用户名: 密码: 验证码:
介孔纳米晶体金属氧化物材料的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以室温长链咪唑溴离子液体(Cnmim+Br-,n=8,12,14,16)为模板剂,通过软模板法合成了具有高热稳定性的介孔纳米晶体氧化锡材料,并在此基础上通过软模板法和固液技术相结合,合成了具有高比表面、高热稳定性及高结晶性的介孔氧化锆和氧化钛材料。利用X射线粉末衍射(XRD)、高分辨透射电镜(HRTEM)、氮气吸附-脱附、红外傅立叶变换(IR-FT)、热重-差热分析(TG-DTA)和热重-差示扫描量热分析(TG-DSC)等技术,研究了以下内容:
     以长链咪唑溴为模板剂,锡酸钠为无机前驱体通过软模板法合成了具有高热稳定性(焙烧温度达700℃)的介孔纳米晶体氧化锡材料。高分辨电镜和氮气吸附脱附分析结果表明该材料具有短程有序的介孔结构,比表面和孔径分别为350m2/g和2.2 nm,孔壁氧化锡纳米晶粒尺寸为2.5 nm。红外分析结果表明,模板剂离子液体与传统的阳离子表面活性剂如十六烷基三甲基溴化铵(CTAB)相比,在与无机前驱体组装过程中其荷正电的咪唑头基与荷负电的氧化锡前驱体之间的相互作用力除了传统的静电作用外,还具有氢键作用,同时,咪唑环之间存在π-π堆积作用,正是基于这些独特的相互作用提高了介孔氧化锡材料的热稳定性。另外,氧化锡材料介孔结构的有序性主要受模板剂的链长、模板剂与氧化锡前驱物的摩尔比例、反应过程的pH值及焙烧温度等因素的影响。
     以长链咪唑溴(C16mim+Br-)为模板剂,硫酸锆为无机前驱体,通过软模板法和固液技术相结合(软模板-固液技术)的新策略合成了具有高比表面的介孔纳米晶体氧化锆材料。该策略是利用固液技术将具有低熔点的金属硝酸盐客体填充到软模板法合成的有序介观相氧化锆杂化物主体中,高温焙烧后通过刻蚀孔道内的金属氧化物,最终得到了介孔纳米晶体氧化锆材料。广角XRD分析结果表明客体硝酸镁盐与主体氧化锆杂化材料研磨混合后,在高于熔点(>95℃)时其熔液通过毛细作用能够渗入到作为主体的氧化锆杂化材料的介孔孔道中(其最大渗入量达到约50%(w/w))。TG-DTA分析结果表明随焙烧温度的升高,硝酸镁盐的热分解在孔道内提供了氧化气氛(O2)和硬支撑(MgO),促使模板剂在较低的温度下分解完全,抑制了孔壁氧化锆纳米晶粒的过快生长,避免孔道坍塌。X射线能谱(EDX)分析结果表明在盐酸溶液刻蚀后,镁元素没有掺入到氧化锆骨架中,避免硬模板法在氧化锆骨架中掺入了较多的硅元素。高分辨电镜和氮气吸附脱附分析结果表明在600℃焙烧后氧化锆材料具有蠕虫状介孔结构,孔壁由尺寸约为2.3nm的四方相氧化锆纳米晶粒组成,比表面为255m2/g,孔径为4.3nm。相反,通过单一软模板法直接焙烧后合成的氧化锆材料在相同的焙烧温度,比表面仅为9.5 m2/g。最后,所合成的介孔氧化锆材料展示了紫外荧光特性。
     以长链咪唑溴(C16mim+Br-)为模板剂,硫酸钛为无机前驱体,通过软模板-固液技术策略合成了孔壁具有混合晶相的介孔纳米晶体氧化钛材料。广角XRD分析结果表明作为客体的硝酸镁盐通过固液技术渗入到作为主体被模板剂占据的介孔孔道中;TG-DTA分析结果表明在焙烧过程中,在孔道内客体硝酸镁盐的热分解既能促使模板剂在更低的温度分解完全又提供了必要的硬支撑(MgO),抑制了氧化钛纳米晶粒的快速生长,避免孔道坍塌。广角XRD和拉曼分析结果表明孔道中MgO的存在促使孔壁氧化钛晶相由锐钛相向板钛相和金红石相转变,并且随焙烧温度的提高板钛相含量逐渐增加。高分辨电镜和氮气吸附脱附分析结果表明在600℃焙烧后氧化钛材料具有蠕虫状介孔结构,比表面为255m2/g,孔径为4.1nm。相反,通过单一软模板法直接焙烧后合成的氧化钛材料在相同的焙烧温度,比表面仅为64m2/g。光催化甲基橙结果表明,所合成的介孔氧化钛材料的光催化能力由比表面和晶相组成决定。
In this thesis, mesoporous nanocrystalline tin oxide materials with high thermal stability were synthesized via the soft-templating method, using long-chain ionic liquids 1-alkyl-3-methylimidazolium bromide (Cnmim+Br-,n= 8,12,14,16) as templates. And also, mesoporous zirconia and titania materials with high BET specific surface area, high thermal stability and high crystallinity were also fabricated via combining the soft-templating with solid-liquid method (CSSL). The resulting samples were mainly characterized by X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Nitrogen adsorption-desorption, Fourier transform infrared spectrometer (FT-IR) and Thermal analyses.
     Using 1-alkyl-3-methylimidazolium bromide (Cnmim+Br-, n= 8,12,14,16) as templates and sodium stannate as precursors, mesoporous nanocrystalline tin oxide materials with high thermal stability (up to 700℃) were synthesized via the soft-templating method. The HRTEM and Nitrogen adsorption-desorption results indicated that the obtained mesoporous tin oxide with ordered mesoporous structure in short range possessed high specific surface area (ca.350 m2/g). The pore walls were composed of tin oxide nanocrystallites with size of ca.2.5 nm. The FT-IR analysis showed that the high thermal stability for the obtained mesoporous tin oxide was attributed to the wide interaction between the templating agent C16mim+Br-molecules and tin oxide. It involved the electrostatic interaction and H-bonding between C16mim+Br- molecules and tin oxide, as well asπ-πstacking between the imidazolium rings. In addition, the ordered mesostructures were influenced by the reaction conditions, such as pH values of the hydrolysis of tin salt, the different chain lengths of RTILs and different calcination temperatures.
