用户名: 密码: 验证码:
以OSA变性淀粉为乳化剂的纳米乳液制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米乳液,是指粒径在10~200nm之间的一种乳化运输体系,与一般乳液相比,纳米级的粒径赋予体系特殊的小尺寸、高表面活性和强吸附等特性,进而对体系的物理化学稳定性和所运载营养物质的体内吸收起到增强效果。本课题以纳米乳液为研究对象,以食品生物大分子——辛烯基琥珀酸酯化淀粉(OSA变性淀粉)为乳化剂,针对脂溶性功能成分中易挥发且不易被乳化的精油类(EO)和不易溶解且易结晶的营养素类,构建稳定、高效、生物兼容性强的水包油(O/W)型纳米乳液,并对体系的物理化学特性、生物学效应和生物安全性等重要应用品质进行检测,最终建立乳化剂的特性与乳液特性之间的相关性。
     首先,对应用广泛、但技术参数缺乏的五种OSA变性淀粉的分子特性、溶液特性和乳化特性进行了测定。由高效液相排阻色谱-多角度激光散射-示差折光仪串联系统得出,五种OSA变性淀粉的重均分子量和平均旋转半径值均小于原淀粉,且淀粉分子在水溶液中均为球形或近球形构象,分子分散密度表现为Purity Gum2000> Purity Gum Be>HI-CAP> CAPSUL TA> CAPSUL。淀粉溶液表现为近牛顿流体性状,且溶液黏度随淀粉质量浓度的增加而增大。在乳化特性方面,淀粉分子能显著降低体系的表/界面张力,并能在高速分散和高压均质条件下乳化中链甘油三酸酯(MCT),制备得到纳米乳液,为后续构建脂溶性营养成分的纳米乳液提供了实验依据。
     针对EO普遍存在的易挥发、不易形成稳定乳液的现象,选择我国分布及应用广泛的薄荷油(PO)作为代表,研究OSA变性淀粉在EO纳米乳液制备中的特性。结果显示,使用MCT与PO作为混合油相,以Purity Gum2000为乳化剂,能有效抑制乳液因奥氏熟化引起的失稳,并在均质压力为100MPa,均值次数为10次,芯壁比为1:1时,制备得到粒径在180nm左右的薄荷油纳米乳液。且在此条件下,不同PO载量的乳液乳化产率均高于97%,在室温下储藏30天后,乳液的粒径增加20~30nm,PO保留率高于95%,乳液均无明显分层现象发生。气质联用结果显示乳化过程能有效抑制PO中主要抗菌成分——薄荷醇和薄荷酮的损失,且乳化前后PO对两种革兰氏阳性菌显示相同的最小抑菌浓度(0.5%,v/v),但从微生物的生长曲线显示,PO纳米乳液显示出更为持久的抑制菌落生长的特性。因此,通过纳米乳液包埋不仅能提高EO的稳定性,还能作为一种长效抗菌剂应用于食品及其它体系中。
     针对溶解度低且不易被人体吸收的营养素类物质,选择β-胡萝卜素作为代表,构建以OSA变性淀粉为乳化剂的纳米乳液。首先,通过对不同β-胡萝卜素载量乳液的粒径和核磁共振测定结果显示,在乳液中β-胡萝卜素处于表面活性剂和油相的界面,且与OSA淀粉分子之间存在相互作用。进一步通过比较五种OSA变性淀粉制备β-胡萝卜素乳液的乳化产率和芯材保留率得出,淀粉分子的取代度、界面特性对乳液的乳化产率影响显著,而淀粉分子的表面吸附量和分子分散密度对芯材的保留率影响显著,并最终确定使用HI-CAP、CAPSUL和CAPSUL TA三种淀粉制备β-胡萝卜素纳米乳液(乳化产率、保留率均高于90%)。与未包埋的β-胡萝卜素相比,乳化体系中β-胡萝卜素的储藏稳定性和体外生物利用率均显著提高,但这三种变性淀粉乳化配方之间的差异,同样与变性淀粉的表面吸附量和分子分散密度相关。进一步对这三种乳液的潜在生物毒性进行了检测,结果显示,乳液不存在潜在细胞毒性(HepG2),对于HI-CAP稳定的乳液不存在溶血性,对于CAPSUL和CAPSUL TA稳定的乳液,当其与血液直接接触浓度小于0.4%时,溶血性可忽略不计。因此,通过OSA变性淀粉的使用,可以制备得到稳定、有效且安全的营养素纳米乳液运输体系。
     高浓度OSA变性淀粉(HI-CAP、CAPSUL和CAPSULTA)在β-胡萝卜素纳米乳液配方中的使用,同时兼具了乳化剂和乳化壁材的作用,赋予了纳米乳液可直接喷雾干燥的特性。因此,为了克服乳液水相基质的不稳定性和应用缺陷,实验中将高压均质后的稳定乳液,直接采用喷雾干燥法制备β-胡萝卜素的乳化粉末。通过对粉末的溶解特性研究显示,复原乳液保持了与初始乳液相同的纳米级粒径,且粉末中β-胡萝卜素的乳化效率和产率均高于90%。粉末的X-射线衍射和红外光谱测定结果均表明,OSA变性淀粉与油相和β-胡萝卜素之间存在相互作用,有利于芯材的包埋和稳定。与β-胡萝卜素纳米乳液相比,喷雾干燥粉末的储藏稳定性显著提高,进一步验证了该方法的可行性。
     进一步将纳米乳液粉末在不同水分湿度(RH)条件下进行储藏,结果显示OSA变性淀粉制备膜的透氧系数(OP)和透水系数(WVP)与粉末在储藏过程中的吸水性和保留率密切相关,表现为OP值越大,芯材的保留率越低,WVP值越大,粉末的吸水性越强。并且,在不同RH条件下β-胡萝卜素的降解速率与样品的玻璃化转变温度Tg相关。在样品发生玻璃化转变前,β-胡萝卜素的降解速率随RH增加而增加,但当样品发生玻璃化转变后,β-胡萝卜素与壁材之间发生“二次包埋”,降解速率反而下降。因此,可通过选择具有不同特性的乳化剂分子,制备得到不同储藏特性的营养成分包埋系统。
Nanoemulsions are colloidal systems usually with the droplet sizes around10to200nm.The very small droplet size offers nanoemulsions various advantages over conventionalemulsions for their applications, including high physical and chemical stability, high surfaceactivity and strong adsorption characteristic, which further increase the bioavailability oflipophilic functional ingredients. In this research, biopolymer emulsifier-octenyl succinateanhydride modified starch (OSA starch) general recognized as safe (GRAS) was chosen asemulsifier to incorporate lipophlic functional compounds (essential oils which are volatile andnot easily to emulsification and nutraceuticals with low solubility and crystallization) intonanoemulsion system. The physicochemical properties, biological properties and potentialtoxicity of nanoemulsions would be evaluated. Thereafter, the correlative relationshipbetween various properties of emulsifiers and their influence on the characteristics ofnanoemulsions would be established.
     At first, the molecule and solution characteristics of OSA starches related to theemulsification properties were measured. According to the HPSEC-MALLS-RI system, theweight-average molecular weight and radius of gyration of OSA starches are both smallerthan the original starches. The conformations for all the OSA molecules are spherical. Thedispersed molecular density decreased in the order Purity Gum2000> Purity Gum Be>HI-CAP> CAPSUL TA> CAPSUL. The OSA starch solutions showed Newtonian fluidproperties, and with the increase of OSA concentration, the viscosities of solutions wereincreased. As an effective emulsifier, OSA starch can significantly reduce the surface andinterfacial tensions of solutions and incorporate medium chain triglycerides (MCT) tonanoemulsions by using high speed and high pressure homogenization, which provide anbasis formulation for the subsequent research.
