conserved tryptophan residues[J].Biochem.Biophys.Res.Commun,1996,219:327–331.
    [54]Corey EJ, Matsuda SP, Baker CH,et al. Molecular cloning of a Schizosaccharomyces pombe cDNA encoding lanosterol synthase and investigation of conserved tryptophan residues.Biochem.Biophys[J].Res.Commun.,1996,219:327–331.
    [55]Asamizu E,Nakamura Y,Sato S,et al.Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST)analysis[J].Plant Mol.Biol,2004,54:405–414.
    [56]Aoki T,Kamizawa A,Ayabe S.Efficient Agrobacterium-mediated transformation of Lotus japonicus with reliable antibiotic selection[J].Plant Cell Rep,2002,21:238–243.
    [57]Haralampidis K,Bryan G,Qi X,et al.A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots[J].Proc Natl Acad Sci,2001,98:13431-13436.
    [58]Qi X,Bakht S,Leggett M,et al.A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants[J].Proc Natl Acad Sci,2004,101:8233-8238.
    [59]Papadopoulou K,Melton RE,Leggett M,et al.Compromised disease resistance in saponin-deficient plants[J].Proc Natl Acad Sci,1999,96:12923-12928.
    [60]Kushiro T,Shibuya M,Masuda K,et al.A novel multifunctional triterpene synthase from Arabidopsis thaliana[J].Tetrahedron Lett,2000,41:7705-7710.
    [61]Iturbe-Ormaetxe I , Haralampidis K , Papadopoulou K , et al . Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus[J].Plant Mol Biol 2003,51:731-743.
    [62]王红燕,徐绥绪,陈英杰.人参化学成分研究的新进展[ J ].中国药物化学杂志,1992,2 (1):65-72.
    [63]刘涤,胡之壁.生物技术在传统药材生产中的应用前景.生物工程进展,1997,17(1):37-41.
    [64]Hartmann K,Peiter E,Koch K,et al.Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis[J].Planta 2002, 215:14-25.
    [65]Shibuya M,Zhang H,Endo A,et al.Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases[J].Eur J Biochem,1999,266:302-307.
    [66]Cho HJ,Ito M,Tanaka S,et al.Biosynthesis of bryonolic acid in cultured cells of watermelon[J].Phytochemistry,1993,33:1407-1413.
    [67]Herrera JBR,Bartel B,Wilson WK,et al.Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene[J].Phytochemistry,1998,49:1905-1911.
    [68]Segura MJ,Meyer MM,Matsuda SPT.Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol[J].Org Lett,2000,2:2257-2259.
    [69]静国忠.基因工程及其分子生物学基础[M].北京:北京大学出版社,2003:253-25.
    [70]傅向东,侯嵩生.植物反义寡核苷酸的研究进展[J].生物工程进展,1996 (2):11-15.
    [71]Shibuya M,Hoshino M,Katsube Y,et al.Identification of b-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay[J].FEBS J,2006,273:948–959.
    [72]Achnine L,Huhman DV,Farag MA,et al.Genomic-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula[J].Plant J ,2005,41:875–887.
    [73]Shibuya M,Hoshino M,Katsube Y,et al.Identification of b-amyrin and sophoradiol 24-hydroxylase by EST mining and functional expression assay[J].FEBS J,2006,273:948–959.
    [74] Jeong C S,Chakrabarty D,Hahn E J,et al.Effects of oxygen,carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots[J].Biochemical Engineering Journal,2006,27:252–263.
    [75]Bae KH,Choi YE,Shin CG,et al.Enhanced ginsenoside productivity by combination of ethephon and methyl jasmoante in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures [J].Biotechnology letters,2006,28:1163-1166.
    [76]Duda RB,Taback B,Kessel B,et al.pS2 expression induced by American ginseng in MCF-7 breast cancer cells[J].Ann.Surg.Oncol,1996,3:515–520.
    [77]Chye ML,Kush Y,Tan CT,et al.Characterization of cDNA and genomic clones encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Hevea brasiliensis[J].Plant Mol.Biol,1991,16 :567–577.
