用户名: 密码: 验证码:
固定化酵母细胞制备甘油酯型鱼油
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用固定化柱状假丝酵母细胞对甘油酯型鱼油进行了酶解富集制备的研究,主要研究内容包括脂肪酶活力测定方法的改进、柱状假丝酵母生长及产酶最适条件的优化、采用聚氨酯泡沫对酵母细胞进行固定的方法及条件的摸索、采用固定化柱状假丝酵母对粗鱼油进行酶解等。
     针对传统橄榄油乳化法存在重复性不佳、精确性难以使人信服的缺点,对该法反应体系的各参数和条件进行了优化:以20%橄榄油乳化液5mL代替25%橄榄油乳化液4mL,以3mL磷酸盐缓冲液代替5mL磷酸盐缓冲液,将均质处理的速度与时间由高速(>10000r/min)、6min降低为5000r/min、2min,将反应体系温度由40℃降低为35℃,改变静止的反应环境为在100r/min下振荡反应,选择在空白组反应体系中加入1mL 0.025 mol·L~(-1) pH7.5磷酸缓冲液代替1mL酶液。在该条件下,脂肪酶催化能力得到了最大的释放,与传统方法比较,优化的反应体系测得的脂肪酶活力提高了35%以上,且重复性好,精密度高,对相关的研究有一定的指导和借鉴意义。
     分别采用单因素试验法和正交试验法对柱状假丝酵母的生长条件进行了摸索,发现该酵母菌最适生长温度为25℃,生长环境为酸性,且在pH5.2、摇床转速为150r/min时产酶能力最强,接种10h后进入对数生长期,25h后进入稳定期,45h后进入衰亡期;最佳培养基配方为橄榄油浓度6.0 g·L~(-1)、酵母膏浓度9.0 g·L~(-1)、吐温-80 1%、Ca~(2+)0.5g·L~(-1)、K_2HPO_4 3 g·L~(-1)、MgSO_4·7H_2O 1 g·L~(-1)。在最适产酶条件下,重复发酵5批后的平均酶活在15.00U·mL~(-1)左右,RSD为2.34%,重复性较好。该株柱状假丝酵母可以油脂为单一碳源,且酶活高于其它试验碳源的酶活,在油脂诱导下,脂肪酶伴随细胞的生长而产生,但在有其他碳源存在时,酵母优先利用其他碳源。该柱状假丝酵母生存环境为酸性,并在pH5.2时产酶效果最好,推测其产生的脂肪酶为酸性脂肪酶,对油脂水解产生的游离脂肪酸将会有一定程度的抵抗作用,研究意义明显。
     以市售聚氨酯泡沫为载体,考察了五种载体预处理方式对细胞固定及产酶的影响,确定最有效的处理方式为先用1%的NaOH溶液处理24h,再用1%的HCl溶液处理24h;考察六种载体尺寸对细胞固定及产酶的影响,确定载体的最佳尺寸为2.0cm×2.0cm×0.5cm;摇床转速影响是培养基的溶氧量和细胞的固着,在本试验中,150r/min下获得的固着态细胞更多,发酵液酶活也更高;从发酵液酶活和试验成本两方面考虑,确定向150ml培养基中投放12块尺寸为2.0cm×2.0cm×0.5cm的载体为佳。固定化细胞经水洗6次后,载体内的固着态细胞干重为水洗前的42.1%,稍低于文献报道。固定化细胞发酵无论是在总生物量上,还是在发酵液酶活上,均保持一定的优势。
     利用固定化酵母细胞对精制鱼油进行甘油酯型DHA/EPA的酶解富集,确定摇床转速为110r/min、油水比为3:40、酶解时间为30h时,DHA/EPA总含量可达到28.55%。
In this paper, glyceride fish oil was prepared by enzymatic studies with immobilized Candida Cylindracea cell. The main contents included the development of lipase activity determination, optimization of Candida Cylindracea growth and optimal conditions for enzyme production, the exploration of Candida Cylindracea cell fix with polyurethane foam and the hydrolysis of crude fish oil with immobilized Candida Cylindracea and so on.
