用户名: 密码: 验证码:
FasL维持椎间盘免疫豁免及诱导髓核细胞凋亡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分纤维环穿刺诱导兔椎间盘退变的动物模型研究
     目的:观察采用18G皮肤穿刺针穿刺纤维环,诱导兔椎间盘退变建立动物模型。方法:新西兰大白兔24只,用持针器夹持18G皮肤穿刺针从左前外侧刺入L3/4、L4/5、L5/6椎间盘的纤维环,深度控制在5mm。术前及术后3、6、10周对造模后的椎间盘及正常的椎间盘(L2/3)行MRI扫描,并在术后3、6、10周对其行免疫组化及组织学观察。结果:MRI结果提示,从术后第3周到第10周,造模后的椎间盘T2WI信号呈现持续减弱趋势,免疫组化及组织学观察发现髓核细胞的数量及Ⅱ型胶原含量进行性减少(p<0.01)。结论:纤维环穿刺法可以诱导兔椎间盘的缓慢退变,这一模型为研究椎间盘退变提供了有效的载体。
     第二部分纤维环穿刺对兔髓核细胞中FasL表达影响的实验研究
     目的了解生理学屏障与FasL的分子生物学效应之间的联系,探讨椎间盘退变的发病机制。方法采用18规格的皮肤穿刺针穿刺家兔纤维环,在术后的3、6、10周收集正常及穿刺后的椎间盘组织,免疫组织化学染色观察Fas与FasL的表达,流式细胞技术分析髓核细胞凋亡指数。结果正常髓核组织中可见少许髓核细胞胞浆中FasL呈弱阳性染色,实验组髓核细胞胞浆则呈强阳性染色。FasL阳性细胞百分比在正常组与各实验组之间的差异具有非常显著性差异(P<0.001,两两比较)。三个实验组的髓核细胞平均凋亡指数明显高于正常组(P<0.001,0.002 and 0.006,两两比较)。实验组髓核细胞FasL阳性表达百分比与Fas阳性表达百分比之间具有显著相关性(r = 0.571, P = 0.0036)。结论FasL与生理学屏障的共同作用,可能是使髓核组织产生免疫豁免效应的一个重要因素。当生理学屏障受到损伤后(如穿刺纤维环),Fas/FasL系统的作用会引起髓核细胞凋亡,这也可能是椎间盘退变的发生机制之一。
     第三部分FasL mRNA在人椎间盘中表达的实验研究
     目的了解FasL目的基因在正常人椎间盘及椎间盘突出症患者椎间盘组织中的表达情况。方法收集16例腰椎间盘突出症患者的椎间盘组织(破裂型与非破裂型各8例)及4例正常人椎间盘组织,通过RT-PCR技术观察FasL,Fas,TNF and IL目的基因的表达情况,并比较其表达程度。结果正常髓核组织中仅有FasL的表达,突出的椎间盘组织中存在FasL,Fas,TNF and IL的表达,而且表达指数在破裂型组与非破裂型组之间具有显著性差异(P<0.05)。结论正常髓核组织中存有FasL的表达,提示FasL是使髓核组织产生免疫豁免效应的一个重要因素。当椎间盘突出时(纤维环破裂),则会在局部激发炎症反应,而髓核细胞通过自分泌或旁分泌途径导致FasL表达增高是可能的机制之一。
Part 1. A Rabbit Model of Disc Degeneration by an Anulus Needle Puncture
     Objective : To establish a slowly progressive, reproducible rabbit model of intervertebral disc degeneration by puncturing the anulus with needles of defined gauges. Method: The L3/4, L4/5 and L5/6 lumbar intervertebral discs of 24 New Zealand White rabbits were stabbed by 18-gauge hypodermic needle to a depth of 5mm in the left anterolateral anulus fibrosus. Magnetic resonance imaging scans, Immunohistochemical and histologic analyses of the stabbed discs and intact L2/3 control discs were performed preoperation or at 3, 6, 10weeks post surgery. Result: Form the magnetic resonance imaging,we detected the stabbed discs exhibited a progressive decrease in signal intensity of T2-weighted images starting at 3 weeks post stab and continuing through 10 weeks. Immunohistochemical and histologic analyses revealed progressive loss of chondrocyte-like cells and type II collagen(p<0.01).Conclusion: The Stabbing approach, resulted in a slowly progressive intervertebral disc degeneration of rabbit. This model would appear suitable for studying and testing safety and efficacy of novel treatments of intervertebral disc degeneration.