    [78]Korth KL,Stermer BA, Bianchini GM,et al.Regulation of HMG-CoA reductase activity in plants[J].J Lipid Res,1994,35:1133–1140.
    [79]Rupasinghe HPV, Paliyath G,Murr DP.Sesquiterpeneα-farnesene synthase: partial purification,characterization and activity in relation to superficial scald development in‘Delicious’apples [J].J.Am.Soc.Hort.Sci.,2000,125:111–119.
    [80]Rupasinghe HPV,Murr DP,Paliyath G,Skog L.Inhibitory effect of 1-MCP on ripening and superficial scald development in‘Delicious’and‘McIntosh’apples[J].J.Hort.Sci.Biotech.,2000,74:271–276.
    [81]Narváez JA,Flores-Pérez P,Herrera-Valencia V.Development of molecular techniques for studying the metabolism of carotenoid in Bixa orellana L.[J].HortSience,2001,158.1471–1477.
    [82]Ashok KJ,Rebecca M,Craig LN.Molecular characterization of a hydroxymethylglutaryl-CoA reductase gene from mulberry (Morus alba L.)[J].Plant Molecular Biology,2000,42:559–569.
    [83]Loguercio L,Scott H,Trolinder N.HMG-CoA reductase gene family in cotton (Gossypium hirsutum L.):unique structural features and differential expression of hmg2 potentially associated with synthesis of specific isoprenoids in developing embryos[J].plant Cell Physiol,1999,4:750–761.
    [84]Maldonado M,Burnett R,Nessler C.Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Catharanthus roseus[J].Plant Physiol,1992,100:1613–1614.
    [85]Mercadante A,Steck A, Rodriguez-Amaya D.Isolation of methyl 9′Z-apo-6′-lycopenoate from Bixa orellana[J].Phytochemistry,1996,41:1201–1203.
    [86]Moore KB,Oishi KK.Characterization of 3-hydroxy-3-methylglutaryl CoA reductase activity during maize seed development, germination, and seedling emergence[J].Plant Physiol,1993,101:485–491.
    [87]Narita JO,Gruissem W.Tomato 3-hydroxy-3-methylglutaryl CoA reductase is required early in fruit development but not during ripening[J].Plant Cell,1989,1:181–190.
    [88]Dale S,Arr′o M,Becerra B,Morrice NG.Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase(isoform HMGR1)from Arabidopsis thaliana,and itsinactivation by phosphorylationat Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase[J].Eur J Biochem,1995,233:506–513.
    [89]Inoue T,Osumi T and Hata S.Molecular cloning and functional expression of a cDNA for mouse squalene synthase[J].Biochim.Biophys.Acta,1995,1260:49–54.
    [90]Perzl M,Muller P,Poralla K,et al.Squalenehopenecyclase from Bradyrhizobium japonicum:cloning,expression,sequence analysis,and comparison to other triterpenoid cyclases[J].Microbiology,1997,143:1235–1242.
    [91]Perzl M,Reipen I,Schmitz S,et al.Cloning of conserved genes from Zymomonas mobilis and Bradyrhizobium japonicum that function in the biosynthesis of hopanoid lipids[J].Biochim.Biophys.Acta,1998,1393:108–118.
    [92]Devarenne TP,Shin DH,Back K.Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor.Arch[J].Biochem.Biophys,1998,349, 205–215.
    [93]Kroon P,Davad R,Threlfall T.squalene synthase from cell suspension cultures of tabernaemontana divaricata[J].Phymchemw,1991,45:1157-1163.
    [94]Hanley K,Chappell J.Solubilization,partial-purification, and immunodetection of squalene synthetase from tobacco cell suspension cultures[J].Plant Physiol,1992,98:215–220.
    [95]Karst F,Lacroute F.Ergosterol biosynthesis in Saccharomyces cerevisiae: mutants deficient in the early steps of the pathway[J].Mol Gen Genet,1977,154:269–277.