     A novel strategy involving the combination of soft-templating and solid-liquid method (CSSL) was designed to synthesize mesoporous nanocrystalline zirconia with high specific surface area. The mesostructured zirconia hybrid was firstly synthesized via cooperative assembly between zirconium sulphate as inorganic precursor and 1-hexadecyl-3-methylimidazolium bromide (C16mim+Br-) as the structure-directing agent, and subsequently ground with solid magnesium nitrate salt followed by heat-treatment in air. Finally, after high-temperature calcination, the mesoporous nanocrystalline zirconia materials were obtained after etching the metal oxide inside the porous channels. The wide-angle XRD results indicated that Mg (NO3)2·6H2O salt transforming into liquid state could infiltrate into the pore channels occupied by templates and be well dispersed in the mesostructured zirconia hybrid when it was heated above its melting point (95℃). The maximum amount of the guest inside the host was 50%(w/w). The TG-DTA analysis suggested that the thermal decomposition of Mg(NO3)2-6H2O salt provided the oxidative atmosphere (O2) and hard pillaring-agent (MgO) inside the pore channels, which contributed to the full decomposition of the templates at low temperature, and the restriction of the quick growth of ZrO2 nanocrystallites in the pore walls, avoiding the collapse of the mesopores. The EDX results showed that the magnesium could not penetrate into the zirconia framework after the impregnation with 10 wt% HCl. On the contrary, more silicon elements could penetrate into the zirconia framework if the hard-templating method was used. The HRTEM and Nitrogen adsorption-desorption results indicated that the zirconia material after calcination at 600 C possessed a wormlike arrangement of mesopores surrounded by tetragonal ZrO2 nanocrystallites of ca.2.3 nm. The BET surface area was 255 m2/g and the pore size was ca.4.3 nm. Contrastingly, as for the sample synthesized via the single soft-templating method, the BET surface area was only 9.5 m2/g. Moreover, the obtained mesoporous zirconia materials exhibited excellent fluorescence features.
     Mesoporous anatase-brookite nanocrystalline titania was synthesized via the strategy relying on the combination of soft-templating and solid-liquid method (CSSL), using titanium sulphate as precursor and 1-hexadecyl-3-methylimidazolium bromide (C16mim+Br-) as structure-directing agent. The wide-angle XRD results indicated that relying on the solid-liquid method, the magnesium nitrate salt as guest could infiltrate into the pore channels occupied by the templates inside the mesostructured titania hybrid as host. The TG-DTA analysis suggested that the thermolysis of Mg(NO3)2·6H2O salt inside pore channels as guest could not only induce the complete decomposition of the templates at low temperature, but also provide the essential hard-pillaring agent (MgO), resulting in the restriction of the quick growth of the nanocrystalline titania in the pore walls and avoiding the collapse of the mesopores. The XRD and Raman results showed that MgO retaining on the surface of the titania framework induced the phase transformation from anatase phase to brookite and rutile phases, and the amount of the brookite phase increased as the temperature rose. The HRTEM and Nitrogen adsorption-desorption results indicated that the titania material after calcination at 600℃possessed a wormlike arrangement of mesopores. The BET surface area was 255 m2/g, and the pore size was ca.4.1 nm. Contrastingly, as for the sample synthesized via the single soft-templating method, the BET surface area was only 64 m2/g. Moreover, the photocatalytic activities of the resulting titania materials in the degradation of methylene orange under UV irradiation were found to be determined by their surface areas and crystal phase contents.
引文
[1]IUPAC manual of symbols and terminology, Pure Appl. Chem.,1972,31:578.
    [2]C.T. Kresge, M.E. Leonowicz, W.J. Roth et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature 359, (1992) 710-712.
    [3]C. Sanchez, G. Soler-Illia, V. Cabuil et al. Designed hybrid organic-inorganic nano-composites from functional nanobuilding blocks, Chem. Mater.13, (2001), 3061-3083.
    [4]J.S. Beck, J.C. Vartuli, W.J. Roth et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc.,114, (1992) 10834-10842.
    [5]S.H. Han, J. Xu, W.G. Hou, X.M Yu, Y.S. Wang, Synthesis of high-quality MCM-48 mesoporous silica using Gemini surfactant dimethylene-1,2-bis(dodecyldimethylammonium bromide) J. Phys. Chem. B.108, (2004) 15043-15048.
    [6]T,W. Wang, H. Kaper, M. Antonietti, B. Smarsly, Templating behavior of a long-chain ionic liquid in the hydrothermal synthesis of mesoporous silica, Langmuir 23,(2007)1489-1495.
    [7]Y. Zhou, M. Antonietti, A series of highly ordered, super-microporous, lamellar silicas prepared by nanocasting with ionic liquids, Chem. Mater.16, (2004) 544-550.
    [8]S. Che, A.E. Garcia-Bennett, T. Tatsumi et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure, Nature Mater.2, (2003) 801-805.
    [9]P.T. Tanev, T.J. Pinnavaia, A neutral templating route to mesoporous molecular sieves, Science 267, (1995) 865-867.
    [10]S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Templating mesoporous molecular sieves by nonionic polyethylene oxide surfactants, Science 269, (1995) 1242-1244.
    [11]K.S. Seong, W. Zhang, T.J. Pinnavaia, Ultrastable mesostructured silica vesicles, Science 282, (1998) 1302-1305.
    [12]S. Forster, M. Antonietti, Amphiphilic block copolymers in structure controlled nanomaterial hybrids, Adv. Mater.10, (1998) 195-217.
    [13]E.L. Crepaldi, A.A. Soler-Illia, C. Sanchez, Controlled formation of highly organized mesoporous titania thin films:from mesostructured hybrids to mesoporous nano-anatase TiO2, J. Am. Chem. Soc.125, (2003) 9770-9786.
    [14]D. Zhao, Q. Huo, G.D. Stucky et al. Nonionic triblock and diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc.120, (1998) 6024-6036.
    [15]Q.S. Huo, D.I. Margolose, U. Ciesla, G.D. Stucky et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays, Chem. Mater.6, (1994) 1176-1191.
    [16]P. Selvam, S.K. Bhatia, C.G. Sonwane, Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves, Ind. Eng. Chem. Res.40, (2001) 3237-3261.
    [17]Q. Huo, D.I. Margolese, G.D. Stucky et al. Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater.8, (199) 1147-1160.
    [18]M. Jaroniec, M. Kruk, H.J. Shin et al. Comprehensive characterizaton of highly ordered MCM-41 silicas using nitrogen adsorption, thermogravimetry, X-ray diffraction and transmission electron microscopy, Microporous and Mesoporous Materials,48, (2001) 127-134.