     The traditional olive oil emulsion method was with shortcomings of poor reproducibility and low accuracy, so the parameters and reaction conditions were optimized: the 4mL, 25% olive oil emulsion instead of 5mL, 20% olive oil emulsion was used and the 3ml phosphate buffer instead of 5ml phosphate buffer was used. Meanwhile, the homogenization speed and time from high-speed (> 10000r/min), 6min reduced to 5000r/min, 2min; the reaction temperature decreased from 40℃to 35℃; the static reaction environment was changed to 100r/min oscillation; 1ml, 0.025mol / L phosphate buffer at pH7.5 was added in the control group instead of 1ml enzyme solution. Under optimum conditions, lipase activity was increased by 35% than the activity of before optimization. The method is with high precision and good repeatability and can be a reference for related study.
     The Candida Cylindracea growth conditions were explored by single factor test and orthogonal test. The results showed that the optimum temperature for Candida Cylindracea growth was 25℃, the living environment was acidic, and when pH was 5.2 and rotation speed was 150r/min, it had the strongest enzyme production ability. 10h after inoculation, it was in logarithmic growth phase and 25h after inoculation was the stable phase and after 45h was the decline phase; The best medium was olive oil concentration of 6.0 g·L~(-1), yeast extract concentration of 9.0 g·L~(-1), Tween-80 1%, Ca~(2 +)0.5 g·L~(-1), K_2HPO_4 3.0 g·L~(-1), MgSO_4·7H_2O 1.0 g·L~(-1). Under the optimum conditions for enzyme production, after 5 times of repeated experiments, the average enzyme activity was around 15.00U/ml and RSD was 2.34% with good reproducibility. The Candida Cylindracea can use cylindrical oil as single carbon source and the enzyme activity was better than other carbon source tests. With oil induction, lipase was produced with cell growth, but in the presence of other carbon sources, yeast uses other carbon sources first. The living environment for the Candida was acid and enzyme production was the best when pH was 5.2, suggesting that it produced acid lipase. Fat hydrolysis on free fatty acids will be resistant to a certain extent and it has clear research meaning.
     With commercial polyurethane foam as a carrier, the impact of five kinds of pretreatment patterns on cell fixation and enzyme production were investigated and the most effective treatment was first with 1% NaOH solution treatment for 24h, and then 1% HCl solution treatment for 24h; the impact of six different carrier sizes on cells fixation and enzyme production was also investigated and the best carrier size was 2.0cm×2.0cm×0.5cm; rotation speed influenced the dissolved oxygen amount and cell fixation and in the test, fixed cells were more and broth activity was also higher under150r/min; considered from the cost of test and fermentation activity, the best carrier was to put 12 carriers with size 2.0cm×2.0cm×0.5cm in 150ml .after Immobilized cells were washed 6 times, the dry cell weight in the carrier was of 42.1% of the pre-washed state, slightly lower than reported in the literature. Immobilized cell fermentation maintains a certain advantage either in total biomass, or in the activity of the fermentation broth.
     Immobilized yeast cells was used in refined fish oil to enrich glyceride DHA/EPA .when the rotation speed was 110r/min, ratio of oil to water was 3:40 and reaction time was 30h, the total DHA / EPA content can reach 28.55%.
引文
[1]张义明.DHA的来源及合理利用[J].食品工业科技, 2003, (8):98~100.
    [2] Mori T A, Bao D Q, Burke V, et al. Docosahexaenoic Acid but not Eicosapentaenoic Acid Lowers Smbulatory Blood Pressure and Heart Rate in Humans[J]. Hypertension, 1999, 34: 253~260.
    [3]徐铮奎.鱼油行情居高不下[N].医药经济报, 2009, (12).
    [4]徐铮奎.鱼油红透保健品市场半边天[N].医药经济报, 2007, (4).
    [5]苏奎.鱼油也涨价[N].医药经济报, 2008, (5).
    [6]唐青涛,余若黔,宗敏华等.脂肪酶富集DHA和EPA的研究进展[J].华西药学杂志, 2001, 16 (4) :289~292.
    [7]石红旗,缪锦来,李光友等.脂肪酶催化水解法浓缩鱼油DHA甘油酯的研究[J].中国海洋药物, 2001, (4): 15~21.
    [8] R. Gupta, N. Gupta, P. Rathi.Bacterial Lipases: An Overview of Production, Purification and Biochemical Properties[J].Microbiol Biotechnol, 2004, (64): 763~781.
    [9] Bornscheuer, U.T.. Lipase-Catalyzed Syntheses of Monoacyl-glycerols[J].Enzyme Microb. Technol, 1995, (17):578~586.
    [10]贾洪峰,贺稚非,刘丽娜等.微生物脂肪酶研究及其在食品中的应用[J].粮食与油脂, 2006, (7): 16~19.