     The research was carried out by choosing peppermint oil (PO) as a model of essential oilto prepare nanoemulsions stabilized by OSA starch. The mixture of PO with MCT beforehigh-pressure homogenization was a useful method to inhibit the Ostwald ripening.Nanoemulsion with particle size about180nm were prepared by using Purity Gum2000asemulsifier, core to wall at1:1, with pressure at100MPa and10cycles. The formulated POnanoemulsions with different PO concentration showed high emulsification efficiency around97%and high stability over storage time. After30days storage at room temperature, theparticle size of emulsions was increased from20to30nm and PO retention was remainedhigher than95%. And there was no obvious phase separation or creaming observed for any ofthe samples. From GC-MS results, the concentration of the main components in PO and POemulsion, menthol and menthone, were close. Their antimicrobial properties related to POhave also been evaluated by two assays, the minimum inhibitory concentration (MIC) andtime-kill dynamic processes against two Gram-positive bacterial strains. With the same MICvaules at0.5%(v/v), PO nanoemulsions showed a prolonged antibacterial activity comparedto bulk PO. Our results suggest that the nanoemulsion technology can provide novelapplications of essential oils in extending the shelf-life of aqueous food products.
     As a model of bioactive labile lipophilic compound, β-carotene was insoluble in waterand only slightly soluble in oil at room temperature. Oil-in-water nanoemulsions stabilized byOSA were fabricated to improve the stability and bioaccessibility of β-carotene. The NMRtest showed that β-carotene in emulsions was loaded in the interface between surfactant andoil and had a strong interaction with OSA molecules. Thus, the DS, amount of surfaceadsorbed and dispersed molecular density of OSA would affect the emulsification yield andretention of β-carotene. The stable β-carotene nanoemulsion could be stabilized by HI-CAP,CAPSUL and CAPSUL TA with emulsification yield higher than90%. Compared to theβ-carotene dispersed in bulk oil, the retention and bioaccessibility of β-carotene innanoemulsions were significant increased. At last, the β-carotene nanoemulsions were testedfor hemolysis and cytotoxicity tests. The results showed that all emulsions showed nocytotoxicity for HepG2. And emulsions stabilized by HI-CAP did not show any hemolysis.For the emulsions stabilized by CAPSUL and CAPSUL TA, the hemolysis results werenegligible when the concentrations were less than0.4%. This result provides usefulinformation for developing protection and delivery systems for nutraceuticals.
     The high concentration of modified starches in formulations (HI-CAP, CAPSUL andCAPSUL TA) made it possible for the further spray drying process for the emulsions. And inorder to overcome the limitations of liquid-base emulsion system, β-carotene nanoemulsionsstabilized by modified starch were spray-dried to powders after the emulsification process.The powders showed a good dissolution in water and the reconstituted emulsions had similarparticle sizes with the fresh nanoemulsions which suggested that the spray drying process didnot affect the characteristics of nanoemulsions. The emulsification efficiency and yield forβ-carotene nanoemulsion powders are both higher than90%. By X-ray diffraction and IRmeasurement, the results indicated that there was an interaction between OSA modifiedstarches and β-carotene. And compared to the stability of nanoemulsions, a significantincrease was showed for the spray-dried powder under the same storage conditions. Theseresults indicated that it was a useful method to prepare nutraceutical emulsion powders toimprove stability.
     A further storage test was carried out to investigate the effect of relative humility (RH)on the storage stability of β-carotene powders. The results showed that modified starches withlower film oxygen permeability had a higher retention of β-carotene during storage. And themodified starches with higher film water permeability showed a stronger hygroscopicity. Theglass transition temperature of powder in different RH also affected the rate of β-carotenedegradation. The degradation of β-carotene increased at a higher RH before Tg. As thetemperature approached to Tg, the transformation from glassy to rubbery state occurs and there-encapsulation process would benefit for the decrease of degradation. Overall these resultsprovide useful information for choosing wall materials and storage conditions to protectnutraceuticals in delivery systems.
引文
[1] Chen L, Remondetto G E, Subirade M. Food protein-based materials as nutraceutical delivery systems[J]. Trends in Food Science&Technology,2006,17(5):272-283.
    [2] Wildman R E C. Handbook of nutraceuticals and functional foods [M]. New York: CRC Press,2001.
    [3] Elliott R, Ong T J. Science, medicine, and the future-Nutritional genomics [J]. British MedicalJournal,2002,324(7351):1438-1442.
    [4] Bell L N. Stability testing of nutraceuticals and functional foods [M]. New York: CRC Press,2001.
    [5] Shi J, Kakuda Y. Stability of lycopene during food processing and storage [J]. Journal of MedicinalFood,2005,8(4):413-422.
    [6] Albanes D, Virtamo J, Taylor P R, et al. Effects of supplemental beta-carotene, cigarette smoking, andalcohol consumption on serum carotenoids in the Alpha-Tocopherol, Beta-Carotene Cancer PreventionStudy [J]. American Journal of Clinical Nutrition,1997,66(2):366-372.
    [7] Haila K M, Nielsen B R, Heinonen M I, et al. Carotenoid reaction with free radicals in acetone andtoluene at different oxygen partial pressures [J]. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschunga-Food Research and Technology,1997,204(2):81-87.
    [8] Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability [J]. Chemical SocietyReviews,2010,39(11):4067-4079.
    [9] Sorensen A D M, Nielsen N S, Hyldig G, et al. Influence of emulsifier type on lipid oxidation in fishoil-enriched light mayonnaise [J]. European Journal of Lipid Science and Technology,2010,112(9):1012-1023.
    [10] Donsi F, Wang Y W, Li J, et al. Preparation of Curcumin Sub-micrometer Dispersions byHigh-Pressure Homogenization [J]. Journal of Agricultural and Food Chemistry,2010,58(5):2848-2853.
    [11] Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of93intervention studies [J]. American Journal of Clinical Nutrition,2005,81(1):243S-255S.
    [12] Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy of polyphenols in humans.I. Review of97bioavailability studies [J]. American Journal of Clinical Nutrition,2005,81(1):230S-242S.
    [13] Khanum F, Anilakumar K R, Viswanathan K R. Anticarcinagenic properties of garlic: A review [J].Crit Rev Food Sci Nutr,2004,44(6):479-488.
    [14] McClements D J. Food emulsions: Principles, practices and techniques (2nd ed.)[M]. Florida; CRCPress.1999.
    [15] Qv X Y, Zeng Z P, Jiang J G. Preparation of lutein microencapsulation by complex coacervationmethod and its physicochemical properties and stability [J]. Food Hydrocolloids,2011,25(6):1596-1603.
    [16] Wei H, Zhong F, Ma J, et al. Formula optimization of emulsifiers for preparation of multipleemulsions based on artificial neural networks [J]. Journal of Dispersion Science and Technology,2008,29(3):319-326.
    [17] Polavarapu S, Oliver C M, Ajlouni S, et al. Physicochemical characterisation and oxidative stability offish oil and fish oil-extra virgin olive oil microencapsulated by sugar beet pectin [J]. Food Chemistry,2011,127(4):1694-1705.
    [18] de Vos P, Faas M M, Spasojevic M, et al. Encapsulation for preservation of functionality and targeteddelivery of bioactive food components [J]. International Dairy Journal,2010,20(4):292-302.
    [19] Soottitantawat A, Takayama K, Okamura K, et al. Microencapsulation of l-menthol by spray dryingand its release characteristics [J]. Innovative Food Science&Emerging Technologies,2005,6(2):163-170.