     Part 2. The expression of Fas ligand on normal and stabbed disc cells of rabbit IDD model
     Objective To clarify the relation between physiologic barrier and the role of FasL,and investigate a possible pathogenesis of intervertebral disc degeneration (IDD).Methods The anular puncture model of rabbit were established using defined needle gauges and depths. The normal and the stabbed discs were harvested at each time period of 3,6,and 10 weeks after surgery. Immunohistochemical staining of these discs for Fas and FasL was performed by standard procedures. The mean apoptosis index of disc cells was analyzed by flow cytometry.Results The normal discs cells exhibited relatively weak immunopositivity, and the stabbed disc cells exhibited intense immunopositivity. A significant difference in the percentage of FasL-positive disc cells between the normal discs and the stabbed discs (P<0.001). The mean apoptosis indexes at 3 weeks, 6 weeks, 10 weeks post stab were significantly higher than normal disc (P<0.001,0.002 and 0.006, respectively). There was a significant correlation between the degree of FasL-positive expression and the degree of Fas-positive expression of the disc cells post stab (r = 0.571, P = 0.0036). Conclusions This observation indicates that the nucleus pulposus is a 'immune-privileged' sites. The immune privilege is maintained by FasL and the physiologic barrier together. When the physiologic barrier was damaged, the role of FasL changed, coexpressed with Fas induce apoptosis of disc cells. These results indicate that an autoimmune reaction may be a possible pathogenesis of IDD.
     Part 3. The expression of Fas ligand mRNA on human intervertebral disc.
     Objective. To clarify the existence of Fas ligand on intact intervertebral disc cells and herniated lumbar disc tissues.Methods. Sixteen herniated lumbar disc tissues (contained disc, n=8; noncontained disc, n=8)and four normal human disc tissues were examined to investigate the mRNA expression of FasL,Fas,TNF and IL by reverse transcription polymerase chain reaction method. The degeree of mRNA expression were compared.Results. The result of RT-PCR confirmed the existence of Fas ligand in normal and herniated disc tissues, but Fas,TNF and IL mRNA were expressed only in herniated disc tissues. A higher degree of FasL expression in herniated disc cells was found in noncontained discs than in contained discs ( P<0.05). Conclusion. We demonstrated the existence of Fas ligand on normal disc cells, which should play a key role in the potential molecular mechanism to maintain immune privilege of the disc. But after herniation, undergo inflammatory reaction and apoptotic cell death via autocrine or paracrine FasL mechanisms by the disc cells themselves.
引文
1 Anderson JA. Epidemiological aspects of back pain[J]. J Soc Occup Med, 1986, 36: 90–94.
    2 Borenstein D. Epidemiology, etiology, diagnostic evaluation, and treatment of low back pain[J]. Curr Opin Rheumatol , 1992,4:226–232.
    3 Olmarker K, Blomquist J, Stromberg J, et al. Inflammatogenic properties of nucleus pulposus [J]. Spine, 1995,120:665–669.
    4 Satoh K, Konno S, Nishiyama K, et al. Presence and distribution of antigen-antibody complexes in the herniated nucleus pulposus[J]. Spine, 1999,124:1980–19844.
    5 Bellgrau D, Gold D, Selawry H, et al. A role for CD95 ligand in preventing graft rejection [J]. Nature, 1995,1377:630–632.
    6 Griffith TS, Brunner T, Fletcher SM, et al. FasL-induced apoptosis as a mechanism of immune privilege[J]. Science, 1995, 1270: 1189– 1192.
    7 Heyde, CE.Tschoeke SK.Hellmuth M.Trauma induces apoptosis in human thoraco- lumbar intervertebral discs[J].BMC Clin Pathol ,2006, 6:5.
    8 Lipson SJ, Muir H. Proteoglycans in experimental intervertebral disc degeneration [J].Spine 1981;6:194–210.
    9 Osti O, Vernon-Roberts B, Fraser R. Annulus tears and intervertebral disc degeneration [J]. Spine 1990;15:762–7.
    10 Masuda K, Aota Y, Muehleman C,et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration[J]. Spine 2005; 30:5-14.
    11 Sobajima S, John F,Kompel MS, et al. A slowly progressive and reproducible animalmodel of intervertebral disc degeneration characterized by MRI, X-Ray, and sistology [J]. Spine 2005; 30;:15–24.
