用户名: 密码: 验证码:
声频定向系统理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声频定向系统是第一种可产生高指向性可听声的新概念声源。参量声学阵的提出为利用空气中声波的非线性传播效应产生指向性声束提供了理论依据。本文探索了利用参量声学阵作为可听声源,产生指向性声频的基础理论及系统实现关键技术,以推动声频定向系统的基础性研究与实用化进程。完成的主要工作如下:
     根据Helmholtz的非线性声学理论及参量声学阵理论,阐明了声频定向系统的基本工作原理,并对KZK(khokhlov-zabolotskaya-kuznetsov)方程进行了初步的解析求解以获得精确的参量声学阵理论模型。
     提出了三维指向性图解法,以之为基础,从理论上证明了利用换能器面阵可产生三维高指向性声束,增加阵元数可抑制旁瓣、增强指向性,从而提出了一种谐振频率可调式聚偏二氟乙烯(PVDF)膜换能器及一种整体式PVDF膜换能器的设计方法。实验证实整体式PVDF膜换能器能产生高指向性的可听声。
     依据自解调理论,分析比较了声频定向系统的DSB法、SSB法、平方根法等信号处理方法,建立了自解调理论模型,提出了单频、宽带信号输入时声压及谐波失真的理论计算公式,明确了自解调信号声压的主要影响参数及其影响机制,提出了声频定向系统的关键技术突破方向。
     提出了声频定向系统信号处理方法开发的无失真包络平方条件。开发出了两种信号处理新方法:改进AM法和N阶近似平方根法。试验验证了改进AM法可有效降低DSB法的谐波失真,而N阶近似平方根法则可有效降低平方根法的谐波失真。
     设计制作了基于定点DSP技术的声频定向系统信号处理平台,探讨了各种信号处理方法的实时实现技术,并在该平台上实现了各种信号处理算法。在此基础上,采用MATLAB/Simulink建立了各种算法的仿真模型。
     应用以上理论及关键技术研究成果,成功研制出了可用于实验研究的声频定向系统样机。通过对DSB法自解调信号的测试,发现自解调理论与“Berktay远场解”的理论预测结果与实测结果有一定差异。通过对平方根法自解调信号的测试,明确了影响自解调信号测试的主要因素及相应的影响机制。
The audio directional system is the first sound source that can generate an audible sound with high directivity. The parametric acoustic array theory provides the theoretical basis for utilizing the nonlinear propagation effect of the sound in the air to generate an audible sound beam with directivity. This thesis explores the basic theory and the key system implementation technologies for using the parametric acoustic array as an audible sound source to produce an audible sound with high directivity, which is significant for promoting the fundamental research and the application of the audio directional system. The main research contents and achievements are summarized as follows:
     The basic working principle of the audio directional system is explained according to Helmholtz's nonlinear acoustic theory and the parametric acoustic array theory. Furthermore, the analytic solution of the KZK(khokhlov-zabolotskaya-kuznetsov) formula has been derived in this dissertation to obtain a more accurate theoretical model for the parametric acoustic array.
     A graphical method for three-dimensional directivity is proposed. By the method, it is verified theoretically that only the plane array of the transducer can provide the required three-dimensional directivity, and a higher directivity can be obtained by increasing the number of the array units to suppress the sidelobe level. Based on such findings, the design methods for a polyvinylidene fluoride(PVDF) film transducer with an adjustable resonant frequency and a integral type PVDF film transducer are presented. It is demonstrated by the testing result that the integral type PVDF film transducer can generate an audible sound with very high directivity.
     The signal processing methods, including the DSB method, the SSB method and the square rooting method, are compared according to the self-demodulation theory. The theoretical formulas for calculating their sound pressure and harmonic distortion when a single-frequency signal or a broadband signal is inputted are presented by establishing their theoretical self-demodulation models. The breakthrough points for the crucial technologies of the audio directional system are clarified by confirming the key parameters affecting the sound pressure of the self-demodulated signal and obtaining their corresponding influence mechanism.
     A distortionless squared envelope condition for developing the signal processing method of the audio directional system is proposed, and two new signal processing methods, the improved AM method and the N~(th)-order approximate square rooting method, have been developed. It is verified by experiments that the improved AM method can reduce the harmonic distortion of the DSB method effectively, and the N~(th)-order approximate square rooting method is useful to decrease the harmonic distortion of the square rooting method.