    [20] Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation offood ingredients: An overview [J]. Food Research International,2007,40(9):1107-1121.
    [21] de Kruif C G, Weinbreck F, de Vries R. Complex coacervation of proteins and anionicpolysaccharides [J]. Current Opinion in Colloid&Interface Science,2004,9(5):340-349.
    [22] Huang Z, Chen H C, Yip A, et al. Longitudinal patent analysis for nanoscale science and engineering:Country, institution and technology field [J]. Journal of Nanoparticle Research,2003,5(3-4):333-363.
    [23] Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel [J]. Science,2006,311(5761):622-627.
    [24] Dickinson E, Food colloids research: Historical perspective and outlook [J]. Advances in Colloid andInterface Science,2011,165(1):7-13.
    [25] Chen N S a H. Nanoscale Science and Engineering for Agriculture and Food Systems [J]. IndustrialBiotechnology,2012,8(6):340-343.
    [26] Tiju Joseph and Mark Morrison. A Nanoforum report [EB/OL]. http://www.nanoforum.org.,2012.
    [27] Sanguansri P, Augustin M A. Nanoscale materials development–a food industry perspective [J].Trends in Food Science&Technology,2006,17(10):547-556.
    [28] Weiss J, Takhistov P, McClements D J. Functional materials in food nanotechnology [J]. Journal ofFood Science,2006,71(9): R107-R116.
    [29] Chen H D, Weiss J C, Shahidi F. Nanotechnology in nutraceuticals and functional foods [J]. FoodTechnology,2006,60(3):30.
    [30] Tarver T. Food nanotechnology [J]. Food Technology,2006,60(11):22-26.
    [31] Troncoso E, Miguel Aguilera J, McClements D J. Fabrication, characterization and lipase digestibilityof food-grade nanoemulsions [J]. Food Hydrocolloids,2012,27(2):355-363.
    [32] McClements D J, Xiao H. Potential biological fate of ingested nanoemulsions: influence of particlecharacteristics [J]. Food&Function,2012,3(3):202-220.
    [33] Hu L, Mao Z W, Gao C Y. Colloidal particles for cellular uptake and delivery [J]. Journal of MaterialsChemistry,2009,19(20):3108-3115.
    [34] Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles [J]. Small,2008,4(1):26-49.
    [35] Ru Q M, Yu H L, Huang Q R. Encapsulation of Epigallocatechin-3-gallate (EGCG) UsingOil-in-Water (O/W) Submicrometer Emulsions Stabilized by iota-Carrageenan and beta-Lactoglobulin [J].Journal of Agricultural and Food Chemistry,2010,58(19):10373-10381.
    [36] Yu H, Huang Q. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobicallymodified starch [J]. Food Chemistry,2010,119(2):669-674.
    [37] Hu M, Li Y, Decker E A, et al. Influence of Tripolyphosphate Cross-Linking on the Physical Stabilityand Lipase Digestibility of Chitosan-Coated Lipid Droplets [J]. Journal of Agricultural and Food Chemistry,2010,58(2):1283-1289.
    [38] Lee S J, Choi S J, Li Y, et al. Protein-Stabilized Nanoemulsions and Emulsions: Comparison ofPhysicochemical Stability, Lipid Oxidation, and Lipase Digestibility [J]. Journal of Agricultural and FoodChemistry,2011,59(1):415-427.
    [39] Bouchemal K, Briancon S, Perrier E, et al. Nano-emulsion formulation using spontaneousemulsification: solvent, oil and surfactant optimisation [J]. International Journal of Pharmaceutics,2004,280(1-2):241-251.
    [40] Huang Q R, Yu H L, Ru Q M. Bioavailability and Delivery of Nutraceuticals Using Nanotechnology[J]. Journal of Food Science,2010,75(1): R50-R57.
    [41] Anton N, Vandamme T F. The universality of low-energy nano-emulsification [J]. InternationalJournal of Pharmaceutics,2009,377(1–2):142-147.
    [42] Leong T S H, Wooster T J, Kentish S E, et al. Minimising oil droplet size using ultrasonicemulsification [J]. Ultrasonics Sonochemistry,2009,16(6):721-727.
    [43] Tadros T, Izquierdo P, Esquena J, et al. Formation and stability of nano-emulsions [J]. Advances inColloid and Interface Science,2004,108–109:303-318.
    [44] Wooster T J, Golding M, Sanguansri P. Impact of Oil Type on Nanoemulsion Formation and OstwaldRipening Stability [J]. Langmuir,2008,24(22):12758-12765.
    [45] Mason T G, Wilking J N, Meleson K, et al. Nanoemulsions: formation, structure, and physicalproperties [J]. Journal of Physics-Condensed Matter,2006,18(41): R635-R666.
    [46]Velikov K P, Pelan E. Colloidal delivery systems for micronutrients and nutraceuticals [J]. Soft Matter,2008,4(10):1964-1980.
    [47] Sonneville-Aubrun O, Simonnet J T, L'Alloret F. Nanoemulsions: a new vehicle for skincare products[J]. Advances in Colloid and Interface Science,2004,108:145-149.
    [48] McClements D J, Decker E A. Lipid oxidation in oil-in-water emulsions: Impact of molecularenvironment on chemical reactions in heterogeneous food systems [J]. Journal of Food Science,2000,65(8):1270-1282.
    [49] Mao L, Yang J, Xu D, et al. Effects of Homogenization Models and Emulsifiers on thePhysicochemical Properties of beta-Carotene Nanoemulsions [J]. Journal of Dispersion Science andTechnology,2010,31(7):986-993.
    [50] McClements D J, Rao J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties,Performance, Biological Fate, and Potential Toxicity [J]. Crit Rev Food Sci Nutr,2011,51(4):285-330.
    [51] Jafari S M, He Y, Bhandari B. Optimization of nano-emulsions production by microfluidization [J].European Food Research and Technology,2007,225(5-6):733-741.
    [52] Henry J V L, Fryer P J, Frith W J, et al. Emulsification mechanism and storage instabilities ofhydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20and80), Brij96v and sucrosemonoesters [J]. Journal of Colloid and Interface Science,2009,338(1):201-206.
    [53] Lee S C, Kim C, Kwon I C, et al. Polymeric micelles ofpoly(2-ethyl-2-oxazoline)-block-poly(epsilon-caprolactone) copolymer as a carrier for paclitaxel [J].Journal of Controlled Release,2003,89(3):437-446.
    [54] Gong J, Huo M R, Zhou J P, et al. Synthesis, characterization, drug-loading capacity and safety ofnovel octyl modified serum albumin micelles [J]. International Journal of Pharmaceutics,2009,376(1-2):161-168.
    [55] Kralova I, Sjoblom J. Surfactants Used in Food Industry: A Review [J]. Journal of Dispersion Scienceand Technology,2009,30(9):1363-1383.
    [56] He C-X, He Z-G, Gao J-Q. Microemulsions as drug delivery systems to improve the solubility and thebioavailability of poorly water-soluble drugs [J]. Expert Opinion on Drug Delivery,2010,7(4):445-460.
    [57] Mao L K, Xu D X, Yang J, et al. Effects of Small and Large Molecule Emulsifiers on theCharacteristics of beta-Carotene Nanoemulsions Prepared by High Pressure Homogenization [J]. FoodTechnology and Biotechnology,2009,47(3):336-342.
    [58] Qian C, Decker E A, Xiao H, et al. Comparison of Biopolymer Emulsifier Performance in Formationand Stabilization of Orange Oil-in-Water Emulsions [J]. Journal of the American Oil Chemists Society,2011,88(1):47-55.