    12 Holm S, et al. Experimental disc egeneration due to endplate injury[J]. J Spinal Disord Tech 2004;17:64–71.
    13 Jeffrey C. Lotz.Animal models of intervertebral disc degeneration[J].spine, 2004,29: 2742–2750.
    14 Cinotti G, Rocca CD, Romeo S, et al.Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries[J].spine,2005,30: 174–180.
    15 Saas P, Walker PR, Hahne M et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain[J]. J Clin Invest,1997,99:1173 1178.
    1 Gruber HE, Johnson T, Norton HJ, et al. The sand rat model for disc degeneration :radiologic characterization of age-related changes: cross-sectional and prospective analyses.[J] Spine,2002,27(3):230–234.
    2 Cassidy JD,Yong- Hing K,et al.A study of the effects of bipedism and upright posture on the lumbosacral spine and paravertebral muscles of Wistar rat [J]. Spine, 1988, 13(3): 301-308.
    3 Key JA,Ford LT. Experimental intervertebral-disc lesion[J]. J Bone Joint Surg(Am), 1948,30A:621-629.
    4郭常安,胡有谷,吴新彦.腰椎间盘退变动物模型的建立[J].中华外科杂志,2000,38(7),548-551.
    5 Lipson SJ,Muir H.1980 Volvo award in basic science. Proteoglycans in experimenta intervertebral disc degenernation[J]. Spine,1981,6(3):194-210.
    6 Sobajima S, John F,Kompel MS, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-Ray, and sistology[J]. Spine,2005,30(1):15–24.
    7 Masuda K, Aota Y, Muehleman C, et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration [J]. Spine, 2005, 30(1):5-14.
    8 Buckwalter JA. Aging and degeneration of the human intervertebral disc[J]. Spine, 1995 ,20(11): 1307–1314.
    9 Olmarker K, Blomquist J, Stromberg J, et al. Inflammatogenic properties of nucleus pulposus[J]. Spine, 1995,20(6):665–669.
    10 Satoh K, Konno S, Nishiyama K, et al. Presence and distribution of antigen-antibody complexes in the herniated nucleus pulposu s [J]. Spine 1999;124:1980–1984.
    11姜为民,唐天驷,杨惠林.退变腰椎间盘组织的血管浸润现象及其意义[J].中华骨科杂志,1998,18(9):535-537.
    1 Olmarker K, Blomquist J, Stromberg J, et al. Inflammatogenic properties of nucleus pulposus[J]. Spine, 1995,120:665–669.
    2 Satoh K, Konno S, Nishiyama K, et al. Presence and distribution of antigen- antibody complexes in the herniated nucleus pulposus[J]. Spine, 1999,124:1980– 1984.
    3 Bellgrau D, Gold D, Selawry H, et al. A role for CD95 ligand in preventing graft rejection[J]. Nature, 1995,1377:630–632.
    4 Griffith TS, Brunner T, Fletcher SM, et al. FasL-induced apoptosis as a mechanism of immune privilege[J]. Science, 1995,1270:1189–1192.
    5 Nagata S, Golstein P. The Fas death factor[J]. Science 1995;267:1449–1456.
    6 Suda T, Takahashi T, Golstein P, et al.Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family[J]. Cell,1993;75:1169–1178.
    7 Takahashi T, Tanaka M, Brannan CI, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand[J]. Cell,1994;76:969–976.
    8 Ju ST, Panka DJ, Cui H, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation[J]. Nature,1995;373:444–448.
    9 Bechmann I, Mor G, Nilsen J, et al. FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier[J]. Glia,1999;27:62–74.
    10 Runic R, Lockwood CJ, Ma Y, et al. Expression of Fas ligand by human cytotrophoblasts: implications in placentation and fetal survival[J]. J Clin Endocrinol Metab,1996;81:3119–3122.
    11 O’Connell J, Houston A, Bennett MW, et al. Immune privilege or inflammation? Insights into the Fas ligand enigma[J]. Nat Med ,2001;7:271–274.