     The signal process platform for the audio directional system, which is based on the fixed-point DSB technology, has been designed and fabricated. Then, the signal processing algorithms have been carried out after the exploratory research on their real-time realizing technologies. Moreover, the simulation models of the related signal processing algorithms have been established by MATLAB/Simulink.
     The aforementioned theory and key technologies employed, a prototype of the audio directional system has been developed successfully. It can be applied in experimental research. It is found in the experiments for testing the self-demodulated signal of the DSB method that the theoretical results predicted by the self-demodulation theory and "Berktay's Far-Field Solution" are inconsistent with the measured result to a certain extent. The influencing factors of the self-demodulated signal and their influence mechanism are also clarified by testing the self-demodulated signal of the square rooting method.
引文
[1] Evan I. Schwartz. The Sound War. Technology Review, 2004,107(4): 50-54
    [2] J. James, J. O. Norris. HSS white paper. USA: American Technology Corporation, 2005
    [3] L. Thuras, R. T. Jenkins, and H. T. O'Neil. Extraneous Frequencies Generated in Air Carrying Intense Sound Waves. The Journal of the Acoustical Society of America, 1935, 6(l):173-180
    [4] L. J. Black. A Physical Analysis of Distortion Produced by the Nonlinearity of the Medium.The Journal of the Acoustical Society of America, 1940,12(2): 266-267
    [5] P.J. Westervelt. Parametric Acoustic Array. The Journal of the Acoustical Society of America,1963, 35(4):535-537
    [6] H.O. Berktay. Possible Exploitation of Non-Linear Acoustics in Underwater Transmitting Applications. J. Sound Vib., 1965,2 (4): 435-461
    [7] M. F. Hamilton, D. T. Blackstock. Nonlinear Acoustics. Boston: Academic Press, 1998
    [8] M. B. Bennett, D. T. Blackstock. Parametric Array in Air. The Journal of the Acoustical Society of America, 1975,57(3): 562-568
    [9] M. Yoneyama, J.-I. Fujimoto. The Audio Spotlight: An Application of Nonlinear Interaction of Sound Waves to a New Type of Loudspeaker Design. The Journal of the Acoustical Society of America, 1983, 73(5): 1532-1536
    [10] T. Kamakura, M. Yoneyama, K. Ikegaya. Developments of Parametric Loudspeaker for Practical Use. 10th International Symposium on Nonlinear Acoustics, Kobe, Japan, 1984:147-150
    [11] T. Kamakura, T. Yoneyama and K. Ikegaya. Studies for the Realization of Parametric Loudspeaker. Journal of Acoustic Society of Japan, 1985,41(6): 378-385
    [12] T. Kamakura, K. Aoki, and Y. Kumamoto. Suitable Modulation of the Carrier Ultrasound for a Parametric Loudspeaker. Acustica, 1991,73: 215-217
    [13] Kenichi Aoki, Tomoo Kamakura, and Yoshiro Kumamoto. Parametric Loudspeaker -Characteristics of Acoustic Field and Suitable Modulation of Carrier Ultrasound. Electronics and Communications in Japan, Part 3, 1991, 74(9): 76-80
    [14] K. Aoki, T. Kamakura, Y. Kumamoto. Parametric Loudspeaker--Applied Examples.Electronics and Communications in Japan, Part-A, 1993, 76(8): 1127-1137