    [19]J.S. Beck, J.C. Vartuli, W.J. Roth et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc.114, (1992) 10834-10842.
    [20]E.A. Gunnewegh, S.S. Gopie, H. Bekkum, MCM-41 type molecula sieves as catalysts for the freidel-crafts acylation of 2-methoxynaphthalene, J. Mole. Catal. Chem.106,(1996) 151-158.
    [21]M.A. Ioneva, G.K. Newman, J.H. Harwell et al. Novel adsorbents and their environmental applications, AIChE Sym. Ser.91, (1995) 40-48.
    [22]X.S. Zhao, G.Q. Lu, Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study, J. Phys. Chem. B,102, (1998) 1556-1561.
    [23]L. Mercier, T.J. Pinnavaia, Access in mesoporous materials:Advantages of uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater.6, (1997) 500-203.
    [24]徐应明,李军幸,戴晓华等,介孔分子筛表面功能膜的制备及对水体中铅汞镉的去除作用,应用化学,19,(2002)941-945.
    [25]高波,朱广山,傅学奇等,介孔分子筛SBA-15中α-胰凝乳蛋白酶组装及催化活性研究,高等化学学报,24,(2003)1100-1102.
    [26]高峰,赵建伟,张松,中孔分子筛SBA-15作为液相色谱固定相以及在巯基化合物分离中的应用,高等化学学报,23,(2002)1494-1497.
    [27]A. Stein, B. J. Melde, R.C. Schroden, Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age, Adv. Mater.12, (2000) 1403-1419.
    [28]F. Gao, Q. Li, D. Zhao, Synthesis of crystalline mesoporous CdS semiconductor nanoarrays though a mesoporous SBA-15 silica template technique, Adv. Mater.15, (2003) 739-742.
    [29]C. Wu, T. Bein, Conducting polyaniline filaments in a mesoporous channal host, Science 264, (1994)1757-1759.
    [30]J. Lee, S. Joo, R. Ryoo, Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters, J. Am. Chem. Soc.124, (2002) 1156-1157.
    [31]L. Ye, S. Xie, B. Yue, L. Qian, S. Feng, S.C. Tsang, Y. Li, H. He, Crystalline three-dimensional cubic mesoporous niobium oxide, CrystEngComm 12, (2010) 344-347.
    [32]Q. Yuan, L-L. Li, S-L, Li, H-H. Duan, Z-X. Li, Y-X. Zhu, C-H. Yan, Facile synthesis of Zr-based functional materials with highly ordered mesoporous structures, J. Phys. Chem. C,113, (2009) 4117-4124.
    [33]J.C. Yu, L.Z. Zhang, Z, Zheng, J. Zhao, Synthesis and characterization of phosphated mesoporous titanium dioxide with photocatalytic activity, Chem. Mater. 15,(2003)2280-2286.
    [34]Z-R. Tian, T. Wei, J-Y. Wang, N-G. Duan, V.V. Krishnan, S.L. Suib, Manganese oxide mesoporous structures:Mixed-valent semiconducting catalysts, Science 276, (1997) 926-930.
    [35]Y. Wang, C. Ma, X. Sun, H. Li, Synthesis of mesoporous structured material based on tin oxide, Micro. Meso. Mater.49, (2001) 171-178.
    [36]Q. Yuan, A-X. Yin, C. Luo, L-D. Sun, Y-W. Zhang, W-T. Duan, H-C. Liu, C-H. Hua, Facile synthesis of ordered mesoporous γ-aluminas with high thermal stability, J. Am. Chem. Soc,130, (2008) 3465-3472.
    [37]F. Jiao, A.H. Hill, A. Harrison, A. Berko, A.V. Chadwick, P.G. Bruce, Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution, J. Am. Chem. Soc.130, (2008) 5262-5266.
    [38]G.J.A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev.102, (2002) 4093-4138.
    [39]A. Monnier, F. Schuth, Q. Huo, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science 261, (1991) 1299-1303.
    [40]D.M. Antonelli, J.Y. Ying, synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanisms, Angew. Chem. Int. Ed.35, (1996) 426-430.
    [41]M.J. Hudson, J.A. Knowles, Preparation and characterization of mesoporous, high-surface-area zirconium(IV) oxide, J. Mater. Chem.6, (1996) 89-95.
    [42]G.J.A.A. Soler-Illia, C. Sanchez, Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides:their role in the templated construction of mesostructured hybrid organic-inorganic composites, New. J. Chem. 24, (2000) 493-499.
    [43]D.M. Antonelli, J.Y. Ying, Synthesis of a stable hexagonally packed mesoporous TiO2 by a modified sol-gel method, Angew. Chem. Int. Ed.34, (1995) 2014-2017.
    [44]R.W.J. Scott, N. Coombs, G.A. Ozin, Non-aqueous synthesis of mesostructured tin dioxide, J. Mater. Chem.13, (2003) 969-974.
    [45]C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Evaporation-induced self-assembly: nanostructures made easy, Adv. Mater.11, (1999) 579-585.
    [46]P.D. Y, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chem. Mater.11, (1999) 2813-2816.
    [47]N. Shirokura, K. Nakajima, A. Nakabayashi, D.L. Lu, M. Hara, K. Domen, T. Tatsumi, J.N. Kondo, Synthesis of crystallized mesoporous transition metal oxides by silicone treatment of the oxide precursor, Chem. Comm.2006 2188-2190.
    [48]D.L. Li, H.S. Zhou, I. Honma, Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization, Nat. Mater.3 (2004) 65-72.
    [49]W. Dong, WY. Sun, C.W. Li, W. Hua, X. Lu, Y. Shi, S. Zhang, J. Chen, D. Zhao, Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures, J. Am. Chem. Soc.129, (2007) 13894-13904.
    [50]T. Katou, B. Lee, D. Lu, J.N. Kondo, M. Hara, K. Domen, Crystallization of an ordered mesoporous Nb-Ta oxide, Angew. Chem. Int. Ed.42, (2003) 2382-2385.
    [51]L. Ye, S. Xie, B. Yue, L. Qian, S. Feng, S.C. Tsang, Y. Li, H. He, Crystalline three-dimensional cubic mesoporous niobium oxide, CrystEngComm 12, (2010) 344-347.