    12 Allison J, Georgiou HM, Strasser A, et al. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts[J]. Proc Natl Acad Sci USA ,1997;94:3943–3947.
    13 Kang SM, Schneider DB, Lin Z, et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction[J]. Nat Med,1997;3:738–743.
    14 Takeuchi T, Ueki T, Nishimatsu H, et al. Accelerated rejection of Fas ligand expressing heart grafts[J]. J Immunol,1999;162:518–522.
    15 Masuda K, Aota Y, Muehleman C,et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration[J]. Spine, 2005,30:5-14.
    16 Sobajima S, John F,Kompel MS, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-Ray, and histology[J]. Spine,2005,30;:15–24.
    17王靖,唐天驷,姚啸生,等.纤维环穿刺诱导椎间盘退变动物模型的实验研究[J].中国脊柱脊髓杂志,2006,16:284-286.
    18 Park JB, Chang H, Kim KW. Expression of Fas ligand and apoptosis of disc cells in herniated lumbar disc tissue[J]. Spine,2001;26:618–621.
    19 Heyde CE,Tschoeke SK,Hellmuth M.Trauma induces apoptosis in human thoracolumbar intervertebral discs[J].BMC Clin Pathol ,2006;6:5.
    1 Nagata S, Golstein P. The Fas death factor[J]. Science 1995;267:1449–1456.
    2 Suda T, Takahashi T, Golstein P, et al.Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family[J]. Cell,1993;75:1169–1178.
    3 Bellgrau D, Gold D, Selawry H, et al. A role for CD95 ligand in preventing graft rejection[J]. Nature, 1995,1377:630–632.
    4 Griffith TS, Brunner T, Fletcher SM, et al. FasL-induced apoptosis as a mechanism of immune privilege[J]. Science, 1995,1270:1189–1192.
    5 McCarron RF, Wimpee MW, Hudkins PG, et al. The inflammatory effect of nucleus pulposus: a possible element in the pathogenesis of low-back pain.Spine 1987; 12:760–4.
    6 Takahashi T, Tanaka M, Brannan CI, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand[J]. Cell,1994;76:969–976.
    7 Ju ST, Panka DJ, Cui H, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation[J]. Nature,1995;373:444–448.
    8 Bechmann I, Mor G, Nilsen J, et al. FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier[J]. Glia,1999;27:62–74.
    9 Runic R, Lockwood CJ, Ma Y, et al. Expression of Fas ligand by human cytotrophoblasts: implications in placentation and fetal survival[J]. J Clin Endocrinol Metab,1996;81:3119–3122.
    10 Allison J, Georgiou HM, Strasser A, et al. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilegeupon islet allografts[J]. Proc Natl Acad Sci USA ,1997;94:3943–3947.
    11 Kang SM, Schneider DB, Lin Z, et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction[J]. Nat Med,1997;3:738–743.
    12 Takeuchi T, Ueki T, Nishimatsu H, et al. Accelerated rejection of Fas ligand expressing heart grafts[J]. J Immunol,1999;162:518–522.
    13 Miwa K, Asano M, Horai R, et al. Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med 1998;4:1287–92.
    14 Doita M, Kanatani T, Harada T, et al. Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine 1996;21:235–41.
    15 Doita M, Kanatani T, Ozaki T, et al. Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinases leadingto disc resorption. Spine 2001;26:1522–7.
    16 Komori H, Shinomiya K, Nakai O, et al. The natural history of herniated nucleus pulposus with radiculopathy. Spine 1996;21:225–9.
    1 Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine, 2004;29:2700–2709.
    2 Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech,2004;37:213–221.
    3 Horner HA, Urban JP. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine,2001;26:2543–2549.
    4 Rajasekaran S, Naresh Babu J, Arun R, et al. ISSLS prize winner. A study of diffusion in human lumbar discs. Spine,2004;29:2654–2667.
    5 Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases.Curr Opin Cell Biol,2004;16:558–564.
    6 Duffy MJ, Lynn DJ, Lloyd AT, et al. The ADAMs family of proteins: From basic studies to potential clinical applications. Thromb Haemost,2003;89:622–631.
    7 Roberts S, Caterson B, Menage J, et al. Matrix metalloproteinases and aggrecanase: Their role in disorders of the human intervertebral disc. Spine,2000;25:3005–3013.