    [15] T. Kamakura, M. Tani, Y. Kumamoto, et al. Parametric Sound Radiation from a Rectangular Aperture Source. Acustica, 1994, 80: 332-338
    [16] F. J. Pompei. Sound from Ultrasound: The Parametric Array as an Audible Sound Source:[PhD Thesis]. USA: Massachusettes Institute of Technology, 2002
    [17] F. J. Pompei. The Use of Airborne Ultrasonics for Generating Audible Sound Seams.Proceeding of the Audio Engineering Society 105th Convention, AES, San Francisco,California, September, 1998:26-29
    [18] F. J. Pompei. The Use of Airborne Ultrasonics for Generating Audible Sound Beams. Journal of Audio Engineering Society, 1999,47(9): 726-731
    [19] F. J. Pompei, S.-C. Wooh. Phased Array Element Shapes for Suppressing Grating Lobes.Journal of the Acoustical Society of America, 2002,111(51): 2040-2048
    [20] Dirk Olszewski, Fransiskus Prasetyo, Klaus Linhard. Steerable Highly Directional Audio Beam Loudspeaker. 9th European Conference on Speech Communication and Technology,Eurospeech Interspeech, Lisbon, Portugal, Sep 4-8,2005:137-140
    [21] Masashi Yamada, Nobuyuki Itsuki, Yohsuke Kinouchi. Adaptive Directivity Control of Speaker Array. Proceedings of the 8th International Conference on Control, Automation,Robotics and Vision, Kunming, China, Dec 6-9, 2004: 1443-1448
    [22] Woon-Seng Gan, Jun Yang, Khim-Sia Tan, et al. A Digital Beamsteerer for Difference Frequency in a Parametric Array. IEEE Transactions on Audio, Speech and Language Processing, 2006, 14(3): 1018-1024
    [23] Khim S.Tan, Woon S.Gan, Jun Yang, et al. An Efficient Digital Beamsteering System for Difference Frequency in Parametric Array. IEEE International Conference on Acoustics,Speech and Signal Processing, Montreal, Que, Canada, May 17-21,2004: Ⅱ193-Ⅱ196
    [24] Dekun Yang, Stuart Flockton. An Evolutionary Algorithm for Parametric Array Signal Processing. Lecture Notes in Computer Science, 1995, 993: 191-199
    [25] Furi Andi Karnapi, Woon Seng Gan, Y.K.Chong. FPGA Implementation of Parametric Loudspeaker System. Microprocessors and Microsystems, 2004,28(5-6): 261-272
    [26] Kelvin Chee-Mun Lee, Woon-Seng Gan. Bandwidth-Efficient Recursive pth-Order Equalization for Correcting Baseband Distortion in Parametric Loudspeakers. IEEE Transactions on Audio, Speech and Language Processing, 2006, 14(2): 706-710
    [27]M.Zheng,R.F.W.Coates.Angular Response of a Parametric Array:Analytical Solution.Journal of Sound and Vibration,1998,209(3):493-503
    [28]Kan Sha,Jun Yang,Woon-Seng Gan.A Complex Virtual Source Approach for Calculating the Diffraction Beam Field Generated by a Rectangular Planar Source.IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2003,50(7):890-897
    [29]Jun Yang,Kan Sha,Woon-Seng Gan,et al.Nonlinear Wave Propagation for a Parametric Loudspeaker.IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2004,E87-A(9):2395-2400
    [30]Jun Yang,Kan Sha,Woon-Seng Gan,et al.Modeling of Finite-Amplitude Sound Beams:Second Order Fields Generated by a Parametric Loudspeaker.IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2005,52(4):610-618
    [31]Khim S.Tan,Woon S.Gan,Jun Yang,et al.Constant Beamwidth Beamformer for Difference Frequency in Parametric Array.ICASSP,IEEE International Conference on Acoustics,Speech and Signal Processing-Proceedings,Hong Kong,Apr 6-10,2003,5:361-364