    [52]J.W. Lee, M.C. Orilall, S. Warren, M. Kamperman, F.J. Disalvo, U. Wiesner, Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores, Nat. Mater.7 (2008) 222-228.
    [53]J. Ba, J. Polleux, M Antonietti, M. Niederberger, Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures, Adv. Mater. 17,(2005)2509-2512.
    [54]R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B 103, (1999) 7743-7746.
    [55]M. Tiemann, Repeated templating, Chem. Mater.20, (2008) 961-971.
    [56]H. Yang, D.Y. Zhao, Synthesis of replica mesostructures by the nanocasting strategy, J. Mater. Chem.15, (2005) 1217-1231.
    [57]C-M. Yang, B. Zibrowius, W. Schmidt, F. Schuth, Stepwise removal of the copolymer template from mesopores and micropores in SBA-15, Chem. Mater.16, (2004)2918-2925.
    [58]B. Tian, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu, D. Zhao, Microwave assisted template removal of siliceous porous materials, Chem. Comm.2002, 1186-1187.
    [59]Y. Wang, C-M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schuth, Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica, Adv. Mater.17, (2005) 53-56.
    [60]M. Imperor-Clerc, D. Bazin, M-D. Appay, P. Beaunier, A. Davidson, Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas:in situ investigation using synchrotron radiation, Chem. Mater.16, (2004) 1813-1821.
    [61]W. Yue, W. Zhou, Porous crystals of cubic metal oxides templated by cage-containing mesoporous silica, J. Mater. Chem.17, (2007) 4947-4952.
    [1]C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism, Nature 359, (1992) 710-712.
    [2]G. Liu, X. Wang, L. Wang, Z. Chen, F. Li, G.Q. Lu, H.-M. Chen, Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states, J. Colloid and Interface Sci.334, (2009) 171-175.
    [3]L. Cao, M. Liu, H.-L. Li, Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance, J. Electrochem. Soc.152, (2005) A871-A875.
    [4]D. Wang, P. Hu, J. Xu, X. Dong, Q. Pan, Fast response chlorine gas sensor based on mesoporous SnO2, Sensors and Actuators, B:Chemical,140 (2009) 383-389.
    [5]J. Kim, J. Cho, SnO2 filled mesoporous tin phosphate:high capacity negative electrode for lithium secondary battery, Electrochemical and Solid-State Lett.9, (2006) A373-375.
    [6]K. Hou, D. Puzzo, M. Helander, S.S. Lo, L.D. Bonifacio, W. Wang, Z.-H. Lu, G.D. Scholes, G.A. Ozin, Dye-anchored mesoporous antimony-doped tin oxide electrochemiluminescence cell, Adv. Mater.21, (2009) 2492-2496.
    [7]T. Hyodo, Y. Shimizu, M. Eqashira, Electrochemistry 71, (2003) 387-393.
    [8]N. Ulagappan, C. N. R. Rao, Mesoporous phases based on SnO2 and TiO2, Chem. Commun. (1996),1685.
    [9](a)L.M. Qi, J.M. Ma, H.M. Cheng, Z.G. Zhao, Synthesis and characterization of mesostructured tin oxide with crystalline walls, Langmuir 14, (1998) 2579-2581. (b) F. Chen, M. Liu, Preparation of mesoporous tin oxide for electrochemical applications, Chem. Commun. (1999) 1829-1830. (c)Y.D. Wang, C.L. Ma, X.D. Sun, H.D. Li, Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route, J. Colloid. Interf. Sci.286, (2005) 627-631. (d)D.N. Srivastava, S. Chappel, O. Palchik, A. Zaban, A. Gedanken, Sonochemical synthesis of mesoporous tin oxide, Langmuir 18, (2002) 4160-4164. (e) R.W.J. Scott, M. Mamak, K. Kwong, N. Coombs, G.A. Ozin, Making sense out of sulfated tin dioxide mesostructures, J. Mater. Chem.13, (2003) 1406-1412. (f)J. Zhu, B. Y. Tay, J. Ma, Synthesis of mesoporous tin oxide on neutral surfactant templates. Mater. Lett.60 (2006) 1003-1010.
    [10]P.D. Y, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chem. Mater.11, (1999) 2813-2816.
    [11]T. Toupance, O. Babot, B. Jousseaume, G. Vilaca, Nanocrystalline mesoporous tin dioxide prepared by the sol-gel route from a dialkoxyldi((3-diketonato)tin complex, Chem. Mater.15(2003)4691.
    [12]T. Hyodo, N. Nishida, Y. Shimizu, M. Egashira, Preparation and gas-sensing properties of thermally stable mesoporous SnO2, Sensors. Actuators B,83 (2002) 209-215.
    [13]N.L. Wu, C.U. Tung, Evolution in microstructure properties of cetyltrimethylammonium bromide-templated mesoporous tin oxide upon thermal crystallization, J. Am. Ceram. Soc.87, (2004) 1741-1746.
    [14]J.K. Shon, S.S. Kong, Y.S. Kim, J-H. Lee, W.K. Park, S.C. Park, J.M. Kim, Solvent-free infiltration method for mesoporous SnO2 using mesoporous silica templates, Micro. Meso. Mater.120, (2009) 441-446.
    [15](a)B.G. Trewyn, C.M. Whitman, V. S.-Y. Lin, Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents, Nano. Lett.4, (2004) 2139-2143. (b)Y. Zhou, M. Antonietti, A series of highly ordered, super-microporous, lamellar silicas prepared by nanocasting with ionic liquids, Chem. Mater.16, (2004) 544-550. (c)H. Park, S.H. Yang, Y. Jun, W.H. Hong, J.K. Kang, Facile route to synthesize large-mesoporous γ-alumina by room-temperature ionic liquids, Chem. Mater.19, (2007) 535-542. (d)T,W. Wang, H. Kaper, M. Antonietti, B. Smarsly, Templating behavior of a long-chain ionic liquid in the hydrothermal synthesis of mesoporous silica, Langmuir 23,(2007)1489-1495.
    [16]Y. Zhou, J.H. Schattka, M. Antonietti, Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanacasting technique, Nano Lett.4, (2004) 477-481.
    [17]K. R. Seddon, A. Stark, M. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure. Appl. Chem.72 (2000) 2275-2287.
    [18]S.H. Han, J. Xu, W.G. Hou, X.M Yu, Y.S. Wang, Synthesis of high-quality MCM-48 mesoporous silica using Gemini surfactant dimethylene-1,2-bis(dodecyldimethylammonium bromide) J. Phys. Chem. B.108, (2004)15043-15048.