    [59] Charoen R, Jangchud A, Jangchud K, et al. Influence of interfacial composition on oxidative stabilityof oil-in-water emulsions stabilized by biopolymer emulsifiers [J]. Food Chemistry,2012,131(4):1340-1346.
    [60] Qian C, Decker E A, Xiao H, et al. Physical and chemical stability of beta-carotene-enrichednanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type [J]. Food Chemistry,2012,132(3):1221-1229.
    [61] Cornacchia L, Roos Y H. Stability of beta-Carotene in Protein-Stabilized Oil-in-Water DeliverySystems [J]. Journal of Agricultural and Food Chemistry,2011,59(13):7013-7020.
    [62] Chu B-S, Ichikawa S, Kanafusa S, et al. Preparation of protein-stabilized beta-carotenenanodispersions by emulsification-evaporation method [J]. Journal of the American Oil Chemists Society,2007,84(11):1053-1062.
    [63] Lee S J, McClements D J. Fabrication of protein-stabilized nanoemulsions using a combinedhomogenization and amphiphilic solvent dissolution/evaporation approach [J]. Food Hydrocolloids,2010,24(6-7):560-569.
    [64] Chu B-S, Ichikawa S, Kanafusa S, et al. Stability of protein-stabilised β-carotene nanodispersionsagainst heating, salts and pH [J]. Journal of the Science of Food and Agriculture,2008,88(10):1764-1769.
    [65] Park S, Chung M G, Yoo B. Effect of octenylsuccinylation on rheological properties of corn starchpastes [J]. Starch-Starke,2004,56(9):399-406.
    [66] Caldwell C, Wurzburg, OB. Polysaccharide derivatives of substituted dicarboxylic acids: US Patent.1953.
    [67] Wang J, Su L, Wang S. Physicochemical properties of octenyl succinic anhydride-modified potatostarch with different degrees of substitution [J]. Journal of the Science of Food and Agriculture,2010,90(3):424-429.
    [68] Varona S, Martin A, Jose Cocero M. Formulation of a natural biocide based on lavandin essential oilby emulsification using modified starches [J]. Chemical Engineering and Processing,2009,48(6):1121-1128.
    [69] Modig G, Nilsson L, Bergenstahl B, et al. Homogenization-induced degradation of hydrophobicallymodified starch determined by asymmetrical flow field-flow fractionation and multi-angle light scattering[J]. Food Hydrocolloids,2006,20(7):1087-1095.
    [70] Chanamai R, McClements D J. Comparison of gum arabic, modified starch, and whey protein isolateas emulsifiers: Influence of pH, CaCl(2) and temperature [J]. Journal of Food Science,2002,67(1):120-125.
    [71] Tesch S, Gerhards C, Schubert H. Stabilization of emulsions by OSA starches [J]. Journal of FoodEngineering,2002,54(2):167-174.
    [72] Liu Z, Li Y, Cui F, et al. Production of Octenyl Succinic Anhydride-Modified Waxy Corn Starch andIts Characterization [J]. Journal of Agricultural and Food Chemistry,2008,56(23):11499-11506.
    [73] Dokic L, Krstonosic V, Nikolic I. Physicochemical characteristics and stability of oil-in-wateremulsions stabilized by OSA starch [J]. Food Hydrocolloids,2012,29(1):185-192.
    [74] Soottitantawat A, Yoshii H, Furuta T, et al. Effect of water activity on the release characteristics andoxidative stability of D-limonene encapsulated by spray drying [J]. Journal of Agricultural and FoodChemistry,2004,52(5):1269-1276.
    [75] Baranauskiene R, Bylaite E, Zukauskaite J, et al. Flavor retention of peppermint (Mentha piperita L.)essential oil spray-dried in modified starches during encapsulation and storage [J]. Journal of Agriculturaland Food Chemistry,2007,55(8):3027-3036.
    [76] Edris A E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatileconstituents: A review [J]. Phytother Res,2007,21(4):308-323.
    [77] Dorman H J D, Deans S G. Antimicrobial agents from plants: antibacterial activity of plant volatileoils [J]. Journal of Applied Microbiology,2000,88(2):308-316.
    [78] Jones S F A. Herbs-Useful plants. Their role in history and today [J]. Eur J Gastroenterol Hepatol,1996,8(12):1227-1231.
    [79] LisBalchin M, Deans S G. Bioactivity of selected plant essential oils against Listeria monocytogenes[J]. Journal of Applied Microbiology,1997,82(6):759-762.
    [80] Cimanga K, Kambu K, Tona L, et al. Correlation between chemical composition and antibacterialactivity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo[J]. Journal of Ethnopharmacology,2002,79(2):213-220.
    [81] Kabalnov A. Ostwald ripening and related phenomena [J]. Journal of Dispersion Science andTechnology,2001,22(1):1-12.
    [82] Taylor P. Ostwald ripening in emulsions [J]. Advances in Colloid and Interface Science,1998,75(2):107-163.
    [83] Ziani K, Chang Y H, McLandsborough L, et al. Influence of Surfactant Charge on AntimicrobialEfficacy of Surfactant-Stabilized Thyme Oil Nanoemulsions [J]. Journal of Agricultural and FoodChemistry,2011,59(11):6247-6255.
    [84] Jumaa M, Muller B W. Physicochemical properties of chitosan-lipid emulsions and their stabilityduring the autoclaving process [J]. International Journal of Pharmaceutics,1999,183(2):175-184.
    [85] Lim S S, Baik M Y, Decker E A, et al. Stabilization of orange oil-in-water emulsions: A new role forester gum as an Ostwald ripening inhibitor [J]. Food Chemistry,2011,128(4):1023-1028.
    [86] Donsi F, Annunziata M, Sessa M, et al. Nanoencapsulation of essential oils to enhance theirantimicrobial activity in foods [J]. Lwt-Food Science and Technology,2011,44(9):1908-1914.
    [87] Gupta C, Garg A P, Uniyal R C, et al. Antimicrobial activity of some herbal oils against commonfood-borne pathogens [J]. African Journal of Microbiology Research,2008,2(10):258-261.
    [88] van Vuuren S F, Suliman S, Viljoen A M. The antimicrobial activity of four commercial essential oilsin combination with conventional antimicrobials [J]. Letters in Applied Microbiology,2009,48(4):440-446.
    [89] Ahmed K, Li Y, McClements D J, et al. Nanoemulsion-and emulsion-based delivery systems forcurcumin: Encapsulation and release properties [J]. Food Chemistry,2012,132(2):799-807.
    [90] Yu H, Shi K, Liu D, et al. Development of a food-grade organogel with high bioaccessibility andloading of curcuminoids [J]. Food Chemistry,2012,131(1):48-54.
    [91]付婷婷.番茄红素微乳的制备及特性研究[D]:[硕士学位论文].无锡:江南大学,2012.
    [92]刘峰.食品功能因子/表面活性剂自聚集体系的制备及表征[D].[博士学位论文].无锡:江南大学,2010.
    [93] Ferreira J E M, Rodriguez-Amaya D B. Degradation of Lycopene and β-carotene in Model Systemsand in Lyophilized Guava during Ambient Storage: Kinetics, Structure, and Matrix Effects [J]. Journal ofFood Science,2008,73(8): C589-C594.
    [94] Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids [J]. Molecular Nutrition&FoodResearch,2007,51(1):107-115.
    [95] de Paz E, Martin A, Estrella A, et al. Formulation of beta-carotene by precipitation from pressurizedethyl acetate-on-water emulsions for application as natural colorant [J]. Food Hydrocolloids,2012,26(1):17-27.
