用户名: 密码: 验证码:
基于静电纺丝技术构筑一维纳米复合材料及其催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米结构材料由于其自身的结构特点所赋予的大比表面积以及长径比使其在电学、光学、热学、力学、磁学等方面都具有优异的性能,在纳电子器件、生物及化学传感、电池和电极材料、过滤器、环境清洁、药物释放、生物敷料、组织工程以及催化等领域都展现了其独特的魅力。在众多制备一维纳米结构材料的方法中,静电纺丝技术以其操作简单、成本低廉等优势成为制备一维纳米结构材料的通用方法。
     本论文通过将静电纺丝技术与溶胶-凝胶、气固反应、高温碳化、共沉淀等方法相结合,制备了一系列的一维纳米复合材料,并将其应用于光催化、电催化以及化学催化等方面的研究,围绕着催化这一主题开展了以下三方面的工作:第一,通过将静电纺丝技术与溶胶-凝胶技术相结合,采用离子掺杂的方式,制备得到两种复合纤维-过渡金属钨离子掺杂介孔二氧化钛复合纳米纤维膜和稀土铒离子掺杂二氧化钛复合纳米纤维膜,并研究了复合纳米纤维膜在可见光区范围内对亚甲基蓝的光催化降解作用;第二,通过将静电纺丝技术和高温碳化方法相结合,分别采用两种还原方式(高温原位还原和化学还原)制备得到碳纳米纤维负载铂粒子,然后将制备的两种材料修饰于玻碳电极,并研究了修饰电极的电化学行为以及对过氧化氢的电催化作用;第三,通过将静电纺丝法和共沉淀法相结合制备了负载四氧化三铁纳米粒子的聚丙烯腈复合纳米纤维膜,并将其作为类Fenton试剂对染料废水进行脱色降解的实验研究,分别讨论了各项参数对反应动力学的影响。
In the past few years, one-dimensional (1D) nanostructures have attracted a lot of attention due to their novel properties including the high surface-to-volume ratio, high aspect ratio and intriguing applications in many areas such as nanoelectronic devices, biological and chemical sensors, battery and electrode materials, filter, environmental, biomedical and catalysis applications. A large number of advanced techniques have been developed to fabricate 1D nanostructures with well-controlled morphology and chemical composition. Among these methods, electrospinning seems to be the simplest and most versatile technique capable of generating 1D nanostructures from a variety of polymers. One of the most important advantages of the electrospinning technique is that it is relatively easy and not expensive to produce different kinds of nanofibers. Other advantages of the electrospinning technique are the ability to control the fiber diameters, the high surface-to-volume ratio, high aspect ratio, and pore size as non-woven fabrics. The advantage of the facile formation of 1D composite nanomaterials via electrospinning affords the materials multifunctional properties for various applications.
     In this thesis, the 1D composite nanofibers were prepared via electrospinning combined with sol-gel, gas-solid, carbonization and co-deposition. The 1D composite nanofibers were used as photocatalysis, electrocatalysis and chemicatalysis. The thesis was devided into three parts based on the three kinds of catalysis.
     Firstly, the trasition metal ions (tungsten ions) and rare earth ions (erbium ions) were doped into the titanium dioxides nanofibers based on the electrospinning technique combined with sol-gel. The composite nanofibers were characterized by SEM, TEM, XRD as well as N2 adsorption/desorption isotherm. The photocatalysis activity of the two kinds of composite nanofibers was investigated by employing the methylene blue as probe. A series of experiment were done to investigate the optimal experimental conditions including the doping content and calcination temperature. The UV-Vis analysis proved that ions doping can narrow the band gap of the titanium dioxides to absorb more visible light. The photodegradation mechanisms for the methylene blue were proposed based on our experiments.