    [32]Jun Yang,Khim-Sia Tan,Woon-Seng Gan,et al.Beamwidth Control in Parametric Acoustic Array.Japanese Journal of Applied Physics,Part 1:Regular Papers and Short Notes and Review Papers,2005,44(9A):6817-6819
    [33]J.Huang,P.W.Que,J.H.Jin.A Parametric Study of Beam Control for Ultrasonic Linear Phased Array Transducer.Defektoskopiya,2004,4:46-53
    [34]Jun Yang,Woon-Seng Gan,Khim-Sia Tan,et al.Acoustic Beamforming of a Parametric Speaker Comprising Ultrasonic Transducers.Sensors and Actuators,A:Physical,2005,125(1):91-99
    [35]Jun Yang,Kan Sha,Woon-Seng Gan,et al.Radiation Impedance Calculation for Arbitrarily Shaped Piston.Japanese Journal of Applied Physics,Part 1:Regular Papers and Short Notes and Review Papers,2004,43(9A):6274-6277
    [36]Kan Sha,Jun Yang,Woon-Seng Gan.A Simple Calculation Method for the Self-and Mutual-Radiation Impedance of Flexible Rectangular Patches in a Rigid Infinite Baffle.Journal of Sound and Vibration,2005,282(1-2):179-195
    [37]Kanemaki Naobumi,Kishino Fumio.A Study of a Highly Directional Loudspeaker System for Teleconferencing.The Journal of the Institute of Television Engineers of Japan,1989,43(7):733-736
    [38]Kazuhiro Nakadai,Hiroshi Tsujino.Towards New Human-Humanoid Communication: Listening during Speaking by Using Ultrasonic Directional Speaker.Proceedings of the 2005 IEEE International Conference on Robotics and Automation,Barcelona,Spain,Apr 18-22,2005:1483-1488
    [39]Gunilla Svanfeldt,Dirk Olszewski.Perception Experiment Combining a Parametric Loudspeaker and a Synthetic Talking Head.9th European Conference on Speech Communication and Technology,Eurospeech Interspeech,Lisbon,Portugal,Sep 4-8,2005:1721-1724
    [40]Merklinger,M.Harold.Improved Efficiency in the Parametric Transmitting Array.Journal of the Acoustical Society of America,1975,58(4):784-787
    [41]Seigo Enomoto,Shiro Ise.A Proposal of the Directional Speaker System Based on the Boundary Surface Control Principle.Electronics and Communications in Japan,Part Ⅲ:Fundamental Electronic Science,2005,88(2):1-9
    [42]宋朝晖,鲍可进.参量扬声器系统的探索与研究.电声技术,2005,5:28-30+34
    [43]周荣冠.参量阵扬声器的原理及应用.电声技术,2008,32(1):29-33
    [44]姬培锋.指向性声源的理论与实验研究:[硕士学位论文].山东:山东科技大学,2005
    [45]朱海生.基于DSP的指向性声源的设计与实现.[硕士毕业论文].山东:山东科技大学,2007
    [46]杨益,温周斌,冯海泓,等.超指向性扬声器的系统设计与测试.声学技术,2008,27(1):66-70
    [47]纪鸣,吴亚锋,韩斌.声音定向传输中的失真分析.声学技术,2005,24(4):277-279
    [48]叶超,匡正,纪伟,等.多通路高指向性声频声源的实验研究.声学技术,2007,26(5):1026-1027
    [49]叶超,匡正,马登永,等.高指向性声频声源的阻抗匹配.全国环境声学学术讨论会论文集,2007:441-442
    [50]Limei Xu,Jianfang Cao,Dagui Huang.Design and Characterization of a PVDF Ultrasonic Acoustic Transducer Applied in Audio Beam Loudspeaker.IEEE International Conference on Mechatronics and Automation,2005:1992-1997
    [51]曹建芳,徐利梅,李辉.声频定向PVDF超声波传感器的设计与测试.实验科学与技术,2005.3:1-4
    [52]Limei Xu,Hui Li,Jianfang Cao,et al.Influence of Phased Array Pattern on Beam Directivity.International Journal of Innovative Computing,Information and Control,2006,2(2):449-456
    [53]陈敏,徐利梅,黄大贵,等.谐振频率可调式PVDF膜声频定向换能器.压电与声光,2007, 29(1):53-55