    [96] Kiokias S, Gordon M H. Antioxidant properties of carotenoids in vitro and in vivo [J]. Food Rev Int,2004,20(2):99-121.
    [97] Hou Z Q, Zhang M, Liu B, et al. Effect of chitosan molecular weight on the stability and rheologicalproperties of beta-carotene emulsions stabilized by soybean soluble polysaccharides [J]. FoodHydrocolloids,2012,26(1):205-211.
    [98] Wang P, Liu H J, Mei X Y, et al. Preliminary study into the factors modulating beta-carotene micelleformation in dispersions using an in vitro digestion model [J]. Food Hydrocolloids,2012,26(2):427-433.
    [99] Handelman G J. The evolving role of carotenoids in human biochemistry [J]. Nutrition,2001,17(10):818-822.
    [100] Ribeiro H S, Cruz R C D. Biliquid foams containing carotenoids [J]. Engineering in Life Sciences,2005,5(1):84-88.
    [101] Jia M, Kim H J, Min D B. Effects of soybean oil and oxidized soybean oil on the stability ofbeta-carotene [J]. Food Chemistry,2007,103(3):695-700.
    [102] Zeb A, Murkovic M. Determination of thermal oxidation and oxidation products of β-carotene incorn oil triacylglycerols [J]. Food Research International,2011,
    [103] Charoen R, Jangchud A, Jangchud K, et al. Influence of Biopolymer Emulsifier Type on Formationand Stability of Rice Bran Oil-in-Water Emulsions: Whey Protein, Gum Arabic, and Modified Starch [J].Journal of Food Science,2011,76(1): E165-E172.
    [104] Ribeiro H S, Chu B S, Ichikawa S, et al. Preparation of nanodispersions containing beta-carotene bysolvent displacement method [J]. Food Hydrocolloids,2008,22(1):12-17.
    [105] Wang X, Jiang Y, Wang Y-W, et al. Enhancing anti-inflammation activity of curcumin through O/Wnanoemulsions [J]. Food Chemistry,2008,108(2):419-424.
    [106] Tan C P, Nakajima M.[beta]-Carotene nanodispersions: preparation, characterization and stabilityevaluation [J]. Food Chemistry,2005,92(4):661-671.
    [107] Yuan Y, Gao Y, Zhao J, et al. Characterization and stability evaluation of [beta]-carotenenanoemulsions prepared by high pressure homogenization under various emulsifying conditions [J]. FoodResearch International,2008,41(1):61-68.
    [108] Singh H, Ye A Q, Horne D. Structuring food emulsions in the gastrointestinal tract to modify lipiddigestion [J]. Progress in Lipid Research,2009,48(2):92-100.
    [109] McClements D J, Decker E A, Park Y. Controlling Lipid Bioavailability through Physicochemicaland Structural Approaches [J]. Crit Rev Food Sci Nutr,2009,49(1):48-67.
    [110] Lundin L, Golding M, Wooster T J. Understanding food structure and function in developing food forappetite control [J]. Nutrition&Dietetics,2008,65: S79-S85.
    [111] Nik A M, Langmaid S, Wright A J. Digestibility and beta-carotene release from lipid nanodispersionsdepend on dispersed phase crystallinity and interfacial properties [J]. Food&Function,2012,3(3):234-245.
    [112] Mun S, Decker E A, McClements D J. Influence of emulsifier type on in vitro digestibility of lipiddroplets by pancreatic lipase [J]. Food Research International,2007,40(6):770-781.
    [113] Chung C, Sanguansri L, Augustin M A. In vitro lipolysis of fish oil microcapsules containing proteinand resistant starch [J]. Food Chemistry,2011,124(4):1480-1489.
    [114] Golding M, Wooster T J. The influence of emulsion structure and stability on lipid digestion [J].Current Opinion in Colloid&Interface Science,2010,15(1-2):90-101.
    [115] Madene A, Jacquot M, Scher J, et al. Flavour encapsulation and controlled release-a review [J].International Journal of Food Science and Technology,2006,41(1):1-21.
    [116] van den Hoven J M, Metselaar J M, Storm G, et al. Cyclodextrin as membrane protectant inspray-drying and freeze-drying of PEGylated liposomes [J]. International Journal of Pharmaceutics,2012,438(1-2):209-216.
    [117] Frascareli E C, Silva V M, Tonon R V, et al. Determination of critical storage conditions of coffee oilmicrocapsules by coupling water sorption isotherms and glass transition temperature [J]. InternationalJournal of Food Science and Technology,2012,47(5):1044-1054.
    [118] Murugesan R, Orsat V. Spray Drying for the Production of Nutraceutical Ingredients—A Review [J].Food and Bioprocess Technology,2012,5(1):3-14.
    [119] Achir N, Randrianatoandro V A, Bohuon P, et al. Kinetic study of beta-carotene and luteindegradation in oils during heat treatment [J]. European Journal of Lipid Science and Technology,2010,112(3):349-361.
    [120] Bi L, Yang L, Bhunia A K, et al. Carbohydrate Nanoparticle-Mediated Colloidal Assembly forProlonged Efficacy of Bacteriocin Against Food Pathogen [J]. Biotechnology and Bioengineering,2011,108(7):1529-1536.
    [121]王雪毓.淀粉基水分散体薄膜包衣材料及其释放行为的研究[D]:[博士学位论文].广州:华南理工大学,2011.
    [122] Li Y, Shoemaker C F, Ma J, et al. Effects of Alcalase/Protease N treatments on rice starch isolationand their effects on its properties [J]. Food Chemistry,2009,114(3):821-828.
    [123] Tadros T, Izquierdo R, Esquena J, et al. Formation and stability of nano-emulsions [J]. Advances inColloid and Interface Science,2004,108:303-318.
    [124] Scheffler S L, Wang X, Huang L, et al. Phytoglycogen Octenyl Succinate, an AmphiphilicCarbohydrate Nanoparticle, and epsilon-Polylysine To Improve Lipid Oxidative Stability of Emulsions [J].Journal of Agricultural and Food Chemistry,2010,58(1):660-667.
    [125] Scheffler S L, Huang L, Bi L, et al. In Vitro Digestibility and Emulsification Properties ofPhytoglycogen Octenyl Succinate [J]. Journal of Agricultural and Food Chemistry,2010,58(8):5140-5146.
    [126] Yang X Q, Tian H X, Ho C T, et al. Inhibition of Citral Degradation by Oil-in-Water NanoemulsionsCombined with Antioxidants [J]. Journal of Agricultural and Food Chemistry,2011,59(11):6113-6119.
    [127] Stang M, Schuchmann H, Schubert H. Emulsification in High-Pressure Homogenizers [J].Engineering in Life Sciences,2001,1(4):151-157.
    [128] Wong K-S, Kubo A, Jane J-l, et al. Structures and Properties of Amylopectin and Phytoglycogen inthe Endosperm of sugary-1Mutants of Rice [J]. Journal of Cereal Science,2003,37(2):139-149.
    [129] Laguna M T R, Medrano R, Plana M P, et al. Polymer characterization by size-exclusionchromatography with multiple detection [J]. Journal of Chromatography A,2001,919(1):13-19.
    [130] Zammit M D, Davis T P. A comparison of calibration procedures for the analysis of broad molecularweight distributions using size exclusion chromatography with multiple detection [J]. Polymer,1997,38(17):4455-4468.
    [131] Yokoyama W, Renner-Nantz J J, Shoemaker C F. Starch Molecular Mass and Size by Size-ExclusionChromatography in DMSO-LiBr Coupled with Multiple Angle Laser Light Scattering [J]. CerealChemistry Journal,1998,75(4):530-535.