    8 Urban JP, Roberts S, Ralphs JR. The nucleus of the intervertebral disc from development to degeneration. Am Zool,2000;40:53–61.
    9 Adams MA, Dolan P. Could sudden increases in physical activity cause degeneration of intervertebral discs? Lancet,1997;350:734–735.
    10 Adams MA, Hutton WC. Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in Basic Science. Spine,1982;7:184–191.
    11 Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: Evidencefor changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration.J Clin Invest, 1996;98:996–1003.
    12 Kang JD, Georgescu HI, McIntyre-Larkin L, et al. Herniated lumbar intervertebraldiscs spontaneously produce matrix metalloproteinases, nitric oxide,interleukin-6, and prostaglandin E2. Spine,1996;21:271–277.
    13 Nerlich AG, Schleicher ED, Boos N. 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine,1997;22:2781–2795.
    14 Weiler C, Nerlich AG, Zipperer J, et al. 2002 SSE Award Competition in Basic Science: Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J,2002;11:308–320.
    15 Duance VC, Crean JK, Sims TJ, et al. Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine,1998;23:2545–2551.
    16 Gruber HE, Hanley EN Jr. Ultrastructure of the human intervertebral disc during aging and degeneration: Comparison of surgical and control specimens. Spine,2002;27:798–805.
    17 Melrose J, Ghosh P, Taylor TK, et al. A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J Orthop Res,1992;10:665–676.
    18 Kaigle AM, Holm SH, Hansson TH. 1997 Volvo Award winner in biomechanical studies. Kinematic behavior of the porcine lumbar spine: A chroniclesion model. Spine,1997;22:2796–2806.
    19 Roughley PJ. Biology of intervertebral disc aging and degeneration: Involvement of the extracellular matrix. Spine,2004;29:2691–2699.
    20 Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem,2000; 275:39027–39031.
    21 Bradford DS, Oegema TR Jr, Cooper KM, et al. Chymopapain, chemonucleolysis, and nucleus pulposus regeneration. A biochemical and biomechanical study. Spine,1984;9:135–147.
    22 Buckwalter JA. Aging and degeneration of the human intervertebral disc.Spine, 1995;20:1307–1314.
    23 Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther, 2003;5:120–130.
    24 DeGroot J, Verzijl N, Wenting-Van Wijk MJ, et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum,2004;50:1207–1215.
    25 Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science.Spine, 2002;27:2631–2644.
    26 Nerlich AG, Weiler C, Weissbach S, et al. Age-associated changes in the cell density of the human lumbar intervertebral disc. Presented at: The 51st Annual Meeting of the Orthopaedic Research Society; Feb 20–23, 2005;Washington, DC.
    27 Adams MA, Dolan P, Hutton WC. The stages of disc degeneration as revealed by discograms. J Bone Joint Surg Br,1986;68:36–41.
    28 Maeda S, Kokubun S. Changes with age in proteoglycan synthesis in cells cultured in vitro from the inner and outer rabbit annulus fibrosus. Responses to interleukin-1 and interleukin-1 receptor antagonist protein.Spine,2000;25:166–169.
    29 Silberberg R. Histologic and morphometric observations on vertebral bone of aging sand rats. Spine,1988;13:202–208.
    30 Gruber HE, et al. The sand rat model for disc degeneration. Radiologic characterization of age-related changes: cross-sectional and prospective analyses. Spine, 2002; 27: 230–234.
    31 Ziv I, et al. Physicochemical properties of the aging and diabetic sand rat intervertebral disc. J Orthop Res,1992;10:205–210
    32 Moskowitz RW, et al. Spondylosis in sand rats: a model of intervertebral disc degeneration and hyperostosis. J Orthop Res,1990;8:401–411
    33 Mason RM, Palfrey AJ. Intervertebral disc degeneration in adult mice with hereditary kyphoscoliosis. J Orthop Res,1984;2:333–238
    34 Kimura T, et al. Progressive degeneration of articular cartilage and intervertebral discs: an experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthop,1996;20:177–181.
    35 Noponen-Hietala N, et al. Sequence variations in the collagen IX and XI genes are associated with degenerative lumbar spinal stenosis. Ann Rheum Dis 2003;62:1208–1214.