    [54]Min Chen,Da-Gui Huang,Li-Mei Xu,et al.Research on a Novel Audio Beam Loudspeaker Based on Digital Signal Processor.IEEE International Conference on Mechatronics and Automation,Niagara Falls,Canada,2005:466-470
    [55]Shan-Mei Liu,Wei Yao,Jun Meng,et al.Hardware Design of Signal Processing for a Novel Audio Beam Loudspeaker Based on DSP.2006 1st IEEE Conference on Industrial Electronics and Applications,2006:1570-1573
    [56]刘珊梅,姚维,徐利梅.DSP在新型声频定向系统中的应用.电声技术,2007,31(3):27-30
    [57]李学生,徐利梅,陈敏,等.基于ADSP-BF533的声频定向算法实现.微计算机信息,2006,22(5):176-178
    [58]王莹,李学生,项多云,等.基于ADSP-BF533的音频处理系统设计.电声技术,2006,8:32-35
    [59]Min Chen,Da-gui Huang,Shou-heng Xu,et al.An Approximate Realization Method of the Square Root Signal Processing Algorithm of Audio Directional Loudspeaker.Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,Harbin,China,Aug 5-8,2007:641-646
    [60]Ying Wang,Zhe Zhou,Min Chen,Hui Li,Defining the Parameters of Truncated Square-rooting DSB for Parametric Loudspeaker.Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,Harbin,China,Aug 5-8,2007:1689-1693
    [61]陈敏,徐利梅,黄大贵,等.基于MATLAB的换能器阵列指向性分析方法研究.电声技术,2006,5:25-28
    [62]陈敏,徐利梅,黄大贵,等.声束扬声器的声频定向换能器阵列指向性研究.压电与声光,2006,28(4):400-402
    [63]陈敏,徐利梅,黄大贵,等.声束扬声器的换能器方形阵列设计.电声技术,2006,1:26-29
    [64]Liwei Yang,Tai Yang,Bo Zhang,et al.Class D Power Amplifier for Audio Beam System.Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,Harbin,China,Aug 5-8,2007:3469-3474
    [65]钱祖文.非线性声学,北京:科学出版社,1992
    [66]LeifBjomo.Forty Years of Nonlinear Ultrasound.Ultrasonics,2002,40(1-8):11-17
    [67]E.A.Zabolotskaya and R.V.Khokhlov.Quasi-Plane Waves in the Nonlinear Acoustics of the Confined Beams.Sov.Phys.Acoust.,1969,15:35-40
    [68]V.P.Kuznetsov.Equations of Nonlinear Acoustics.Sov.Phys.Acoust.,1971,16:467-470
    [69]陶超,马健,朱哲民,等.非线性超声束的冲击波形成研究.声学学报,2004,29(2):115-121
    [70]Yadong Li and James A.Zagzebski.Computer Model for Harmonic Ultrasound Imaging.IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2000,47(5):1259-1272
    [71]S.I.Aanonsen,T.Barkve,and J.N.Tj¢tta.Distortion and Harmonic Generation in the Nearfield of a Finite Amplitude Sound Beam.J.Acoust.Soc.Amer.,1984,75:749-768
    [72]S.I.Aanonsen.Numerical Computation of the Nearfield of a Finite Amplitude Sound Beam.Tech.Rep.73.Norway:Department of Mathematics,University of Bergen,1983
    [73]Y.S.Lee and M.F.Hamilton.Time-Domain Modeling of Pulsed Finite-Amplitude Sound Beams.J.Acoust.Soc.Amer.,1994,97:906-917
    [74]M.F.Hamilton,J.N.Tjotta,and S.Tjotta.Nonlinear Effects in the Farfield of a Directive Sound Source.J.Acoust.Soc.Amer.,1985,78:202-216
    [75]A.C.Baker,K.Anastasiadis,and V.F.Humphrey.The Nonlinear Pressure Field of a Plane Circular Piston:Theory and Experiment.J.Acoust.Soc.Amer.,1988,84:1483-1487
    [76]T.Kamakura,M.Tani,Y.Kumamato.Harmonic Generation in Finite Amplitude Sound Beams from a Rectangular Aperture Source.J.Acoust.Soc.Amer.,1992,91:3144-3151
    [77]M.D.Cahill and A.C.Baker.Numerical Simulation of the Acoustic Field of a Phased-Array Medical Ultrasound Scanner.J.Acoust.Soc.Amer.,1998,104:1274-1282
    [78]J.Berntsen and E.Vefring.Numerical Computation of a Finite Amplitude Sound Beam.Tech.Rep.81,Norway:Department of athematics,Unzversity of Bergen,1986