    [19]H. Shibata, T. Ogura, T. Mukai, T. Ohkubo, H. Sakai, M. Abe, Direct synthesis of mesoporous titania particles having a crystalline wall, J. Am. Chem. Soc.127, (2005) 16396-16397.
    [20]S. Dai, Y.H. Ju, H.J. Gao, J.S. Lin, S.J. Pennycook, C.E. Barnes, Preparation of silica aerogel using ionic liquids as solvents, Chem. Commun. (2000) 243-244.
    [1]M. Mamak, N. Coombs, G. Ozin, Mesoporous yttria-zirconia and meal-yttria-zirconia solid solutions for fuel cells, Adv. Mater.12 (2000) 198-202.
    [2]T. Yamaguchi, Application of ZrO2 as a catalyst and a catalyst support, Catal. Today.20(1994) 199-217.
    [3]Y. Wan, H. Yang, D.Y. Zhao, "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials, Account of Chemical Research,39 (2006) 423-432.
    [4]P. Trens, M.J. Hudson, R. Denoyel, Formation of mesoporous zirconium(IV) oxides of controlled surface areas, J. Mater. Chem.8 (1998) 2147-2152.
    [5]M. Lindn, J. Blanchard, S. Schacht, S.A. Schunk, F. Schuth, Phase behavior and wall formation in Zr(SO4)2/CTABr and TiOSO4/CTABr Mesophases, Chem. Mater.11 (1999) 3002-3008.
    [6]Y.-Y. Lyu, S.H. Yi, J.K. Shon, S. Chang, L.S. Pu, S.-Y. Lee, J.E. Yie, K. Char, G.D. Stucky, J.M. Kim, Highly stable mesoporous metal oxides using nano-propping hybrid Gemini surfactants, J. Am. Chem. Soc.126 (2004) 2310-2311.
    [7](a)J. S. Reddy, A. Sayari, Nanoporous zirconium oxide prepared using the supramolecular templating approach, Catal Lett.38, (1996) 219-223. (b)M. S. Wong, J. Y. Ying, Amphiphilic templating mesostructured zirconium oxide, Chem. Mater.10, (1998) 2067-2077. (c)U. Ciesla, M. Froba, G. Stucky, F. Schuth, Highly ordered porous zirconias from surfactant-controlled syntheses:zirconium oxide-sulfate and zirconium oxo phosphate, Chem. Mater.11, (1999) 227-234. (d)P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stuky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chem. Mater.11, (1999) 2813-2826. (e)Y. Q. Wang, L. X. Yin, O. Palchik, Y. R. Hacohen, Y. Koltypin, A. Gedanken, Rapid synthesis of mesoporous yttrium-zirconium oxides with ultrasound irradiation, Langmuir 17, (2001) 4131-4133. (f)M. Rezaei, S.M. Alavi, S. Sahebdelfar, X.M. Liu, Z.F. Liu, Synthesis of mesoporous nanocrystalline zirconia with tetragonal crystallite phase by using ethylene diamine as precipitation agent, J. Mater. Sci.42, (2007) 7086-7092.
    [8]M. Kang, D. Kim, S. H. Yi, J. U. Han, J. E. Yie, J. M. Kim, Preparation of stable mesoporous inorganic oxides via nano-replication technique, Catal. Today.93-95, (2004) 695-699.
    [9]B. Liu, R. T. Baker, Factors affecting the preparation of ordered mesoporous ZrO2 using the replica method, J. Mater. Chem.18, (2008) 5200-5207.
    [10]N. Shirokura, K. Nakajima, A. Nakabayashi, D.L. Lu, M. Hara, K. Domen, T. Tatsumi, J.N. Kondo, Synthesis of crystallized mesoporous transition metal oxides by silicone treatment of the oxide precursor, Chem. Comm.2006 2188-2190.
    [11]D.L. Li, H.S. Zhou, I. Honma, Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization, Nat. Mater.3 (2004) 65-72.
    [12]J.W. Lee, M.C. Orilall, S. Warren, M. Kamperman, F.J. Disalvo, U. Wiesner, Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores, Nat. Mater.7 (2008) 222-228.
    [13]K. R. Seddon, A. Stark, M. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure. Appl. Chem.72 (2000) 2275-2287.
    [14]R. Ryoo, J. M. Kim, C. H. Ko, C. H. Shin, Disordered molecular sieve with branched mesoporous channel network, J. Phys. Chem.100, (1996) 17718-17721.
    [15]F. Jiao, A. Harrison, J.-C. Jumas, A.V. Chadwick, W. Kockelmann, P.G. Bruce, Ordered mesoporous Fe2O3 with crystalline walls, J. Am. Chem. Soc.128 (2006) 5466-5474.
    [16]H.Cao, X. Xiu, B. Luo, Y. Liang, Y. Zhang, R. Tan, M. Zhao, Q. Zhu, Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires, Adv. Funct. Mater.14, (2004) 243-246.
    [17]Y.C. Xie, Y.Q. Tang, Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports:applications to heterogeneous catalysis, Adv. Catal.37 (1990) 1.
    [18]F. Babou, G. Coudurier, J. C. Vedrine, Acidic properties of sulfated zirconia:an infrared spectroscopic study, J. Catal.152, (1995) 341-349.
    [19]M. Mamak, N. Coombs, G. Ozin, Self-assembling solid oxide fuel cell materials: mesoporous yttria-zironia and metal-yttria-zirconia solid solutions, J. Am. Chem. Soc. 122,(2000)8932-8939.
    [1]A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C:Photochem. Rev.1 (2000) 1-21.
    [2]X. Chen, S.S. Mao, Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications, Chem. Rev.107 (2007) 2891-2959.
    [3]C.K. Xu, P.H. Shin, L.L. Cao, J.M. Wu, D. Gao, Ordered TiO2 nanotube arrays on transparent conductive for dye-sensitized solar cells, Chem. Mater.22 (2010) 143-148.
    [4]C. Lettmann, H. Hinrichs, W.F. Maier, Combinatorial discovery of new photocatalysts for water purification with visible light, Angew. Chem. Int. Ed.40 (2001)3160-3164.
    [5]J. Ovenstone, K. Yanagisawa, Effect of hydrothermal treatment of armophous titania on the phase change from anatase to rutile during calcination, Chem. Mater.11 (1999) 2770-2774.
    [6]R.I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, R.J.D. Tilley, A structural investigation of titanium dioxide photocatalysts, J. Solid. State. Chem.92 (1991) 178-2017.