    [96]Marta L,Martin S,Kay P.A squalene epoxidase from Nigella sativa participates in saponinbiosynthesis and mediates terbinafine resistance in yeast[J].Cent. Eur. J. Biol,2009,163–169.
    [97]唐宗湘,李葆明,包永德.反义寡聚核苷酸[J].生命科学,1999,11(4):180-183.
    [98]Suzuki H,Achnine L,Xu R,Matsuda SPT.A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula.Plant Journal,2002,32,1033-1048.
    [99]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002:95-98.
    [100]Jang JC,Fujioka S,Tasaka M.A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana.Genes Dev,2000,14:1485–1497.
    [101]Yoshioka H,Yamada N,Doke N.cDNA cloning of sesquiterpene cyclase and squalene synthase and expression of the genes in potato tuber infected with Phytophthora infestants[J].Plant Cell Physiol,1999,40:993–998.
    [102]Jahnke L.Oxygen Requirements for Formation and Activity of the Squalene Epoxidase in Saccharomyces cerevisiae[J].Journal of bacteriology,1983:488-492.
    [103]Taton M,Ullmann P,Benveniste P. Interaction of triazole fungicides and plant growth regulators with microsomal cytochrome P-450-dependent obtusifoliol 14-methyl demethylase[J].Pestic Biochem Physiol,1988,30:178–189.
    [104]Threlfall DR,Whitehead IM.Coordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoids phytoalexin biosynthesis in cultures of Nicotiana tabacum[J].Phytochemistry,1988,27:2567–2580.
    [105]Vo¨geli U,Chappell J.Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor[J].Plant Physiol,1988,88:1291–1296.
    [106]Vane JR,Anggard EE,Botting RM.Regulatory functions of the vascular endothelium[J].N.Engl.J.Med,1990,323:27–36.
    [107]Rapoport RM,Murad F.Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP[J].Circ.Res,1983,52:352–357.
    [108]Kim ND,Kang SY,Schini VB.Ginsenosides evoke endothelium-dependent vascular relaxation in rat aorta.Gen[J].Pharmacol,1994,25:1071–1077.
    [109]Jeon BH,Kim CS,Park KS,et al.Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats[J].Gen.Pharmacol,2000,35:135–141.
    [110]Scott GI,Colligan PB,Ren BH,et al.Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: Role of nitric oxide[J].Br.J.Pharmacol,2001,134:1159–1165.
    [111]Bai CX,Sunami A,Namiki T,et al.Electrophysiological effects of ginseng and ginsenosideRe in guinea pig ventricular myocytes[J].Eur.J.Pharmacol,2003,22:35–44.
    [112]Zhang WJ,Wojta J,Binder BR.Effect of notoginsenoside R1 on the synthesis of components of the fibrinolytic system in cultured smooth muscle cella of human pulmonary artery[J].Cell Mol.Biol,1997,43:581–587.
    [113]Abe I,Rohmer M,Prestwich GD.Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes[J].Chem.Rev,1993,93:2189–2206.
    [114]Lee M H,Jeong J H,Seo J W,et al.Enhanced Triterpene and Phytosterol Biosynthesis in Panax ginseng Overexpressing Squalene Synthase Gene[J].Plant Cell Physiol,2004,45(8):976–984.
    [115]Han J Y,Kwon Y S,Yang D C,et al.Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng[J]. Plant Cell Physiol,2006, 47(12):1653–1662.
    [116]Choi Y E,Jeong J H,In J K,et al.Production of herbicide-resistant transgenic Panax ginseng throughthe introduction of the phosphinothricin acetyl transferase gene and successful soil transfer[J].Plant Cell Rep,2003,21:563–568.
    [117]Liang YL,Zhao SJ.Enhanced ginsenoside production in ginseng hairy roots by antisense suppression of cycloartenol synthase gene. 5th International Forum on Post-Genome Technologies,2007:320-322.
    [118]Hayashi H,Pengyu H,Kenichiro I,et al.Up-regulation of soyasaponin biosynthesis by methyl Jasmonate in cultured cells of Glycyrrhiza glabra[J].Plant Cell Physiol 2003;44(4):404–11.