    [11]汪小锋,王俊,杨江科等.微生物发酵生产脂肪酶的研究进展[J].生物技术通报, 2008, (4): 47~53.
    [12]魏决.脂肪酶在富集长碳链多不饱和脂肪酸中的应用[J].西部粮油科技, 2005, (3): 31~33.
    [13] Mayankt. Patel, R. Nagarajan, Arun Kilara.Interactive Influence and Optimization of Reaction Parameters in the Hydrolysis of Olive and Coconut Triacylglycerols by C. cylindracea and R.javanicus Lipases in Reverse Micellar Media[J]. Biochemistry and Biotechnology, 1995, 59:109~124.
    [14]张中义,吴新侠.脂肪酶的研究进展[J].食品与药品, 2007, 9(12): 54~56.
    [15] Jyh-Ping Chert, Jiun-Bin Wang, Hwai-Shen Liu.Alcoholysis of Olive Oil For Producing Wax Esters Byintracel -Lipase in Immobilized Fungus Cells[J].Biotechnology Letters, 1995, 17(11):1177~1182.
    [16] M. Chati'Opadhyay, A.K. Banik, S. Raychaudhur.Production and Purification of Lipase by a Mutant Strain of Rhizopus arrhizus [J].Folia Microbiol, 1999, 44 (1), 37~40.
    [17]王运吉,张苓花,张传明,等.固定化胞内脂肪酶选择性水解鱼油[J].食品工业科技, 2003, (1): 30~33.
    [18]郑毅,郑楠,卓进锋等.利用脂肪酶提高鱼油中多不饱和脂肪酸( PUFAs)甘油酯[J].应用与环境生物学报, 2005, 11 (5): 571~574.
    [19]吴可克.酶促鱼油选择性水解制备EPA、DHA甘油酯的研究[J].中国油脂, 2002, 27(3): 91~93.
    [20]龚福生,施巧琴,吴松刚.不同微生物碱性脂肪酶对底物水解能力的比较[J].福建轻纺, 2000, (1): 1~4.
    [21] Shishikura A, Fujimoto K, Suzuki T, et al. Improved Lipase-Catalyzed iIncorporation of Long-Chain Fatty Acids into Medium-Chain Triglycerides Assisted by Supercritical Carbon Dioxide Extraction[J].J Am Oil Chem Soc, 1994, 71: 961.
    [22]杨从发,王淑军,陈静,等.海洋微生物碱性脂肪酶生产菌的分离选育[J].淮海工学院学报, 2000, 9(4): 45~48, 52.
    [23] Mehwish Riaz, Aamer Ali Shah, Abdul Hameed, et al.Characterization of Lipase Produced by Bacillus sp. FH5 in Immobilized and Free State[J].Ann Microbiol, 2010, (60):169~175.
    [24]李燕,潘运国,连毅.微生物脂肪酶催化及其性质研究进展[J].粮食与油脂, 2005, (10): 15~17.
    [25] Cristina Otero, Eitel Pastor, Victor M. Fernandez, et al.Influence of The Support on The Reaction Course of Tributyrin Hydrolysis Catalyzed by Soluble and Immobilized Lipases[J]. Biochemistry and Biotechnology, 1990, 23:237~247.
    [26] Yukihisa Tanaka, Jim Hirano, Tadashi Funada.Concentration of Docosahexaenoic Acid in Glyceride by Hydrolysis of Fish Oil with Candida cylindracea Lipase[J].JAOCS, 1992, 69(12):1210~1214.
    [27]杜元峰,乔卫红,李宗石.脂肪酶法浓缩鱼油中EPA和DHA的研究现状和发展趋势[J].表面活性剂工业, 1999, (2): 1~3, 31.
    [28] Beom Soo Kim, AE Ching T. Hou.Production of Lipase by High Cell Density Fed-Batch Culture of Candida cylindracea[J].Bioprocess Biosyst Eng, 2006, 29: 59~64.
    [29] Wanasundara, Shahidi F.. Lipase-Assisted Concentration of n-3PUFA in Acylglycerols From Marine Oils. J. American oil Chemist s’Society, 1998, 75(8) :945~957.
    [30] Tanaka Y., Funada T., Hi, ano J.. Concentration of DHA in Glyceride by Hydrolysis of Fish Oil with Candida cylindracea Lipase. J. American Oil Chemists’Society, 69 :1210~1214.
    [31]郑毅,叶海梅,周虓,等.脂肪酶活力测定研究进展[J].工业微生物, 2005, 35(4):36~40.