    [7]C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism, Nature 359 (1992) 710-712.
    [8]H.W. Che, S.H. Han, W.G. Hou, A.F. Liu, X.J. Yu, Y.Y. Sun, S.S. Wang, Ordered mesoporous tin oxide with crystalline pore walls:preparation and thermal stablility, Micro. Meso. Mater.130 (2010) 1-6.
    [9]P. Bai, P.P. Wu, Z.F. Yan, X.S. Zhao, Cation-anion double hydrolysis derived mesoporous γ-Al2O3 as an environmentally friend and efficient aldol reaction catalyst, J. Mater. Chem.19 (2009) 1554-1563.
    [10]Y. Sun, S. Ma, Y. Du, L. Yuan, S. Wang, J. Yang, F. Deng, F.-S. Xiao, Solvent-free preparation of nanosized sulfated zirconia with bransted acidic sites from a simple calcination, J. Phys. Chem. B.109 (2005) 2567-2572.
    [11]X.J. Yu, Z.H. Xu, S.H. Han, H.W. Che, X. Yan, A.F. Liu, Synthesis of well-ordered lamellar mesoporous molybdenum oxide, Colloid Surf. A:Physicochem Eng. Aspect.333 (2009) 194-198.
    [12]H.M. Chen, J.H. He, C.B. Zhang, H. He, Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde, J. Phys. Chem. C. 111 (2007) 18033-18038.
    [13]P. Shu, J.F. Ruan, C.B. Gao, H.C. Li, S.A. Che, Formation of mesoporous Co3O4 replicas of different mesostructures with different pore sizes, Micro. Meso. Mater.123 (2009)314-323
    [14]N. Phonthammachai, M. Rumruangwong, E. Gulari, A.M. Jamieson, S. Jitkarnka, S. Wongkasemjit, Synthesis and rheological properties of mesoporous nanocrystalline CeO2 via sol-gel process, Colloid Surf. A:Physicochem Eng. Aspect.247 (2004) 61-68.
    [15]D.M. Antonelli, J.Y. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method, Angew. Chem. Int. Ed. Engl.34 (1995) 2014-2017.
    [16](a)H. Yoshitake, T. Sugihara, T. Tatsumi, Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition, Chem. Mater.14 (2002) 1023-1029. (b)Y. Wang, X. Tang, W. Huang, Y.R. Hacohen, A. Gedanken, Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures, Adv. Mater.12 (2000) 1183-1186. (c) D.T. On, A simple route for the synthesis of mesostructured lamellar and hexagonal phosphorus-free titania (TiO2), Langmuir 15 (1999) 8561-8564. (d) V. Luca, J.N. Watson, M. Ruschena, R.B. Knott, Anionic surfactant templated titanium oxide mesophase:synthesis, characterization, and mechanism of formation, Chem. Mater.18 (2006) 1156-1168. (e)C.X. Tian, Z. Zhao, J. Hou, N. Luo, Surfactant/co-polymer template hydrothermal synthesis of thermally stable, mesoporous TiO2 from TiOSO4, Mater. Lett.62 (2008) 77-80. (f)S. Cabrera, J. EI-Haskouri, A. Beltran-Portier, D. Beltran-Portier, M.D. Marcos, P. Amoros, Enhanced surface area in thermally stable pure mesoporous TiO2, Solid. Stat. Sci.2 (2000)513-518.
    [17]D. Khushalani, G.A.Ozin, A. Kuperman, Glycometallate surfactants Part 2: non-aqueous synthesis of mesoporous titanium, zirconium and niobium oxides, J. Mater. Chem.9 (1999) 1491-1500.
    [18]Y.-Y. Lyu, S.H. Yi, J.K. Shon, S. Chang, L.S. Pu, S.-Y. Lee, J.E. Yie, K. Char, G.D. Stucky, J.M. Kim, Highly stable mesoporous metal oxides using nano-propping hybrid Gemini surfactants, J. Am. Chem. Soc.126 (2004) 2310-2311.
    [19]J.C. Yu, L.Z. Zhang, Z. Zheng, J.C. Zhao, Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity, Chem. Mater.15(2003)2280-2286.
    [20]K. Cassiers, T. Linssen, M. Mathieu, Y.Q. Bai, H.Y. Zhu, P. Cool, E.F. Vansant, Surfactant-directed synthesis of mesoporous titania with nanocrystalline anatase walls and remarkable thermal stability, J. Phys. Chem. B.108 (2004) 3713-3721.
    [21]D.L. Li, H.S. Zhou, I. Honma, Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization, Nat. Mater.3 (2004) 65-72.
    [22]J.W. Lee, M.C. Orilall, S. Warren, M. Kamperman, F.J. Disalvo, U. Wiesner, Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores, Nat. Mater.7 (2008) 222-228.
    [23]K. R. Seddon, A. Stark, M. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure. Appl. Chem.72 (2000) 2275-2287.
    [24]M. Lindn, J. Blanchard, S. Schacht, S.A. Schunk, F. Schuth, Phase behavior and wall formation in Zr(SO4)2/CTABr and TiOSOC4/CTABr Mesophases, Chem. Mater.11 (1999) 3002-3008.
    [25]C.X. Tian, Z. Zhao, J. Hou, N. Luo, Surfactant/co-polymer template hydrothermal synthesis of thermally stable, mesoporous TiO2 from TiOSO4, Mater. Lett.62 (2008) 77-80.
    [26]H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2, J. Phys. Chem. B.104 (2000) 3481-3487.
    [27]S. Vargas, R. Arroyo, E. Hao, R. Rodriguez, Effects of cationic dopants on the phase transition temperature of titania prepared by the sol-gel method, J. Mater. Res. 14 (1999) 3932-3937.
    [28]M. Gotic, M. Ivanda, S. Popovic, S. Music, A. Sekulic, A. Turkovic, K. Furic, Raman investigation of nanosized TiO2, J. Raman Spectrosc.28 (1997) 555-558.
    [29]H. Kominami, M. Kohno, Y. Kera, Synthesis of brookite-type titanium oxide nano-crystals in organic media, J. Mater. Chem.10 (2000) 1151-1156.
    [30]P. Periyat, K.V. Baiju, P. Mukundan, P.K. Pillai, K.G.K. Warrier, High temperature stable mesoporous anatase TiO2 photocatalyst achieved by silica addition, Appl. Catal. A:Gen.349 (2008) 13-19.