    36 Roberts S, et al. 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine,1991;16:1030–1038.
    37 Hamrick MW, Pennington C, Byron CD. Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin). J Orthop Res, 2003;21:1025–1032.
    38 Sahlman J, et al. Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen. Spine,2001;26:2558–2565.
    39 Kelsey JL, et al. Acute prolapsed lumbar intervertebral disc: an epidemiologic study with special reference to driving automobiles and cigarette smoking. Spine, 1984;9:608–613.
    40 Lindblom K. Intervertebral disc degeneration considered as a pressure atrophy. J Bone Joint Surg Am,1957;39:933–945.
    41 Goff CW, Landmesser W. Bipedal rats and mice: laboratory animals for orthopaedic research. J Bone Joint Surg Am,1957;39:616–622.
    42 Peacock A. Observations of the postnatal structure of the intervertebral disc in man. J Anat,1952;86:162.
    43 Lotz JC, et al. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine,1998;23:2493–2506.
    44 Iatridis JC, et al. Compression-induced changes in intervertebral disc properties in a rattail model. Spine,1999;24:996–1002.
    45 Palmer EI, Lotz JC. The compressive creep properties of normal and degenerated murine intervertebral discs. J Orthop Res,2004;22:164–169.
    46 Bass EC, et al. Heat-induced changes in porcine annulus fibrosus biomechanics. J Biomech,2004;37:233–240.
    47 Hsieh AH, Lotz JC. Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs. Spine,2003;28:1781–1788.
    48 Ariga K, et al. The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine,2001;26:2414–2420.
    49 Nagano T, et al. Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral discs. Spine, 1995;20:1972–1978.
    50 Wada E, et al. Experimental spondylosis in the rabbit spine: overuse could accelerate the spondylosis. Spine,1992;17(suppl 3):1–6.
    51 Phillips FM, Reuben J, Wetzel FT. Intervertebral disc degeneration adjacent to a lumbar fusion: an experimental rabbit model. J Bone Joint Surg Br, 2002;84:289–294.
    52 Stokes IA, Counts DF, Frymoyer JW. Experimental instability in the rabbit lumbar spine. Spine,1989;14:68–72.
    53 Lipson SJ, Muir H. Proteoglycans in experimental intervertebral disc degeneration. Spine,1981;6:194–210.
    54 Kaapa E, et al. Collagens in the injured porcine intervertebral disc. J Orthop Res, 1994;12:93–102.
    55 Anderson DG, et al. Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model. Spine, 2002;27:1291–1296.
    56 Kaapa E, et al. Collagen synthesis and types I, III, IV, and VI collagens in an animal model of disc degeneration. Spine,1995;20:59–66; discussion 66–67.
    57 Melrose J, et al. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental discdegeneration. Spine,2002;27:1278–1285.
    58 Kaigle AM, Holm SH, Hansson TH. 1997 Volvo Award winner in biomechanical studies. Kinematic behavior of the porcine lumbar spine: a chronic lesion model. Spine,1997;22:2796–2806.
    59 Melrose J, et al. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine,2002;27:1278–1285.
    60 Freemont AJ, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet,1997;350:178–181.
    61 Adams MA, et al. Mechanical initiation of intervertebral disc degeneration. Spine, 2000;25:1625–1636.
    62 Holm S, et al. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech,2004;17:64–71.
    63 Kiester DP, et al. The dose-related effect of intradiscal chymopapain on rabbit intervertebral discs. Spine,1994;19:747–751.
    64 Melrose J, et al. Intervertebral disc reconstitution after chemonucleolysis with chymopapain is dependent on dosage. Spine,1996;21:9–17.
    65 Brinckmann P, Biggemann M, Hilweg D. Fatigue fracture of human lumbar vertebrae. Clin Biomech,1988;(suppl 1):S1–S23.
    66 Maroudas A. Nutrition and metabolism of the intervertebral disc. In: Ghosh P, ed. The Biology of the Intervertebral Disc. CRC Press: Boca Raton, FL: CRC Press, 1988:1–37.
    67 Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc.J Pathol , 2004;204:47–54.
    68 Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther , 2005;7:R732–45.
    69 Anderson DG, Li X, Tannoury T, et al. A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine,2003;28:2338–2345.
    70 Adams MA, McNally DS, Dolan P.‘Stress’distributions inside intervertebral discs. Theeffects of age and degeneration. J Bone Joint Surg Br,1996;78:965–972.