     Secondly, two kinds of platinum nanoparticles-loaded on carbon nanofibers (CNFs) were synthesized by electrospinning and reduction (thermal in situ reduction and chemical reduction). These composite materials possess high electrochemically active surface area and good conductivity, and are ideal candidate for electrode materials. A high density of metal nanoparticles (catalytic sites) could be obtained by using the electrospinning technique. The interesting three-dimensional (3D) structure of platinum nanoparticles-loaded on CNFs may result in a large effective platinum surface area and good electrocatalytic properties. Through the SEM characterization, the platinum nanoparticles-loaded on CNFs films were 3D networklike structure and the porous structure could significantly increase the effective electrode surface and facilitate the diffusion of analytes into the films. This nanocomposite materials exhibited high electric conductivity and accelerated the electron transfer, as verified by the cyclic voltammetry. The platinum nanoparticles-loaded on CNFs-modified glassy carbon electrode domenstrated direct and mediatorless responses to H2O2. The analytical performances of the platinum nanoparticles-loaded on CNFs-modified glassy carbon electrode towards reduction of H2O2 were evaluated. The high sensitivity, wide linear range, good reproducibility and selectivity make the platinum nanoparticles-loaded on CNFs-modified glassy carbon electrode a promising candidate for amperometric H_2O_2.
     Thirdly, the novel Fe3O4-carrying composite PAN nanofibers were prepared via the electrospinning combined with co-deposition method and taken as an effective iron source for degradation of organic pollutants in Fenton-like system. In our present study, the Fe3O4-carrying composite PAN nanofibers-catalyzed Fenton-like system has been successfully developed for discoloration of an active commercial dye, Rhodamine B, in an aqueous solution. Through a number of experiments under various conditions, it was found that the reactivity of the system was influenced by catalysis dosage, temperature, the concentration of hydrogen peroxide, the pH, the initial dye concentration. The most important characteristic of heterogeneous Fenton-like processes is the formation of OH radicals, which are highly oxidative, nonselective, and able to decompose many organic compounds. Also, the advantages of the heterogeneous Fenton processes are complete mineralization of organic compounds at ambient temperature and easy separation of the heterogeneous catalysts from the treated wastewater. In our experiment, the catalysis can be used under moderate conditions (neutral and relatively low temperature) and recycled via magnetic adsorption. The Fenton-like catalysis could be repeatedly used many times still with high catalytic activity. In summary, the prepared Fe3O4-carrying composite PAN nanofibers exhibited excellent catalytic performance in the Fenton-like reaction towards degradation of the dye wastewater.
引文
[1] TAN L K, KUMAR M K, AN W W, et al. Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications [J]. Applied materials & interfaces, 2010, 2: 498-503.
    [2] YUAN J Y, LU Y, SCHACHER F, et al. Template-directed synthesis of hybrid titania nanowires within core-shell bishydrophilic cylindrical polymer brushes [J]. Chem. Mater., 2009, 21: 4146–4154.
    [3] RAIDONGIA K, ESWARAMOORTHY M. Synthesis and characterization of metal oxide nanorod brushes [J]. Bull. Mater. Sci., 2008, 31: 87–92.
    [4] KIM H, CHO J. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials [J]. J. Mater. Chem., 2008, 18: 771–775.
    [5] SHARMA P, BHATTI H S. Synthesis of quasi-1D cuprous oxide nanostructure and its structural characterizations [J]. Journal of Physics and Chemistry of Solids, 2008, 69: 1718–1727.
    [6] SONG Y, GARCIA R M, DORIN R M, et al. Synthesis of platinum nanowire networks using a soft template [J]. Nano Lett., 2007, 7: 3650-3655.
    [7] WENG X J, BURKE R A, DICKEY E C, et al. Effect of reactor pressure on catalyst composition and growth of GaSb nanowires [J]. Journal of Crystal Growth. 2010, 312: 514–519.
    [8] LI Z, KURTULUS ?, FU N, et al. Controlled synthesis of CdSe nanowires by solution–liquid–solid method [J]. Adv. Funct. Mater., 2009, 19: 3650–3661.
    [9] CUI M Y, YAO X Q, DONG W J, et al. Template-free synthesis of CuO–CeO2 nanowires by hydrothermal technology [J]. Journal of Crystal Growth, 2010, 312: 287–293.
    [10] KAR S, DUTTA P, PAL T, et al. Simple solvothermal route to synthesize S-doped ZnO nanonails and ZnS/ZnO core/shell nanorods [J]. Chem. Phys. Lett., 2009, 473: 102–107.
    [11] ZANG L, CHE Y K, MOORE J S. One-dimensional self-Assembly of planarπ-conjugated molecules: adaptable building blocks for organic nanodevices [J]. Acc. Chem. Res., 2008, 41: 1596-1608.