    [79]O.B.Rudenko.One Exact Analytical Solution of KhZK Equation.Acoust.J.,1975,21:311-316
    [80]Paulius Miskinis.New Exact Solutions of Khokhlov-Zabolotskaya-Kuznetsov Equation.Proceedings of Institute of Mathematics of NAS of Ukraine,Part 1,2002,43:171-177
    [81]杜功焕,朱哲民,龚秀芬.声学基础(第2版).南京:南京大学出版社,2001:344-362
    [82]许肖梅.声学基础.北京:科学出版社,2003
    [83]钱祖文.非线性声学,北京:科学出版社,1992
    [84]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,1990
    [85]董丽杰,熊传溪,陈娟,等.聚偏氟乙烯-钛酸钡复合材料的介电性能.复合材料学报,2003,20(3):122-124
    [86]马乐山,姚绍玉.聚偏氟乙烯有机压电薄膜超声换能器及其应用.压电与声光,1989,11 (6): 30-37+84
    [87] M. Tamura, T. Yamaguchi, T. Oyabe, et al. Electroacoustic transducers with piezoelectric high polymer films. Audio Eng. Soc, 1975,23(1): 21 - 26
    [88] S. Edelman and A. S. DeReggi. Comments on electroacoustic transducers with piezoelectric high polymer films. J. Audio Eng. Soc, 1976, 24(7): 577 - 578
    [89] H. Naono, T. Gotoh, M. Matsumoto, et al. Design of an electro-acoustic transducer using piezoelectric polymer film. Audio Eng. Soc. Prepr. 58 conv., New York, NY, 1977
    [90] Lerch. Electroacoustic transducers using piezoelectric polyvinylidene fluoride films. J. Acoust.Soc. Amer., 1979,66(4): 952 - 954
    [91] R. Lerch and G M. Sesler. Microphones with rigidly supported piezopolymer membrane. J.Acoust. Soc. Amer., 1980,67(4): 1379 - 1381
    [92] J. S. Schoenwald and J. F. Martin. PVF2 transducers for acoustic ranging and imaging in air.Proc. 1983 BEE Ultrason. Symp, 1983: 577 - 580
    [93] A. S. Fiorillo, B. Allota, P. Dasio, et al. An ultrasonic range sensor for a robotic fingertip. Sens.Actuators, 1988, 12: 103 - 106
    [94] I. Veit. The piezoelectric PVDF-film-Its properties and application in electroacoustic transducers. The 84th Conv. Audio Eng. Soc, 1988
    [95] F. Harnisch, N. Kroemer, and W. Manthey. Ultrasonic transducers with piezoelectric polymer foil. Sens. Actuators A, 1991,25 - 27: 549 - 552
    [96] A. S. Fiorillo. Design and characterization of a PVDF ultrasonic range sensor. IEEE Trans.Ultrason., Ferroelect., Freq. Contr., 1992,30(6): 688 - 692
    [97] W. Galbraith, G Hayward. Development of a PVDF membrane hydrophone for use in air-coupled ultrasonic transducer calibration. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998,45(6): 1549 - 1558
    [98] Hong Wang, M. Toda. Curved PVDF airborne transducer. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control, 1999,46(6): 1375 -1386
    [99] M. Toda. Phase-matched air ultrasonic transducers using corrugated PVDF film with half wavelength depth. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2001,48(6): 1568-1574
    [100] M. Toda, M. Thompson. Temperature Dependence of High Frequency Parameters of PVDF for Length mode Ultrasonic Air Transducers. Sensors, 2007 IEEE, 28-31 Oct. 2007: 484 - 487
    [101] F.S. Foster, K.A. Harasiewicz, M.D. Sherar. A history of medical and biological imaging with polyvinylidene fluoride(PVDF)transducers.IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2000,47(6):1363-1371
    [102]于洁,章东,刘晓宙,等.圆锥面PVDF聚焦换能器的非线性声场理论及实验研究.物理学报,2007,56(10):5909-5914
    [103]栾桂东,张金铎,李水,等.一种用于声学材料测量的PVDF薄膜水听器.声学与电子工程,1999,51(3):1-5