    [31]F. Jiao, A. Harrison, J.-C. Jumas, A.V. Chadwick, W. Kockelmann, P.G. Bruce, Ordered mesoporous Fe2O3 with crystalline walls, J. Am. Chem. Soc.128 (2006) 5466-5474.
    [32]G. Li, J.C. Yu, J. Zhu, Y. Cao, Hierarchical mesoporous grape-like titania with superior recyclability and photoactivity, Micropor. Mesopor. Mater.106 (2007) 278-283.
    [33]J.C. Yu, L. Zhang, J. Yu, Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework, Chem. Mater.14 (2002) 4647-4653.
    [1]C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 359 (1992)710.
    [2]S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science 269 (1995) 1242.
    [3]D. M. Antonelli, J. Y. Ying, Angew. Chem. Int. Ed. Engl.34 (1995) 2014.
    [4]Z. R. Tian, W. Tong, J. Y. Wang, N. G. Duan, V. V. Krishnan, S. L. Suib, Science 276(1997)926.
    [5]X. J. Yu, Z. H. Xu, S. H. Han, H. W. Che, X Yan, A. F. Liu, Colloid Suf. A: Physicochem Eng. Aspect.333 (2009) 194.
    [6]M. Lundberg, B. Skarman, F. Cesar, L. R. Wallenberg, Micropor. Mesopor. Mater. 54 (2002) 97.
    [7]P. Bai, P. P. Wu, Z. F. Yan, X. S. Zhao, Micropor. Mesopor. Mater.118 (2009), 288.
    [8](a) B. Yuliarto, H. Zhou, T. Yamada, I. Honma, K. Asai, Chem. Lett. (2003),510. (b) C. Y. Tung, N. L. Wu, I. A. Rusakova, J. Mater. Res.18 (2003) 2890. (c) Y. D. Wang, C. L. Ma, X. D. Sun, H. D. Li, Mater. Lett.51 (2001) 285.
    [9]R. Garro, M. T. Navarro, J. Primo, A. Corma, J. Catal.233 (2005) 342.
    [10]E. R. Leite, I. T. Weber, E. Longo, J. A. Varela, Adv. Mater.12 (2000) 965.
    [11]T. Stergiopoulos, I. M. Arabatzis, H. Cachet, P. Falaras, J. Photochem. Photobiol. A.155(2003) 163.
    [12](a) N. Ulagappan, C. N. R. Rao, Chem. Commun. (1996),1685. (b) L. M. Qi, J. M. Ma, H. M. Cheng, Z. G. Zhao, Langmuir 14 (1998) 2579. (c) F. Chen, M. Liu, Chem. Commun. (1999) 1829. (d) Y. D. Wang, C. L. Ma, X. D. Sun, H. D. Li, J. Colloid. Interf. Sci.286 (2005) 627. (e) D. N. Srivastava, S. Chappel, O. Palchik, A. Zaban, A. Gedanken, Langmuir 18 (2002) 4160. (f) R. W. J. Scott, M. Mamak, K. Kwong, N. Coombs, G. A. Ozin, J. Mater. Chem.13 (2003) 1406. (g) J. Zhu, B. Y. Tay, J. Ma, Mater. Lett.60 (2006) 1003.
    [13](a) P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G D. Stucky, Chem. Mater.11 (1999) 2813. (b) J. Ba, J. Polleux, M. Antonietti, M. Niederberger, Adv. Mater.17 (2005) 2509. (c) Y. C. Du, S. Liu, Y. L. Zhang, C. Y. Yin, Y. Di, F-S. Xiao, Catalysis Letters.108 (2006) 155-158.
    [14]T. Toupance, O. Babot, B. Jousseaume, G. Vilaca, Chem. Mater.15 (2003) 4691.
    [15](a) T. Hyodo, N. Nishida, Y. Shimizu, M. Egashira, Sensors. Actuators B,83 (2002) 209. (b) N. L. Wu, C. U. Tung, J. Am. Ceram. Soc.87[9] (2004) 1741.
    [16](a) J.-H. Smatt, C. Weidenthaler, J. B. Rosenholm, M. Linden, Chem. Mater.18 (2006) 1443. (b) H. Kim, J. Cho, J. Mater. Chem.7 (2008) 771.
    [17]K. R. Seddon, A. Stark, M.-J. Torres, Pure. Appl. Chem.72 (2000) 2275.
    [18]T. Welton, Chem. Rev.99 (1999) 2071.
    [19](a) J. Dupont, R. F. de. Suoza, P. A. Z. Suarez, Chem. Rev.102 (2002) 3667. (b) R. Sheldon, Chem. Commun.23 (2001) 2399.
    [20]J. Fuller, R. T. Carlin, R. A. Osteryoung, J. Electrochem. Soc.144 (1997) 3881.
    [21]L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke, Nature 399 (1999) 28.
    [22](a) B. G. Trewyn, C. M. Whitman, V. S.-Y. Lin, Nano. Lett.4 (2004) 2139. (b) Y. Zhou, M. Antonietti, Chem. Mater.16 (2004) 544. (c) T, W. Wang, H. Kaper, M. Antonietti, B. Smarsly, Langmuir 23 (2007) 1489. (d) K. Yoo, H. Choi, D. D. Dionysiou, Chem. Commun. (2004) 2000. (e) H. Park, S. H. Yang, Y.-S. Jun, W. H. Hong, J. K. Kang, Chem. Mater.19 (2007) 535.
    [23]Y. Zhou, J. H. Schattka, M. Antonietti, Nano Lett.4 (2004) 477.
    [24]H. Shibata, H. Mihara, T. Mukai, T. Ogura, H. Kohno, T. Ohkubo, H. Sakai, M. Abe, Chem. Mater.18 (2006) 2256.
    [25]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure. Appl. Chem.57 (1985) 603.
    [26]K. G. Severin, T. M. Abdel-Fattah, Chem. Commun. (1998) 1471.
    [27]S. H. Han, J. Xu, W. G. Hou, X. M Yu, Y. S. Wang, J. Phys. Chem. B.108 (2004) 15043.
    [28]S. H. Han, W. G. Hou, J. Xu, X. R. Huang, L. Q. Zheng, ChemPhysChem.7 (2006) 394.
    [29]A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon, T. Welton, J. Chem. Soc, Dalton. Trans. (1994)3405.
    [30]S. Dai, Y. H. Ju, H. J. Gao, J. S. Lin, S. J. Pennycook, C. E. Barnes, Chem. Commun. (2000) 243.