    [32]周晓云.酶技术[M].北京:石油工业出版社, 1995.
    [33]张磊,张烨,侯红萍等.固定化细胞技术的研究进展[J].畜牧兽医科技信息, 2006, (2): 17~18.
    [34] Yashwant M. Deo, G. Maurice Gaucher.Effect of Nitrogen Supplementation on The Longevity of Antibiotic Production by Immobilized Cells of Penicillium Urticae[J].Mierobiol Biotechnol, 1985, 21:220~227.
    [35] Said Galai, Ferid Limam, M. Nejib Marzouki.Decolorization of An Industrial Effluent by Free and Immobilized cells of Stenotrophomonas maltophilia AAP56. Implementation of Efficient Down Flow Column Reactor[J].Microbiol Biotechnol, 2010, 26:1341~1347.
    [36] R. J. Varma, B. G. Gaikwad.Continuous Phenol Biodegradation in A Simple Packed Bed Bioreactor of Calcium Alginate-Immobilized Candida tropicalis (NCIM 3556)[J].Microbiol Biotechnol, 2010, 26:805~809.
    [37] S. Bazot, T. Lebeau.Simultaneous Mineralization of Glyphosate and Diuron by A Consortium of Three Bacteria as Free-and/or Immobilized-Cells Formulations[J].Microbiol Biotechnol, 2008, 77:1351~1358.
    [38] Jintae Lee, Moo Hwan Cho.Removal of Nitrogen in Wastewater by Polyvinyl Alcohol (PVA)-Immobilization of Effective Microorganismss[J].Korean J. Chem. Eng., 2010, 27(1):193~197.
    [39] Xuewu Guo, Jun Zhou, Dongguang Xiao.Improved Ethanol Production by Mixed Immobilized Cells of Kluyveromyces Marxianus and Saccharomyces Cerevisiae from Cheese Whey Powder Solution Fermentation[J].Biochem Biotechnol, 2010, 160:532~538.
    [40] Carlos Garbisu, Jone M. Gil, Michael J. Bazin, et al.Removal of Nitrate from Water by Foam-Immobilized Phormidium Laminosum in Batch and Continuous-Flow Bioreactors[J].Phycology, 1991, 3: 221~234.
    [41] Swati L. Zala, Jayalexmy Ayyer, Anjana J. Desai.Nitrate Removal from The Effluent of a Fertilizer Industry Using a Bioreactor Packed with Immobilized Cells of Pseudomonas stutzeri and Comamonas Testosteroni[J].Microbiology Biotechnology, 2004, 20: 661~665.
    [42] P?nar Karag?z, Elif Erhan, Bülent Keskinler.The Use of Microporous Divinyl Benzene Copolymer for Yeast Cell Immobilization and Ethanol Production in Packed-Bed Reactor[J].Biochem Biotechnol, 2009, 152:66~73.
    [43]吕微,伍季,付有利.固定化细胞技术及其在食品工业中的应用[J].江西农业学报, 2008, 20 (2): 76~78.
    [44] Yuji Shimada, Kazuaki Maruyama, Akio Sugihara, et al.Purification of Ethyl Docosahexaenoate by Selective Alcoholysis of Fatty Acid Ethyl Esters with Immobilized Rhizomucor miehei Lipase[J].JAOCS, 1998, 75(11):1165~1171.
    [45]王运吉,张苓花,张传明等.固定化胞内脂肪酶选择性水解鱼油[J].食品工业科技, 2003, (1): 30~33.
    [46] Pieter J. Verbelen, David P. De Schutter, Filip Delvaux. Immobilized Yeast Cell Systems for Continuous Fermentation Applications[J]. Biotechnol Lett, 2006, 28:1515~1525.
    [47]李玉龙,白姝,孙彦等.聚氨酯泡沫载体固定化米根霉的双层反应-扩散模型[J].化工学报, 1998, 49(4): 462~469.
    [48] G. Kuncova, J. Szilva, J. Hetflejs, et al.Catalysis in Organic Solvents with Lipase Immobilized by Sol-Gel Technique[J].Sol-Gel Science and Technology, 2003, 26:1183~1187.
    [49] Toma′sˇBra′nyik, Daniel P. Silva, Anto′nio A. Vicente, et al.Continuous Immobilized Yeast Reactor System for Complete Beerfermentation Using Spent Grains and Corncobs as Carrier Materials[J].J Ind Microbiol Biotechnol, 2006, 33:1010~1018.