    [119]Henry M,Chantalat-Dublanche I.Isolation of licorice protoplasts (Glycyrrhiza glabrVar.typical)from cell suspension cultures not producing Glycyrrhetinic acid. CRAcad Sci Ser II,1984;299:899–903.
    [120]Hyung KK,Yoonkyung P,Hee NK,et al.Antimicrobial mechanism of b-glycyrrhetinic acid isolated from licorice,Glycyrrhiza glabra[J].Biotechnol Lett,2002,24:1899–902.
    [121]Yoshikawa T,Furuya T.Saponin production by cultures of Panax ginseng transformed with A grobacterium rhizogenes.Plant Cell Reports,1987,6:449-453.
    [122]Mallol A,CusidóRM,Palazón J,et al.Ginsenoside production in different phenotypes of Panax ginseng transformed roots[J].Phytochemistry,2001,57(3):365-371.
    [123]Inomata S J,Yokoyama M,Gozu Y,et al.Growth pattern and ginsenoside production ofAgrobacterium-transformed Panax ginseng roots [J].Plant Cell Reports,1993,12:681-686.
    [124]Bulgakov VP,Khodakovskaya MV,Lebetskaya NV,et al.The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures[J].Phytochemistry,1999,49:1929–1934.
    [125]赵寿经,李昌禹,骆晓佩等.诱导人参发根的rolC基因植物表达载体构建及其在人参中的表达[J].中国生物工程杂志,2004,24(9):58-62.
    [126]赵寿经,杨振堂,李昌禹等.人参高产发根无性系的筛选及其高效液体培养[J].中国农业科学,2000,33(5):103-105.
    [127]Butenko RG,Brushwitzky IV,Slepyan LI.Organogenesis and somatic embryogenesis in the tissue culture of Panax ginseng CA Meyer[J].Bot Zh,1968.
    [128]Chang WC,Hsing YI.Plant regeneration through somatic embryogenesis in root-derived callus of ginseng (Panax ginseng C. A. Meyer)[J].Theoretical and Applied Genetics,2004,57:133-135.
    [129]Yang DC,Choi YE.Production of transgenic plants via Agrobacterium rhizogenes mediated transformation of Panax ginseng[J].Plant Cell Reports,2000,19:491–496.
    [130]Wang Jianhua,Zhao Shoujing,Xue Jian.Somatic embryogenesis from hairy roots transformed by Agrobacterium rhizogenes in Panax ginseng.2nd International Conference on Bioinformatics and Biomedical Engineering,2008,911-914.
    [131]KW YuHcH,HN Murthy,Hahn EJ.Ginsenoside production by hairy root cultures of Panax ginseng:influence of temperature and light quality[J].HBiochemical Engineering JournalH,2005,23(1):53-56.
    [132]Jeong GT,Park DH.Enhancement of growth and secondary metabolite biosynthesis: Effect of elicitors derived from plants and insects[J].Biotechnol.Bioprocess Eng,2005,10:73-77.
    [133]Jeong GT.Optimization of Useful Metabolites Production System Using Transformed Hairy Roots of Panax ginseng C.A.Meyer.Ph.D.Dissertation.Chonnam National University, Gwngju,Korea.
    [134]张晓海,扈廷茂,海燕.番茄ACC合成酶基因的反义RNA2核酶嵌合基因植物表达载体的构建及对番茄的转化[J].内蒙古大学学报(自然科学版),2001,2(1):742-781.
    [135]Kovari L,Sumrada R,Kovari I,et al.Multiple positive and negative cis-acting elements mediate induced arginase(CAR1)gene expression in Saccharomyces cerevisiae[J].Mol.Cell Biol,1990,10:5087–5097.
    [136]Park HD,Shin MC,Woo IS.Antisense-mediated inhibition of arginase (CARl) gene expression in Saccharomyces cerevisiae.J.Biosci.Bioeng.2001,92:481–484.