    [104]俞宏沛,黄进来,顾海仁,等.纵横换能器与PVDF压电薄膜复合换能器研究.声学与电子工程,1998,52(4):19-21
    [105]F.J.POMPEI.Ultrasonic transducer for parametric array.USA Patent,No.6771785,2004
    [106]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵(修订版).北京:北京大学出版社,2005
    [107]M.A.Aberkiou,Y.-S.Lee,and M.F.Hamilton.Self-Demodulation of Amplitude and Frequency Modulated Pulses in Thermoviscous Fluid.J.Acoust.Soc.Am.,1993,94:2876-2883
    [108]K.-E.Fr(?)ysa,J.Naze Tj(?)tta,and S.Tj(?)tta.Linear Propagation of a Pulsed Sound Beams from a Plane or Focusing Source.J.Acoust.Soc.Am.,1993,93:80-92
    [109]Wayne Tomasi.电子通信系统(第四版)(,王曼珠).北京:电子工业出版社,2002
    [110]中华人民共和国国家技术监督局.GB/T 9396-1996.中华人民共和国国家标准-扬声器主要性能测试方法.北京:中国标准出版社,1997
    [111]马大猷,沈山豪.声学手册(修订版).北京:科学出版社,2006
    [112]曹志刚,钱亚生.现代通信原理.北京:清华大学出版社,2003
    [113]Andrew Bateman,Iain Paterson-Stephens.DSP算法、应用与设计(,陈健,陈伟,汪书宁).北京:机械工业出版社,2004
    [114]J.J.Croft.Modulator Processing for a Parametric Speaker System.USA Patent,No.6584205,2003
    [115]美国技术公司.用于参数扬声器系统的调制器处理.中国专利,CN1378764A,2002
    [116]Thomas D.Kate,John T.Post,Mark F.Hamilton.Parametric Array in Air:Distortion Reduction by Preprocessing.Proceedings of the 16th International Congress on Acoustics and the 135th Meeting of the Acoustical Society of America,June 20-26,1998:1091-1092
    [117]Paulo S.R.Diniz,Eduardo A.B.da Silva,Sergio L.Netto.数字信号处理系统分析与设计(,门爱东,杨波,全子一).北京:电子工业出版社,2004
    [118]A.Peled and B.Liu.Anew Hardware Realization of Digital Filters.IEEE transaction on Acoustics,Speech,and Signal Processing,ASSP-22,1974:456-462
    [119]A.Peled and B.Liu.Digital signal Processing.Malabar,FL:R.E.Krieger,1985
    [120]S.L.Freeny.Special-Purpose Hardware for Digital Filtering.Proceeding of the IEEE,1975,63:633-648
    [121]L.R.Rabiner and B.Gold.Theory and Application of Digital signal Processing.Englewood Cliffs,N J:Prentice-Hall,1975
    [122]L.Wanhammar.An Approach to LSI Implementation of Wave Digital Filters:[PhD thesis].Link(o|¨)ping,Sweden:Link(o|¨)ping University,1981
    [123]K.Skahill.VHDL for Programmable Logic.Reading,MA:Addison-Wesley,1996
    [124]S.Kung.VLSI Array Processors.Englewood Cliffs,NJ:Prentice-Hall,1988
    [125]N.H.E.Weste and K.Eshraghian.Principles of CMOS VLSI Design:A systems Perspective(2~(nd)ed.).Reading,MA:Addison-Wesley,1993
    [126]M.A.Bayoumi and E.E.J.Swartzlander.VLSI Signal Processing Technology.Boston,MA:Kluwer Academic Publishers,1994
    [127]L.Wanhammer.DSP Integrated Circuits.New York,NY:Academic Press,1999
    [128]K.K.Parhi.VLSI Digital Signal Processing Systems:Design and Implementation.New York,NY:John Wiley and Sons,1999
    [129]颜允圣.数字信号处理器——体系结构、实现与应用(,贾洪峰).北京:清华大学出版社,2005
    [130]Analog Devices Inc..ADSP-BF533 Blackfin~(?)Processor Hardware Reference.USA:One Technology Way Norwood,2004
    [131]Sanjit K.Mitra.数字信号处理——基于计算机的方法(第二版)(,孙洪,余翔宇,等).北京:电子工业出版社,2005
    [132]L.B.Jackson.On the Interaction of Roundoff Noise and Dynamic Range in Digital Filters.Bell System Technical Journal,1970,49:159-184
    [133]L.R.Rabiner and R.W.Schafer.On the Behavior of Minimax Relative Error FIR Digital Differentiators.Bell System Technical Journal,1974,53:363-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700