    71 Freemont AJ, Peacock TE, Goupille P, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 1997;350:178–181.
    72 Melrose J, Roberts S, Smith S, et al. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine,2002;27:1278–1285.
    73 Johnson WE, Caterson B, Eisenstein SM, et al. Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine,2005; 30: 1139–1147.
    74 Osti OL, Vernon-Roberts B, Fraser RD. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine,1990;15:762–767.
    75 Ishihara H, McNally DS, Urban JP, et al. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol 1996;80: 839–846.
    76 Handa T, Ishihara H, Ohshima H, et al. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine,1997;22:1085–1091.
    77 Adam J, Corry S.The Bcl- 2 protein family: arbiters of cell survival.Science,1998; 281:1322- 1326.
    78 O'Connell J,Bennett MW,O'Sullivan GC, et al. The Fas counterattack: cancer as a site of immune privilege. Immunology Today, 1999;20:46-52.
    79 Griffith TS,Brunner T,Fletcher SM, et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science, 1995;270:1189-1192.
    80 Bellgrau D,Gold D,Selawry H,et al. A role for CD95 ligand in preventing graft rejection. Nature, 1995;377:630-632.
    81 Hunt JS,Vassmer D,Ferguson TA,et al. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and theconceptus. Journal of Immunology, 1997;158:4122-4128.
    82 Saas P,Walker PR, Hahne M,et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? Journal of Clinical Investigation, 1997;99:1173-1178.
    83 O'Connell J, Bennett MW,O'Sullivan GC,et al. Fas counter-attack--the best form of tumor defense? Nature Medicine, 1999;5:267-268.
    84 Griffith TS,Yu X,Herndon JM,et al. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity, 1996;5:7-16.
    85 Korbutt GS,Elliott JF,Rajotte RV. Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression. Diabetes,1997;46:317-322.
    86 Allison J,Georgiou HM,Strasser A,et al. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proceedings of the National Academy of Sciences of the United States of America,1997;94:3943-3947.
    87 Kang SM,Schneider DB,Lin Z,et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Medicine,1997;3:738-743.
    88 Gainer AL,Suarez-Pinzon WL,Min WP,et al. Improved survival of biolistically transfected mouse islet allografts expressing CTLA4-Ig or soluble Fas ligand. Transplantation,1998;66:194-199.
    89 Li XK,Okuyama T,Tamura A,et al. Prolonged survival of rat liver allografts transfected with Fas ligand-expressing plasmid. Transplantation,1998;6:1416-1423.
    90 Swenson KM,Ke B,Wang T,et al. Fas ligand gene transfer to renal allografts in rats: effects on allograft survival. Transplantation,1998; 65:155-160.
    91 Paul S,Calmels B,Regulier E.Tumor-induced immunosupression.Ann Biol Clin,2002;60:143-152.
    92 Lchinose M,Masuoka J,Shiraishi T,et al.Fas ligand expression and depletion of T-cellinfiltration in astrocytic tumors.Brain Tumor Pathol,2001;18:37-42.
    93 Didenko VV,Ngo HN,Minchew C,et al.Apoptesis of T lymphocytes invading glioblastomas multiforme:a possible tumor defense mechanism.J Neurosurg,2002; 96:580-584.
    94 Hahne M,Rimoldi D,Schroter M,et a1.Melanoma cell expression of Fas(Apo-1/CD95) ligand:implications for tumor immune escape. Science, 1996;274: 1363-1366.
    95 Nagashima H,M ori M,Sadanaga N,et a1.Expression of Fas ligand in gastric carcinoma relates to lymph node metastasis. Int J Oncol,2001;18:1157-1162.
    96 Nagarkatti N,Davis BA.Tamoxifen induces apoptosis in Fas+tumor cells by upregulating the expression of Fas ligand.Cancer Chemother Pharmaco1, 2003, 51: 284-290.
    97 Park JB, Chang H, Kim KW. Expression of Fas ligand and apoptosis of disc cells in herniated lumbar disc tissue. Spine,2001;26:618–621.
    98 Heyde CE,Tschoeke SK,Hellmuth M.Trauma induces apoptosis in human thoracolumbar intervertebral discs.BMC Clin Pathol ,2006;6:5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700