    [137]Hamilton AJ,Lycett GW,Grierson D.Antisense gene that inhibitssynthesis of the hormone ethylene in transgenic plant[J].Nature,1990,346:2841-2845.
    [138]Hamilton A J,Bouzayen M,Grierson D.Identification of a tomato gene for the ethylene forming enzyme by expression in yeast1 Proc Natl Acad Sci USA,1991,88:7434-7437.
    [139]王春霞,简志英,刘愚,等。ACC合成酶基因及其反义基因对西瓜的遗传转化.植物学报,1997,39(5):445-450.
    [140]Scoria R.Plant regeneration from cotyledons of Prunus perica,Prunus clanestica and Prunus cerasus.Plant Cell Tissue and Organ culture,1989,36:855-857.
    [141]Smith CJS, Watson CF, Ray J, et al.Antisense RNA inhibition of polygalacturonase geneexpression in transgenic tomatoes1 Nature,1988 , 334:724.
    [142]Straeten DVD.Cloning and sequence of two different cDNA encoding 1-aminocy-clopropane-1-carboxylate synthase in tomato[J].Proc Natl Acad Sci,1990,87(12):4859-4863.
    [143]Oeller PW,Wong LM,Taylor LP,et al.Reversible inhibition of tomato fruit senescence by antisense RNA.Science,1991,254:437-439.
    [144]马庆虎.在转基因烟草中表达番茄反义ACC合成酶基因及其对芽再生的影响[J].植物学报,1997,39(11):1047-1052.
    [145]Ray J . Cloning and characterization of a gene involved in phytoene synthesis from tomato[J].Plant Mol Biol.,1992,19(3):401-404.
    [146]Bramley P.Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM[J].Plant Journal,1992,2(4):343-349.
    [147]Fray RG,et al.Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway[J].Plant Journal,1995,8(5):693-701.
    [148]Shewmaker CK.Seed specific overexpression of phytoene synthase:increase in carotenoids and other metabolic effects[J].Plant Journal,1999,20(4):401-412.
    [149]Mason HS.Expression of hepatitis B surface antigen in transgenic plants[J].Proc Natl Acad Sci USA,1992,89(24):11745-11749.
    [150]Shimada H , Tada Y . Antisense regulation of the rice waxy gene expression using PCR-amplified fragment of the rice genome reduce the amylose content in grain starch[J].Theor Appl Genet,1993,86:665-672.
    [151]王宗阳,武志亮,邢彦彦,等.水稻蜡质基因分子特性的研究[J].中国科学(B辑),1991,(8):824-829.
    [152]刘巧泉.反义waxy基因导入水稻降低胚乳直链淀粉含量的研究[A].中国农学会.21世纪水稻遗传育种展望[C].北京:中国农业出版社,1999.206-213.
    [153]Wang ZY,Zheng FQ,Guo XL,et al.Nucleotide sequence of rice waxy gene[J].Nucleic Acids Res,1990,18(19):5898-5892.
    [154]Itoh K.Silencing of waxy genes in rice containing Wx transgenes[J].Mol Gen Genet.,1997,255:351-358.
    [155]Molving L.Enhanced methionine levels and increased nutritive value of seeds of transgenic lupinus(Lupinus angustifolius L.)expressing a sunflower seed albumin gene[J].Proc Natl Acad Sci,1997,94(16):8393-8398.
    [156]Visser RGF,Somhorst I,Kuipers GJ,et al.Inhibition of the expression of the gene for granule - bound starch synthase in potato byantisense constructs[J].Mol Gen Genet,1991,225:289-296.
    [157]舒庆尧,吴殿星,夏英武,等.籼稻和粳稻中蜡质基因座位上微卫星标记的多态性及其与直链淀粉含量的关系.遗传学报[J].1999,6(4):350-358.
    [158]Wang ZY,Zheng FQ,Shen GZ,et al.The amylose content in rice endosperm is related to the post - transcriptional regulation of the waxy gene[J].Plant Journal,1995,7(4):613-622.