    [1]T. Yamaguchi, Catal. Today.20,199 (1994).
    [2]R. J. Gorte, S. Park, J. M. Vohs, C. H. Wang, Adv. Mater.19,1465 (2000).
    [3]K. R. Sridhar, J. A. Blacnchard, Sens. Actuators. B.59,60 (1999).
    [4]U. Ciesla, M. Froba, G. Stucky, F. Schuth, Chem. Mater.11,227 (1999).
    [5]M. Mamak, N. Coombs, G. Ozin, J. Am. Chem. Soc.122,8932 (2000).
    [6]H. R. Chen, J. L. Gu, J. L. Shi, Z. C. Liu, J. H. Gao, M. L. Ruan, D. S. Yan, Adv. Mater.17,2010(2005).
    [7]J. Konishi, K. Fujita, S. Oiwa, K. Nakanishi, K. Hirao, Chem. Mater.20,2165 (2008).
    [8]X. M. Liu, G. Q. Liu, Z. F. Yan, J. Phys. Chem. B.108,15523 (2004).
    [9]S. K. Das, M. K. Bhunia, A. K. Sinha, A. Bhaumik, J. Phys. Chem. C.113,8918 (2009).
    [10]S. Y. Chen, L. Y. Jiang, S. F. Cheng, J. Phys. Chem. B.110,11761 (2006).
    [11]Y. Wan, H. F. Yang, D. Y. Zhao, Accounts. Chem. Res.7,423 (2006).
    [12]M. S. Wong, J. Y. Ying, Chem. Mater.10,2067 (1998).
    [13]P. D. Yang, D. Y. Zhao, D.I. Margolese, B. F. Chmelka, G. D. Stuky, Chem. Mater.11,2813(1999).
    [14]J. S. Reddy, A. Sayari, Catal. Lett.38,219 (1996).
    [15]Y Q. Wang, L. X. Yin, O. Palchik, Y. R. Hacohen, Y. Koltypin, A. Gedanken, Langmuir 17,4131 (2001).
    [16]J. L. Blin, R. Flamant, B. L. Su, Inter. J. Inorg. Mater.3,959 (2001).
    [17]Y W. Suh, J. W. Lee, H. K. Rhee, Solid. State. Sciences.5,995 (2003).
    [18](a) U. Ciesla, S. Schacht, G. D. Stucky, K. K. Unger, F. Schuth, Angew. Chem, Int. Ed. Engl.5,541 (1996). (b) F. Schuth, Chem. Mater.13,3184 (2001).
    [19]N. Shirokura, K. Nakajima, A. Nakabayashi, D. L. Lu, M. Hara, K. Domen, T. Tatsumi, J. N. Kondo, Chem. Commun.2188 (2006).
    [20]S. C. Laha, R. Ryoo, Chem. Commun.2138 (2003).
    [21](a) J. Roggenbuck, H. Schafer, T. Tsoncheva, C. Minchev, J. Hanss, M. Tiemann, Micropor. Mesopor. Mater.101,335 (2007). (b) J. Roggenbuck, M. Tiemann, J. Am. Chem. Soc.127,1096 (2005). (c) B. Z. Tian, X. Y. Liu, H. F. Yang, S. H. Xie, C. Z. Yu, B. Tu, D. Y. Zhao, Adv. Mater.15,1370 (2003).
    [22]X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Bao, L. Lv, Z. Zhou, J. Mater. Chem.16, 637 (2006).
    [23](a) Y. Wang, C. M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schuth, Adv. Mater.17,53 (2005). (b) A. Rumplecker, F. Kleitz, E.-L. Salabas, F. Schuth, Chem. Mater.19,485 (2007).
    [24](a) W. B. Yue, A. H. Hill, A. Harrison, W. Z. Zhou, Chem. Commun.2518 (2007). (b) W. B. Yue, W. Z. Zhou, J. Mater. Chem.17,4947 (2007).
    [25]X. Lai, X. Li, W. Geng, J. Tu, J. Li, S. Qiu, Angew. Chem. Int. Ed.46,738 (2007).
    [26](a) M. Kang, D. Kim, S. H. Yi, J. U. Han, J. E. Yie, J. M. Kim, Catalysis. Today. 93-95,695 (2004). (b) B. Liu, R. T. Baker, J. Mater. Chem.18,5200 (2008).
    [27](a) D. Li, H. S. Zhou, I. Honma, Nat. Mater.3,65 (2004). (b) N.-L.Wu, S.-Y. Wang, I. A. Rusakova, Science 27,1375 (1999). (c) J. N. Kondo, K. Domen, Chem. Mater.20,835 (2008). (d) D. H. Wang, Z. Ma, S. Dai, J. Liu, Z. M. Nie, M. H. Engelhard, Q. S. Huo, C. M. Wang, R. Kou, J. Phys. Chem. C.112,13499 (2008). (e) T. Katou, B. Lee, D. Lu, J. N. Kondo, M. Hara, K. Domen, Angew. Chem, Int. Ed.42,2382 (2003). (f) J. Lee, M. C. Orilall, S. C. Warren, M. Kamperman, F. J. Disalvo, U. Wiesner, Nat. Mater.7,222 (2008).
    [28]K. R. Seddon, A. Stark, M. Torres, Pure. Appl. Chem.72,2275 (2000).
    [29]R. Ryoo, J. M. Kim, C. H. Ko, C. H. Shin, J. Phys. Chem.100,17718 (1996).
    [30](a) F. Jiao, J.-C. Jumas, M. Womes, A. V. Chadwick, A. Harrison, P. G. Bruce, J. Am. Chem. Soc.128,12905 (2006). (b) S. C. Laha, R. Ryoo, Chem. Commun. 2138(2003).
    [31]H. Q. Cao, X. Q. Qiu, B. Luo, Y. Liang, Y. H. Zhang, R. Q. Tan, M. J. Zhao, Q. M. Zhu, Adv. Funct. Mater.3 (14),243 (2004).
    [32]F. Babou, G. Coudurier, J. C. Vedrine, J. Catal.152,341 (1995).
    [33]A. V. Ivanov, S. V. Lysenko, S. V. Baranova, A. V. Sungurov, T. N. Zangelov, E. A. Karakhanov, Micropor. Mesopor. Mater.91,254 (2006).
    [34]J. Madarasz, P. P. Varga, G. Pokol, J. Anal. Appl. Pyrolysis.79,475 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700