    [12] LU X F, WANG C, WEI Y. One-dimensional composite nanomaterials: synthesis byelectrospinning and their applications [J]. Small, 2009, 5: 2349-2370.
    [13] GREINER A, WENDORFF J H. Electrospinning: a fascinating method for the preparation of ultrathin fibers [J]. Angew. Chem. Int. Ed. 2007, 46: 5670-5703.
    [14] MATTHEWS J A, WNEK G E, SIMPSON D G, et al. Electrospinning of collagen nanofibers [J]. Biomacromolecules, 2002, 3: 232– 238.
    [15] LI M, MONDRINOS M J, GANDI R M, et al. Electrospun protein fibers as matrices for tissue engineering [J]. Biomaterials, 2005, 26: 5999– 6008.
    [16] XIE J B, HSIEH Y-L. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme [J]. J. Mater. Sci., 2003, 38: 2125– 2133.
    [17] WNEK G E, CARR M E, SIMPSON D G, et al. Electrospinning of nanofiber fibrinogen structures [J]. Nano Lett., 2003, 3: 213– 216.
    [18] OGHO K, ZHAO C H, KOBAYASHI M, et al. Preparation of non-woven nanofibers of bombyx mori silk, samia cynthia ricini silk and recombinant hybrid silk with electrospinning method [J]. Polymer, 2003, 44: 841– 846.
    [19] KIM S H, NAM Y S, LEE T S, et al. Silk fibroin nanofiber. Electrospinning, properties, and structure [J]. Polym. J., 2003, 35: 185– 190.
    [20] MIN B-M, LEE S W, LIM J N, et al. Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers [J]. Polymer, 2004, 45: 7137– 7142.
    [21] OHKAWA K, CHA D, KIM H, et al. Electrospinning of chitosan [J]. Macromol. Rapid Commun., 2004, 25: 1600– 1605.
    [22] KULPINSKI P. Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method [J]. J. Appl. Polym. Sci., 2005, 98: 1855– 1859.
    [23] LIU H Q, HSIEH Y-L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate [J]. J. Polym. Sci. Part B, 2002, 40: 2119– 2129.
    [24] DAGA V K, HELGESON M E, MATTHEW E, et al. Electrospinning of neat and laponite-filled aqueous poly(ethylene oxide) solutions [J]. J.Polym. Sci. Part B, 2006, 44: 1608– 1617.
    [25] ZHANG C X, YUAN X Y, WU L L. Drug-loaded ultrafine poly(vinyl alcohol) fibre mats prepared by electrospinning [J]. e-Polymers, 2005, No. 72.
    [26] LI L, HSIEH Y-L. Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid) [J]. Polymer, 2005, 46: 5133– 5139.
    [27] YANG Q B, LI Z Y, HONG Y L, et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning [J].J.Polym. Sci. Part B, 2004, 42: 3721– 3726.
    [28] SHUKLA S, BRINLEY E, CHO H J, et al. Electrospinning of hydroxypropyl cellulose fibers and their application in synthesis of nano and submicron tin oxide fibers [J]. Polymer, 2005, 46: 12130– 12145.
    [29] BOGNITZKI M, CZADO W, FRESE T, et al. Nanostructured Fibers via Electrospinning [J]. Adv. Mater., 2001, 13: 70–72.
    [30] SAHOO S, OUYANG H, GOH J C-H, et al. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering [J]. Tissue Eng., 2006, 12: 91– 99.
    [31] YOSHIMOTO H, SHIN Y M, TERAI H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering [J]. Biomaterials, 2003, 24: 2077-2082.
    [32] ITO Y, HASUDA H, KAMITAKAHARA M, et al. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material [J]. J. Biosci. Bioeng., 2005, 100: 43– 49.
    [33] RIBOLDI S A, SAMPAOLESI M, NEUENSCHWANDER P, et al. Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering [J]. Biomaterials, 2005, 26: 4606– 4615.
    [34] KOOMBHONGSE S, LIU W X, RENEKER D H. Flat polymer ribbons and other shapes by electrospinning [J]. Journal of Polymer Science Part B: Polymer Physics, 2001, 39: 2598-2606.