    [159]Moon E.Genetic modification of a rice glutelin cDNA and expression of the engineeredglutelin gene in transgenic rice plant[A].Philippines:IRRI,1994:814-816.
    [160]张秀君,等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测[J].农业生物技术学报,1999,7(4):363-367.
    [161]Baba T.Identification,cDNA cloning,and gene expression of soluble starch synthase in rice (Oryza sativa L1) immature seeds.Plant Physiol,1993,103:565–573.
    [162]Stein CA.Phosphorothioate antisense oligodeoxynucleotides:questions of specificity[J].Trends Biotechnol.1996,14(5):147-149.
    [163]Knutzon DS,Thompson GA,Rsadke SE.Modification of Brassica seed oil by antisense expression of a stearoylacyl carrier protein desaturase gene[J].Proc Natl Acad Sci USA,1992 (89) :2524-2638.
    [164]石东乔,周奕华,张丽华.油菜BcNA1启动子与拟南芥Fad2基因的克隆及相关植物表达载体的构建[J].云南大学学报(自然科学版),1999(21):472-531.
    [165]Cai XL,Wang ZY,Xing YY,et al.Aberrant splicing of intron leads to the heterogeneous 5’UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content[J].Plant J,1998,14(4):459-465.
    [166]Bligh HFJ,Larkin PD,Roach PS.Use of alternated splice sites in granule - bound starch synthase mRNA from low - anylose rice varieties[J].Plant Mol Biol,1998,38:407-415.
    [167]Hirano HY,Eiguchi M,Sano Y.A single base change altered the regulation of the waxy gene at the posttranscriptional level during the domestrication of rice[J].Mol Biol Evol,1998,15:978-987.
    [168]蔡秀玲,王宗阳,邢彦彦,等.水稻蜡质基因第一内含子碱基突变引起其RNA二级结构的可能变化[J].植物生理学报,2000,26(1):59-63.
    [169]Vander AR,Mur L A,de Lange LP,et al.Antisense chalcone synthase genes in petunia:Visualization of variable transgene expression[J].Mol Gen Genet,1990,220:2042-2121.
    [170]Von Arnim A,Stanley J.Inhibition of African cassava mosaic virus systemic infection by a movement protein from the related Gemini virus to mato golden mosaic virus [J].Virolo gy,1992(187):5552-5641.
    [171]Wagner EG,Nordstrom K.Control of replication of plasmid R1:kinetics of in vitro interaction between RNA,CopA and its target,CropT [J].EMBO Journal,1988,7:32-91.
    [172]Feng D,Liu X,Zhu Z.Post Transcriptional Gene Si2 lencing -A Plant Defense Strategy to Viruses Invasion [J].Acta Genetica Sinica,2003,30(6):5892-5961.
    [173]Courtney N,Napoli C,Lemienx C.Modification of flower color in florst′s chrysanthemum:Production of a white2flowering variety through molecular genetics [J].Biotechnology,1994,12:2682-2711.
    [174]叶志彪,李汉霞,郑用琏,等.反义ACC氧化酶基因的导入对乙烯生成的抑制作用[J].华中农业大学学报,1996,15(4):305-309.
    [175]Ayub R,Guis M,Ben AM,et al.Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits[J].Nature Biotechn,1996,14:862-866.
    [176]Klee HJ,Hayford MB,Kretzmer KA,et al.Control of ethylene synthesis by expression of a bacterial enzyme intransgenic tomato plants[J].Plant Cell,1991,3:1187-1193.
    [177]De M,Linda E,Whiteman PH,et al.Isolation and characterisation of a cDNA clone encodingcinnamyl alcohol dehydrogenase in Eucalyptus globulus Labill [J].Plant Science,1999,143(2):173-182.
    [178]ReddyM K,Nair S,Singh BN,et al.Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucle oprotein gene(33RNP)from pea that is light stimulated[J].Gene,2001,263(1):179-187.
    [179]Etienne P,Petitot A S,Houot V,et al.Induction of tcI 7,a gene encoding aβ2subunit of proteasome,in tobacco plants treated with elicitins,salicylic acid or hydrogen peroxide[J].FEBS Letters,2000,466(223):213-218.