    [50] Jyh-Ping Chert, Jiun-Bin Wang, Hwai-Shen Liu.Alcoholysis of Olive Oil For Producing Wax Esters Byintracel -Lipase in Immobilized Fungus Cells[J].Biotechnology Letters, 1995, 17(11):1177~1182.
    [51] M. Chati'Opadhyay, A.K. Banik, S. Raychaudhur.Production and Purification of Lipase by a Mutant Strain of Rhizopus arrhizus [J].Folia Microbiol, 1999, 44 (1), 37~40.
    [52]王乐,袁其朋,常铮,等.聚氨酯固定化热带假丝酵母发酵木糖醇[J].微生物学通报, 2009, 36(7): 943~948.
    [53]李玉龙,白姝,孙彦等.聚氨酯泡沫载体固定化米根霉的双层反应-扩散模型[J].化工学报, 1998, 49(4): 462~469.
    [54]元英进,胡宗定.聚氨醋泡沫固定化长春花细胞生产生物碱的研究[J].化学反应工程与工艺, 1994, 10(2): 195~199.
    [55]钟卫鸿,岑沛霖,陈瑶等.聚氨酯泡沫固定化黑曲霉P-6021可同时产果胶酶和澄清果汁[J].菌物系统, 2001, 20(2): 503~507.
    [56]崔小英,陈德兆.聚氨酯泡沫固定化米根霉发酵L-乳酸的研究[J].纺织科技进展, 2005, (6): 11~13.
    [57] Peilian Wei, Jie Chen, Yinghua Lu, et al.High Density Cultivation of Dictyostelium Discoideum in a Rotating Polyurethane Foam-Bed Bioreactor[J]. Microbiol Biotechnol, 2010, 26:1117~1123.
    [58]张万宽,李润,陈德朴,等.用于分离EPA和DHA的新型HPLC固定相(Ⅱ)[J].清华大学学报(自然科学版),2001,41(4/5):24~27.
    [59]王学彤,张书圣,白吉洪,等.高效液相色谱法分离制备鱼油中的EPA和DHA[J].分析试验室, 1999,18(1): 42~45.
    [60]全文琴,陈小娥,陈洁,等.高效液相色谱/质谱联用直接测定鱼油中EPA/DHA含量[J].食品与机械, 2008, 24(2): 114.
    [61]施巧琴.酶工程[M].北京:科学出版社, 2008.
    [62]隋聪颖,顾金刚,徐凤花等.产脂肪酶木霉菌株的筛选鉴定及酶学性质研究[J].生物技术通报, 2008, (5):189~193.
    [63]周军.产脂肪酶菌株的筛选及脂肪酶发酵条件的研究[J].河北农业科学, 2008, 12(2) :1~2.
    [64]孙新城,王开放,杨涛等.脂肪酶高产微生物的筛选及产酶条件的研究[J].食品科技, 2009, 34(10):15~18.
    [65]赵春雷,闫丽娟,谢振荣等.一株耐热脂肪酶产生菌的筛选及酶学性质研究[J].生物技术通报, 2010, (2):184~188.
    [66]蓝卉,蔡宇杰,廖祥儒等.一株低温脂肪酶产生菌的筛选鉴定与产酶发酵初探[J].食品与生物技术学报, 2009, 28(4):550~554.
    [67]高贵,韩四平,王智等.脂肪酶活力检测方法的比较[J].药物生物技术, 2002, 9(5):281~284.
    [68]孙宏丹,胡军,姚民昌.无根根霉脂肪酶的菌株筛选及产酶条件设置[J].大连医科大学学报,2001,23(2):150~152.
    [69]胡常英,马清河,刘丽娜,等.金属离子与生命活动[J].生物学通报, 2005, 40 (8) :6~8 .
    [70]沈萍.微生物学[M].北京:高等教育出版社, 2000.
    [71]欧阳军梅,段学辉,傅奇,等.聚氨酯泡沫固定产脂肪酶粗状假丝酵母(Candida valida T2)细胞的研究[J].生物加工过程, 2008, 6(6): 52~57.
    [72]吴可克.酶促鱼油选择性水解制备EPA、DHA甘油酯的研究[J].中国油脂, 2002, 27(3):91~93.
    [73]刘书成,章超桦,谢燕,等.脂肪酶水解低值鱼油富集EPA和DHA甘油酯的研究[J].中国粮油学报, 2009, 24(3):79~83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700