    [35] BAUMGARTEN P K. Electrostatic spinning of acrylic microfibers [J]. J. Colloid Interface Sci., 1971, 36: 71– 79.
    [36] KRISHNAPPA R V N, DESAI K, SUNG C. Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage [J]. J. Mater. Sci., 2003, 38: 2357– 2365.
    [37] BERGSHOEF M M, VANCSO G J. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement [J]. Adv. Mater., 1999, 11: 1362–1365.
    [38] SRINIVASAN G, RENEKER D H. Structure and morphology of small diameter electrospun aramid fibers [J]. Polym. Int., 1995, 36: 195– 201.
    [39] HUANG C B, WANG S Q, ZHANG H A, et al. High strength electrospun polymer nanofibers made from BPDA–PDA polyimide [J]. European Polymer Journal, 2006, 42: 1099-1104.
    [40] KIM J-S, RENEKER D H. Mechanical properties of composites using ultrafine electrospun fibers [J]. Polym. Compos., 1999, 20: 124– 131.
    [41] KIM K W, LEE K H, LEE B S, et al. Effects of blend ratio and heat treatment on the properties of the electrospun poly(ethylene terephthlate) nonwovens [J]. Fibers Polym., 2005, 6: 121– 126.
    [42] KHIL M S, KIM H Y, KIM M S, et al. Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning [J]. Polymer, 2004, 45: 295– 301.
    [43] DEMIR M M, YILGOR I, ERMAN B. Electrospinning of polyurethane fibers [J]. Polymer, 2002, 43: 3303–3309.
    [44] KENAWY E-R, BOWLIN G L, MANSFIELD K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend [J]. J. Controlled Release, 2002, 81: 57– 64.
    [45] LEE K H, KIM H Y, LA Y M, et al. Influence of a mixing solvent with tetrahydrofuran and N, N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats [J]. J.Polym. Sci. Part B, 2002, 40: 2259– 2268.
    [46] DEITZEL J M, KOSIK W, MCKNIGHT S H, et al. Electrospinning of polymer nanofibers with specific surface chemistry [J]. Polymer, 2002, 43: 1025– 1029.
    [47] BOGNITZKI M, BECKER M, GRAESER M, et al. Preparation of sub-micrometer copper fibers via electrospinning [J]. Adv. Mater., 2006, 18: 2384– 2386.
    [48] DAGA V K, HELGESON M E, WAGNER N J, et al. Electrospinning of neat and laponite-filled aqueous poly(ethylene oxide) solutions [J]. J.Polym. Sci. Part B, 2006, 44: 1608– 1617.
    [49] KOOMBHONGSE S, LIU W X, RENEKER D H. Flat polymer ribbons and other shapes by electrospinning [J]. J. Polym. Sci. Part B, 2001, 39: 2598– 2606.
    [50] CHEN Z H, FOSTER M D, ZHOU W S, et al. Structure of Poly (ferrocenyldimethylsilane) in Electrospun Nanofibers [J]. Macromolecules, 2001, 34: 6156– 6158.
    [51] HUANG L, NAGAPUDI K, APKARIAN R P, et al. Engineered collagen-PEO nanofibers and fabrics [J]. J.Biomater. Sci. Polym. Ed., 2001, 12: 979– 993.
    [52] VENUGOPAL J, MA L L, YONG T, et al. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices [J]. Cell Biol. Int., 2005, 29: 861– 867.
    [53] ZHANG Y Z, OUYANG H W, LIM C T, et al. Electrospinning of gelatin fibers andgelatin/PCL composite fibrous scaffolds [J]. J. Biomed. Mater. Res. Part B, 2005, 72: 156– 165.
    [54] ZENG J, AIGNER A, CZUBAYKO F, et al. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings [J]. Biomacromolecules, 2005, 6: 1484– 1488.
    [55] XIE J B, HSIEH Y-L. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme [J]. J. Mater. Sci., 2003, 38: 2125– 2133.
    [56] DEMIR M M, GULGUN M A, MENCELOGLU Y Z, et al. Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity [J]. Macromolecules, 2004, 37: 1787– 1792.