    [180]Lingle SE , Dyear JM . Cloning and expression of sucrose synthase21 cDNA from sugarcne[J].Journal of Plant physiology,2001,158(1):129-131.
    [181]姚剑虹,孙小芬,唐克轩.半夏凝集素基因的克隆[J].复旦学报(自然科学版),2001,40(4):461-464.
    [182] Matousek J,Novak P,Boza J.Cloning and characterisation of chs-specific DNA and cDNA sequences from hop(Humulus lupulus L.) [J].Plant Sci.2002,162,1007–1018.
    [183]Matousek J,Vrba L,Novak P.Cloning and molecular analysis of the regulatory factor HlMyb1 in hops(Humulus lupulus L.).Significance for the potential of hops to produce prenylated flavonoids with potent bioactivities[J].J.Agric.Food Chem.2005,53,4793–4798.
    [184]Okada Y,Ito K.Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop(Humulus lupulus L.)[J].Biosci.Biotechnol.Biochem.2001,65,150–155.
    [185]Lichtenthaler HK,Schwender J,Disch A ,et al.Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway [J].FEBS Lett,1997,400:271-274.
    [186]Jung JD,Park HW,Hahn Y.Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tag[J].Plant Cell Rep.,2003,22:224–230.
    [187]Kushiro T,Ohno Y,Shibuya M,et l.In vitro conversion of 2,3-oxidosqualene into dammarenediol by Panax ginseng microsomes[J]. Biol. Pharm. Bull.1997,20,292-294.
    [188]Tanaka O,Kasai R.Saponins of ginseng and related plants.Progress in the Chemistry of Organic Natural Products.Springer-Verlag,1984,46:1–76.
    [189]Shu W, Yoshimatsu K,Yamaguchi H.production of ginsenoside by transformed root cultures of Panax ginseng: effect of basal medium and Agrobacterium strains[J]. Bull.Natl.Health Sci.1999.117,148–154.
    [190]Zhang H, Shibuya M,Yokota S, et al. Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var.japonica: Molecular evolution of oxidosqualene cyclases in higher plants. Biol. Pharm.Bull.,2003,26:642–650.
    [191]Meesapyodsuk D,Balsevich J,Reed DW.Saponin biosynthesis in Saponaria vaccaria.cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase[J].Plant Physiol.143,2007,959–969.
    [192]Lodeiro S,Xiong Q, Wilson WK.An oxidosqualene cyclase makes numerous products by diverse mechanisms:a challenge to prevailing concepts of triterpene biosynthesis[J].J.Am.Chem.Soc.129,2007,11213–11222.
    [193]Xiang T,Shibuya M, Katsube Y.A new triterpene synthase from Arabidopsis thalianaproduces a tricyclictriterpene with two hydroxyl groups[J].Org.Lett.8,2006,2835–2838.
    [194]Hayashi H,Huang P,Inoue K.Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra[J].Plant Cell Physiol.44,2003,311–404.
    [195]Henry M,Rochd M,Bennini B.Biosynthesis and accumulation of saponins in Gypsophyla paniculata[J].Phytochemistry,1991,1819–1821.
    [196]Haralampidis K,Trojanowska M, Osbourn AE.Biosynthesis of triterpenoid saponins in plants.Adv.Biochem.Eng.Biotechnol.2002,75:31–49.
    [197]Shan H, Wilson WK, Phillips DR . Trinorlupeol : a major nonsterol triterpenoid in Arabidopsis[J].Org.Lett.10,2008,1897–1900.
    [198]Morita M,Shibuya M,Kushiro T.Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum):new a-amyrin-producing enzyme is a multifunctional triterpene synthase[J].Eur.J.Biochem.267,2000,3453-3460.
    [199]Sawai S,Shindo T,Sato S.Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus[J].Plant Sci.170,2006,247-257.
    [200]Suzuki H,Achnine L,Xu R.A genomics approach to the early stages of triterpene saponinbiosynthesis in Medicago truncatula[J].Plant J,2002.32:1033-1048.