    [132] Zhong F, Yokoyama W, Wang Q, et al. Rice starch, amylopectin, and amylose: Molecular weightand solubility in dimethyl sulfoxide-based solvents [J]. Journal of Agricultural and Food Chemistry,2006,54(6):2320-2326.
    [133]李玥,钟芳,麻建国.大米直链淀粉分子量分布及分子旋转半径的研究[J].农业工程学报,2007,23(11):36-41.
    [134]缪铭,张涛,江波.高效排阻色谱-多角度激光散射分析淀粉分子特征[J].食品科学,2009,30(21):119-122.
    [135] Chan H-T, Leh C P, Bhat R, et al. Molecular structure, rheological and thermal characteristics ofozone-oxidized starch [J]. Food Chemistry,2011,126(3):1019-1024.
    [136] Qi Z H, Xu A. Starch-based ingredients for flavor encapsulation starch [J]. Cereal Foods World,1999,44(7):460-465.
    [137]朱卫红.微胶囊化薄荷油的制备[D]:[硕士学位论文].无锡:江南大学,2006.
    [138]卢海凤.辛烯基琥珀酸淀粉酯的制备、性质及应用研究[D]:[硕士学位论文].广州:华南理工大学,2010.
    [139] Yamamoto M, Kuramae R, Yanagisawa M, et al. Light-Scattering Analysis of Native WoodHolocelluloses Totally Dissolved in LiCl-DMI Solutions: High Probability of Branched Structures inInherent Cellulose [J]. Biomacromolecules,2011,12(11):3982-3988.
    [140]张攀峰,陈玲,李晓玺,李琳,刘国琴,苏健裕.不同支链/支链比的玉米淀粉分子质量及其构象[J].食品科学,2010,31(19):157-160.
    [141] Lee J H, Han J-A, Lim S-T. Effect of pH on aqueous structure of maize starches analyzed byHPSEC-MALLS-RI system [J]. Food Hydrocolloids,2009,23(7):1935-1939.
    [142] Guo L, Liang Q, Du X. Effects of molecular characteristics of on konjac glucomannan glasstransitions of potato amylose, amylopection and their mixtures [J]. Journal of the Science of Food andAgriculture,2011,91(4):758-766.
    [143] Wyatt P J. Handbook of Size Exclusion Chromatography and Related Techniques [M].2nd ed. NewYork: Marcel Dekker,2004.
    [144] Isogai A Y, M. Characterization of Lignocellulosic Materials [M]. Oxford: Blackwell Publishing,2009.
    [145] Wyatt P J. Light scattering and the absolute characterization of macromolecules [J]. AnalyticaChimica Acta,1993,272(1):1-40.
    [146] Fissell W H, Hofmann C L, Smith R, et al. Size and conformation of Ficoll as determined bysize-exclusion chromatography followed by multiangle light scattering [J]. American Journal ofPhysiology-Renal Physiology,2010,298(1): F205-F208.
    [147] Yoo S-H, Jane J-l. Molecular weights and gyration radii of amylopectins determined byhigh-performance size-exclusion chromatography equipped with multi-angle laser-light scattering andrefractive index detectors [J]. Carbohydrate Polymers,2002,49(3):307-314.
    [148] Tomasik P, Michalski O, Bidzinska E, et al. Radioprotective thermally generated free-radical dextrins[J]. Chinese Science Bulletin,2008,53(7):984-991.
    [149] Lii C Y, Liao C D, Stobinski L, et al. Effects of hydrogen, oxygen, and ammonia low-pressure glowplasma on granular starches [J]. Carbohydrate Polymers,2002,49(4):449-456.
    [150] Mansourighasri A, Muhamad N, Sulong A B. Processing titanium foams using tapioca starch as aspace holder [J]. Journal of Materials Processing Technology,2012,212(1):83-89.
    [151]洪雁,顾正彪.淀粉及变性淀粉颗粒形貌结构的研究[J].食品与发酵工业,2006,32(7):19-23.
    [152] Baydoun L, Furrer P, Gurny R, et al. New surface-active polymers for ophthalmic formulations:evaluation of ocular tolerance [J]. European Journal of Pharmaceutics and Biopharmaceutics,2004,58(1):169-175.
    [153] Alftren J, Penarrieta J M, Bergenstahl B, et al. Comparison of molecular and emulsifying propertiesof gum arabic and mesquite gum using asymmetrical flow field-flow fractionation [J]. Food Hydrocolloids,2012,26(1):54-62.
    [154]梁钦.魔芋胶对直链淀粉和支链淀粉热力学及质构特性的影响[D]:[硕士学位论文].安徽:安徽农业大学,2011.
    [155] Mortenson M A, Reineccius G A. Encapsulation and release of menthol. Part1: the influence ofOSAn modification of carriers on the encapsulation of L-menthol by spray drying [J]. Flavour andFragrance Journal,2008,23(6):392-397.
    [156] Yu H, Huang Y, Huang Q. Synthesis and Characterization of Novel Antimicrobial Emulsifiers fromepsilon-Polylysine [J]. Journal of Agricultural and Food Chemistry,2010,58(2):1290-1295.
    [157] Benichou A, Aserin A, Garti N. Polyols, high pressure, and refractive indices equalization forimproved stability of W/O emulsions for food applications [J]. Journal of Dispersion Science andTechnology,2001,22(2-3):269-280.
    [158]朱卫红,许时婴,江波.微胶囊壁材辛烯基琥珀酸酯化淀粉的界面性质和乳化稳定性[J].食品科学,2006,27(12):79-84.
    [159] Tan C P, Nakajima M. Effect of polyglycerol esters of fatty acids on physicochemical properties andstability of β-carotene nanodispersions prepared by emulsification/evaporation method [J]. Journal of theScience of Food and Agriculture,2005,85(1):121-126.
    [160] Ohara K, Origuchi T, Nagaoka S. Singlet Oxygen Lifetime in Vitamin E Emulsion Depends on theOil-Droplet Size [J]. Bulletin of the Chemical Society of Japan,2010,83(3):246-253.
    [161] Relkin P, Jung J M, Ollivon M. Factors affecting vitamin degradation in oil-in-water nano-emulsions[J]. Journal of Thermal Analysis and Calorimetry,2009,98(1):13-18.
    [162] Huang P H, Lu H T, Wang Y T, et al. Antioxidant Activity and Emulsion-Stabilizing Effect of PecticEnzyme Treated Pectin in Soy Protein Isolate-Stabilized Oil/Water Emulsion [J]. Journal of Agriculturaland Food Chemistry,2011,59(17):9623-9628.
    [163] Choi S J, Decker E A, Henson L, et al. Stability of Citral in Oil-in-Water Emulsions Prepared withMedium-Chain Triacylglycerols and Triacetin [J]. Journal of Agricultural and Food Chemistry,2009,57(23):11349-11353.
    [164] Adamiec J, Kalemba D. Analysis of microencapsulation ability of essential oils during spray drying[J]. Drying Technology,2006,24(9):1127-1132.
    [165] Wu D H, Chen A D, Johnson C S. An Improved Diffusion-Ordered Spectroscopy ExperimentIncorporating Bipolar-Gradient Pulses [J]. Journal of Magnetic Resonance, Series A,1995,115(2):260-264.
    [166] Kim Y D, Morr C V. Microencapsulation Properties of Gum Arabic and Several Food Proteins:Spray-Dried Orange Oil Emulsion Particles [J]. Journal of Agricultural and Food Chemistry,1996,44(5):1314-1320.
    [167] Hammer K A, Carson C F, Riley T V. Antimicrobial activity of essential oils and other plant extracts[J]. Journal of Applied Microbiology,1999,86(6):985-990.