    [201]Iturbe-Ormaetxe I,Haralampidis K,Papadopoulou K.Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus[J].Plant Mol.Biol.51,2003,731–743.
    [202]Herrera JBR,Bartel B,Wilson WK.Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene[J].Phytochemistry,1998,49,1905–1911.
    [203]Husselstein-Mu T,Schaller H,Benveniste P.Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana[J].Plant Mol.Biol.,2001,45:75–92.
    [204]Dudareva N,Cseke L,BlancVM,et al.Evolution of floral scent in Clarkia:novel patterns of S2linalool synthase gene expression in the C1 breweri flower[J].Plant Cell,1996,8:1137 -1148.
    [205]Gambliel H,Croteau R.Biosynthesis of palphapinene and 2-beta-pinene from geranyl pyrophosphate by a soluble enzyme system from sage(Salvia officinalis)[J].J Biol Chem,1982,257:2335-2342.
    [206]Hallahan TW , Croteau R . Monoterpene biosynthesis : demonstration of a geranyl pyrophosphate : sabinene hydrate cyclase in soluble enzyme preparations from sweet marjoram (Majorana hortensis)[J].Arch Biochem Biophys,1988,264:618 -631.
    [207]何水林,郑金贵,王晓峰.植物次生代谢:功能、调控及其基因工程[J].应用与环境生物学报,2002,8(5):558-563.
    [208]段传人,王伯初,徐世荣.环境应力对植物次生代谢产物形成的作用[J].重庆大学学报,2003,26(10):67-71.
    [209]Rasnussen S,Dixon R A.Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylp ropanoid pathway[J]. Plant Cell, 1999:1537-1551.
    [210]He SL,Zheng JG,Wang XF.Plant secondary metabolism,Function,reconcile,control and genetic engineering[J].Application and Environmental Biology,2002,8(5):558-563.
    [211]Rasnussen S,Dixon RA.Transgene-mediated and elicitor-induced perturbation of metabolicchanneling at the entry point into the phenylp ropanoid pathway[J].Plant Cell,1999:1537-1551.
    [212]Facchini PJ.Alkaloid biosynthesis in p lants:biochemistry,cell biology,molecular regulation,andmetabolic engineering app lication[J].Annu.Rev.Plant physical plant Mol.Biol.,2001,52:29-66.
    [213]Francis G,Kerem Z, Makkar HP.The biological action of saponins in animal systems: a review,Br.J.Nutr,2002,88:587-605.
    [214]Bohlmann J,Phillips M,Ramachandiran V,et al.cDNA cloning,characterization,and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis)[J].Arch Biochem Biophys,1999,368:232-243.
    [215]Kushiro T,Shibuya M,Ebizuka Y.b-Amyrin synthase: cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants,Eur.J.Biochem.,1998,256:238–244.
    [216]Lee MH,Jeong JH,Seo JW.Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene.Plant Cell Physiol,2004,45:976–984.
    [217]Shibata S.Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds[J].J Korean Med Sci,2001,16:S28–S37.
    [218]Wang W,Zhao ZJ,Xu Y.Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hyroxylethyl jasmonate[J].Appl Microbiol Biotechnol,2006,70:298–307.
    [219]Tansakul P,Shibuya M,Kushiro T.Dammarenediol-II synthase,the first dedicated enzyme for ginsenoside biosynthesis,in Panax ginseng[J].FEBS Lett,2006,580:5143–5149.
    [220]Grotewold E,Chamberlin M, Snook M.Engineering secondary metabolism in maize cells by ectopic expression of transcription factors[J].Plant Cell,1998,10:721-740.
    [221]Dixon RA,Steele CL.Flavonoids and isoflavonoids: a gold mine formetabolic engineering [J].Trends Plant Sci,1999,4:394-400.
    [222]Daudonnet S,Karst F,Tourte Y.Expression of the farnesyl diphosphate synthase gene of Saccharomyces cerevisiae in tobacco [J].Mol Breed,1997,3:137-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700