    [168] Donsi F, Senatore B, Huang Q, et al. Development of Novel Pea Protein-Based Nanoemulsions forDelivery of Nutraceuticals [J]. Journal of Agricultural and Food Chemistry,2010,58(19):10653-10660.
    [169] Terjung N, Loeffler M, Gibis M, et al. Influence of droplet size on the efficacy of oil-in-wateremulsions loaded with phenolic antimicrobials [J]. Food&Function,2012,3(3):290-301.
    [170] Li Y, Le Maux S, Xiao H, et al. Emulsion-Based Delivery Systems for Tributyrin, a Potential ColonCancer Preventative Agent [J]. Journal of Agricultural and Food Chemistry,2009,57(19):9243-9249.
    [171] Soma J, Papadopoulos K D. Ostwald ripening in sodium dodecyl sulfate-stabilized decane-in-wateremulsions [J]. Journal of Colloid and Interface Science,1996,181(1):225-231.
    [172] Zeeb B, Gibis M, Fischer L, et al. Influence of interfacial properties on Ostwald ripening incrosslinked multilayered oil-in-water emulsions [J]. Journal of Colloid and Interface Science,2012,387:65-73.
    [173] Pal R. Rheology of simple and multiple emulsions [J]. Current Opinion in Colloid& InterfaceScience,2011,16(1):41-60.
    [174] McClements D J, Henson L, Popplewell L M, et al. Inhibition of Ostwald Ripening in ModelBeverage Emulsions by Addition of Poorly Water Soluble Triglyceride Oils [J]. Journal of Food Science,2012,77(1): C33-C38.
    [175] Fanun M. Structure probing of water/mixed nonionic surfactants/caprylic-capric triglyceride systemusing conductivity and NMR [J]. Journal of Molecular Liquids,2007,133(1-3):22-27.
    [176] Taherian A R, Fustier P, Ramaswamy H S. Effects of added weighting agent and xanthan gum onstability and rheological properties of beverage cloud emulsions formulated using modified starch [J].Journal of Food Process Engineering,2007,30(2):204-224.
    [177] Pal R. Effect of droplet size on the rheology of emulsions [J]. AIChE Journal,1996,42(11):3181-3190.
    [178] Buranasuksombat U, Kwon Y J, Turner M, et al. Influence of emulsion droplet size on antimicrobialproperties [J]. Food Sci Biotechnol,2011,20(3):793-800.
    [179] Wang Q, Gong J, Huang X, et al. In vitro evaluation of the activity of microencapsulated carvacrolagainst Escherichia coli with K88pili [J]. Journal of Applied Microbiology,2009,107(6):1781-1788.
    [180] Arias R, Lee T C, Logendra L, et al. Correlation of lycopene measured by HPLC with the L, a, bcolor readings of a hydroponic tomato and the relationship of maturity with color and lycopene content [J].Journal of Agricultural and Food Chemistry,2000,48(5):1697-1702.
    [181] Garrett D A, Failla M L, Sarama R J. Development of an in vitro digestion method to assesscarotenoid bioavailability from meals [J]. Journal of Agricultural and Food Chemistry,1999,47(10):4301-4309.
    [182] Liu C S, Glahn R P, Liu R H. Assessment of carotenoid bioavailability of whole foods using aCaco-2cell culture model coupled with an in vitro digestion [J]. Journal of Agricultural and FoodChemistry,2004,52(13):4330-4337.
    [183] Netzel M, Netzel G, Zabaras D, et al. Release and absorption of carotenes from processed carrots(Daucus carota) using in vitro digestion coupled with a Caco-2cell trans-well culture model [J]. FoodResearch International,2011,44(4):868-874.
    [184] McClements D J, Li Y. Review of in vitro digestion models for rapid screening of emulsion-basedsystems [J]. Food&Function,2010,1(1):32-59.
    [185] Lin Y S, Haynes C L. Synthesis and Characterization of Biocompatible and Size-TunableMultifunctional Porous Silica Nanoparticles [J]. Chem Mat,2009,21(17):3979-3986.
    [186] Bohm V, Puspitasari-Nienaber N L, Ferruzzi M G, et al. Trolox equivalent antioxidant capacity ofdifferent geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin [J]. Journal ofAgricultural and Food Chemistry,2002,50(1):221-226.
    [187] Gaziano J M, Johnson E J, Russell R M, et al. Discrimination in absorption or transport ofbeta-carotene isomers after oral supplementation with either all-trans-or9-cis-beta-carotene [J]. AmericanJournal of Clinical Nutrition,1995,61(6):1248-1252.
    [188] Tse K Y, Reineccius G A. Methods to predict the physical stability of flavor-Cloud emulsion [M].In Flavor Technology: Physical Chemistry, Modification, and Process. Washington DC: AmericanChemical Society, ACS Symposium Series610,1995:172-182.
    [189] Goldman M, Horev B, Saguy I. Decolorization of β-Carotene in Model Systems SimulatingDehydrated Foods. Mechanism and Kinetic Principles [J]. Journal of Food Science,1983,48(3):751-754.
    [190] Wagner L A, Warthesen J J. Stability of spray-dried encapsulated carrot carotenes [J]. Journal ofFood Science,1995,60(5):1048-1053.
    [191] Boon C S, McClements D J, Weiss J, et al. Factors Influencing the Chemical Stability of Carotenoidsin Foods [J]. Crit Rev Food Sci Nutr,2010,50(6):515-532.
    [192] Hur S J, Lim B O, Decker E A, et al. In vitro human digestion models for food applications [J]. FoodChemistry,2011,125(1):1-12.
    [193] Sandra S, Decker E A, McClements D J. Effect of interfacial protein cross-linking on the in vitrodigestibility of emulsified corn oil by pancreatic lipase [J]. Journal of Agricultural and Food Chemistry,2008,56(16):7488-7494.
    [194] McClements D J, Li Y. Structured emulsion-based delivery systems: Controlling the digestion andrelease of lipophilic food components [J]. Advances in Colloid and Interface Science,2010,159(2):213-228.
    [195] Golding M, Wooster T J. The influence of emulsion structure and stability on lipid digestion [J].Current Opinion in Colloid& Interface Science,2010,15(1–2):90-101.
    [196] Jumaa M, Muller B W. Lipid emulsions as a novel system to reduce the hemolytic activity of lyticagents: mechanism of the protective effect [J]. European Journal of Pharmaceutical Sciences,2000,9(3):285-290.
    [197] Hu B, Ting Y W, Zeng X X, et al. Cellular uptake and cytotoxicity ofchitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate [J]. CarbohydratePolymers,2012,89(2):362-370.
    [198] Spada J C, Norena C P Z, Marczak L D F, et al. Study on the stability of beta-carotenemicroencapsulated with pinhao (Araucaria angustifolia seeds) starch [J]. Carbohydrate Polymers,2012,89(4):1166-1173.
    [199] Yuwen Wang J L, Rong Liang,Mou-Tuan Huang, Qingrong Huang. Enhancement of in VivoAnti-Inflammation Activity by Freeze-Dried Curcumin Nanoemulsions [J]. Food&Function,2012.
    [200] Rosenberg M, Young S L, Brooker B E, et al. Whey proteins as microencapsulationagents-microencapsulation of anhydrous milkfat-structure evaluation [J]. Food Structure,1993,12(1):31-41.
    [201] Xie Y L, Zhou H M, Qian H F. Effect of addition of peach gum on physicochemical properties ofgelatin-based microcapsule [J]. Journal of Food Biochemistry,2006,30(3):302-312.
    [202] Yang B, Jiang G X, Prasad K N, et al. Crystalline, thermal and textural characteristics of starchesisolated from chestnut (Castanea mollissima Bl.) seeds at different degrees of hardness [J]. Food Chemistry,2010,119(3):995-999.
    [203] Kubo A, Yuguchi Y, Takeniasa M, et al. The use of micro-beam X-ray diffraction for thecharacterization of starch crystal structure in rice mutant kernels of waxy, amylose extender, and sugary1[J]. Journal of Cereal Science,2008,48(1):92-97.
    [204]许靖.维生素A和维生素E纳米球/微球双包埋体系的研究[D]:[硕士学位论文].无锡:江南大学,2008.
    [205] Lee K Y, Lee S, Lee H G. Effect of the Degree of Enzymatic Hydrolysis on the PhysicochemicalProperties and in vitro Digestibility of Rice Starch [J]. Food Sci Biotechnol,2010,19(5):1333-1340.
    [206] Shi G R, Rao L Q, Xie Q J, et al. Characterization of yeast cells as a microencapsulation wallmaterial by Fourier-transform infrared spectroscopy [J]. Vibrational Spectroscopy,2010,53(2):289-295.
    [207] Mundargi R C, Srirangarajan S, Agnihotri S A, et al. Development and evaluation of novelbiodegradable microspheres based on poly(D,L-lactide-co-glycolide) and poly(epsilon-caprolactone) forcontrolled delivery of doxycycline in the treatment of human periodontal pocket: In vitro and in vivostudies [J]. Journal of Controlled Release,2007,119(1):59-68.
    [208] Sheng Y, Wang Q H, Xu X C, et al. Oxidation of cornstarch using oxygen as oxidant without catalyst[J]. Lwt-Food Science and Technology,2011,44(1):139-144.
    [209] Sugama T. Oxidized potato-starch films as primer coatings of aluminium [J]. Journal of MaterialsScience,1997,32(15):3995-4003.
    [210] Zhang B, Huang Q A, Luo F X, et al. Effects of octenylsuccinylation on the structure and propertiesof high-amylose maize starch [J]. Carbohydrate Polymers,2011,84(4):1276-1281.
    [211]殷小梅. DHA和EPA的微胶囊化[D]:[博士学位论文].无锡:江南大学,1999.
    [212]项惠丹.抗氧化微胶囊壁材的制备及其在微胶囊化鱼油中的应用[D]:[硕士学位论文].无锡:江南大学,2008.
    [213] Ramoneda X A, Ponce-Cevallos P A, del Pilar Buera M, et al. Degradation of beta-carotene inamorphous polymer matrices. Effect of water sorption properties and physical state [J]. Journal of theScience of Food and Agriculture,2011,91(14):2587-2593.
    [214] Li N, Taylor L S, Mauer L J. Degradation Kinetics of Catechins in Green Tea Powder: Effects ofTemperature and Relative Humidity [J]. Journal of Agricultural and Food Chemistry,2011,59(11):6082-6090.
    [215] Gilbert V, Rouabhia M, Wang H X, et al. Characterization and evaluation of whey protein-basedbiofilms as substrates for in vitro cell cultures [J]. Biomaterials,2005,26(35):7471-7480.
    [216] ASTM. Standard test methods for oxygen gas transmission rate through plastic films and sheetingusing a coulometric sensor [M]. Annual Book of American. Philadelphia: American Society for Testingand Materials,1995:472-477.
    [217] ASTM. Standard methods for water vapor transmission of materials [M]. Annual book of ASTMstandards,1993:629-636.
    [218] McHugh T H, Avena-Bustillos R, Krochta J M. Hydrophilic Edible Films: Modified Procedure forWater Vapor Permeability and Explanation of Thickness Effects [J]. Journal of Food Science,1993,58(4):899-903.
    [219] Greenspan L. Humidity fixed points of binary saturated aqueous solutions [J]. J Res Nat Bur Stand-APhys Chem1977,81:89-96.
    [220] Andersen A B, Risbo J, Andersen M L, et al. Oxygen permeation through an oil-encapsulating glassyfood matrix studied by ESR line broadening using a nitroxyl spin probe [J]. Food Chemistry,2000,70(4):499-508.
    [221] Arvanitoyannis I, Kalichevsky M, Blanshard J M V, et al. Study of diffusion and permeation of gasesin undrawn and uniaxially drawn films made from potato and rice starch conditioned at different relativehumidities [J]. Carbohydrate Polymers,1994,24(1):1-15.
    [222] Jimenez A, Jose Fabra M, Talens P, et al. Effect of re-crystallization on tensile, optical and watervapour barrier properties of corn starch films containing fatty acids [J]. Food Hydrocolloids,2012,26(1):302-310.
    [223] Yoo S, Krochta J M. Whey protein-polysaccharide blended edible film formation and barrier, tensile,thermal and transparency properties [J]. Journal of the Science of Food and Agriculture,2011,91(14):2628-2636.
    [224] Jimenez A, Jose Fabra M, Talens P, et al. Effect of sodium caseinate on properties and ageingbehaviour of corn starch based films [J]. Food Hydrocolloids,2012,29(2):265-271.
    [225] Zavareze E D, Pinto V Z, Klein B, et al. Development of oxidised and heat-moisture treated potatostarch film [J]. Food Chemistry,2012,132(1):344-350.
    [226] Serris G S, Biliaderis C G. Degradation kinetics of beetroot pigment encapsulated in polymericmatrices [J]. Journal of the Science of Food and Agriculture,2001,81(8):691-700.
    [227] Rawson A, Brunton N, Tuohy M. High pressure-temperature degradation kinetics of polyacetylenesin carrots [J]. Food Chemistry,2012,133(1):15-20.
    [228] Syamaladevi R M, Sablani S S, Tang J, et al. Stability of Anthocyanins in Frozen and Freeze-DriedRaspberries during Long-Term Storage: In Relation to Glass Transition [J]. Journal of Food Science,2011,76(6): E414-E421.
    [229] Spada J C, Zapata Norena C P, Ferreira Marczak L D, et al. Study on the stability of beta-carotenemicroencapsulated with pinhao (Araucaria angustifolia seeds) starch [J]. Carbohydrate Polymers,2012,89(4):1166-1173.
    [230] Selim K, Tsimidou M, Biliaderis C G. Kinetic studies of degradation of saffron carotenoidsencapsulated in amorphous polymer matrices [J]. Food Chemistry,2000,71(2):199-206.
    [231] Rodriguez-Huezo M E, Pedroza-Islas R, Prado-Barragan L A, et al. Microencapsulation by spraydrying of multiple emulsions containing carotenoids [J]. Journal of Food Science,2004,69(7): E351-E359.
    [232] Xie Y L, Zhou H M, Zhang Z R. Effect of relative humidity on retention and stability of vitamin Amicroencapsulated by spray drying [J]. Journal of Food Biochemistry,2007,31(1):68-80.
    [233] Moreau D L, Rosenberg M. Porosity of whey protein-based microcapsules containing anhydrousmilkfat measured by gas displacement pycnometry [J]. Journal of Food Science,1998,63(5):819-823.
    [234] Prado S M, Buera M P, Elizalde B E. Structural Collapse Prevents β-Carotene Loss in a SupercooledPolymeric Matrix [J]. Journal of Agricultural and Food Chemistry,2005,54(1):79-85.
    [235] Whorton C, Reineccius G A. Evaluation of the mechanisms associated with the release ofencapsulated materals from maltodextrin matrices [M]. In Encapsulation and Controlled Release of FoodIngredients. Washington DC: American Chemical Society, ACS Symposium Series590,1995:143-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700