    [57] KIM G-M, WUTZLER A, RADUSCH H-J, et al. One-dimensional arrangement of gold nanoparticles by electrospinning [J]. Chem. Mater., 2005, 17: 4949– 4957.
    [58] JIN W-J, LEE H K, JEONG E H, et al. Preparation of polymer nanofibers containing silver nanoparticles by using poly (N-vinylpyrrolidone) [J]. Macromol. Rapid. Commun., 2005, 26: 1903– 1907.
    [59] WANG M, SINGH H, HATTON T A, et al. Field-responsive superparamagnetic composite nanofibers by electrospinning [J]. Polymer, 2004, 45: 5505– 5514.
    [60] SONG T, ZHANG Y Z, ZHOU T, et al. Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning [J]. Chem. Phys. Lett., 2005, 415: 317– 322.
    [61] GUPTA P, ASMATULU R, CLAUS R, et al. Superparamagnetic flexible substrates based on submicron electrospun Estane (R) fibers containing MnZnFe-Ni nanoparticles [J]. J. Appl. Polym. Sci., 2006, 100: 4935– 4942.
    [62] KRIHA O, BECKER M, LEHMANN M, et al. Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers - A route to magnetic micromanipulators [J]. Adv. Mater., 2007, 19: 2483-2485.
    [63] KO F, GOGOTSI Y, ALI A, et al. Electrospinning of continuons carbon nanotube-filled nanofiber yarns [J]. Adv. Mater., 2003, 15: 1161– 1165.
    [64] DROR Y, SALALHA W, KHALFIN R L, et al. Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning [J]. Langmuir, 2003, 19: 7012– 7020.
    [65] SEN R, ZHAO B, PEREA D, et al. Preparation of single-walled carbon nanotubereinforced polystyrene and polyurethane nanofibers and membranes by electrospinning [J]. Nano Lett., 2004, 4: 459-464.
    [66] LI D, XIA Y N. Fabrication of titania nanofibers by electrospinning [J]. Nano Lett., 2003, 3: 555– 560.
    [67] YANG X H, SHAO C L, GUAN H Y, et al. Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precusor [J]. Inorganic chemistry communications, 2004, 7: 176-178.
    [68] LIN D, WU H, ZHANG R, et al. Preparation of ZnS nanofibers via electrospinning [J]. Journal of the American ceramic society, 2007, 90: 3664-3666.
    [69] DING B, KIM H, KIM C, et al. Morphology and crystalline phase study of electrospun TiO2-SiO2 nanofibers [J]. Nanotechnology, 2003, 14: 532-537.
    [70] KO J B, LEE S W, KIM D E, et al. Fabrication of SiO2-ZrO2 composite fiber mats via electrospinning [J]. Journal of porous materials, 2006, 13: 325-330.
    [71] WANG C H, SHAO C L, ZHANG X T, et al. SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties [J]. Inorganic chemistry, 2009, 48: 7261-7268.
    [72] SUN Z C, ZUSSMAN E, YARIN A L, et al. Compound core-shell polymer nanofibers by co-electrospinning [J]. Adv. Mater., 2003, 15: 1929.
    [73] SONG T, ZHANG Y Z, ZHOU T J, et al. Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning [J]. Chem. Phys. Lett., 2005, 415: 317-322.
    [74] GU Y X, CHEN D R, JIAO X L, et al. LiCoO2-MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties [J]. J. Mater. Chem., 2007, 17: 1769-1776.
    [75] YARIN A L, KOOMBHONGSE S, RENEKER D H. Bending instability in electrospinning of nanofibers [J]. J. Appl. Phys., 2001, 89: 3018-3026.
    [76] SHIN Y M, HOHMAN M M, BRENNER M P. Experimental characterization of electrospinning: the electrically forced jet and instabilities [J]. Polymer, 2001, 42: 9955-9967.
    [77] WEI M, LEE J, KANG B, et al. Preparation of core-sheath nanofibers from conducting polymer blends [J]. Macromol. Rapid Commun., 2005, 26: 1127–1132.
    [78] WU H, LIN D, PAN W. Fabrication, assembly, and electrical characterization of CuO nanofibers [J]. Appl. Phys. Lett., 2006, 89: 133125-1-133125-3.
    [79] LEE S W, LEE H J, CHOI J H. Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers [J]. Nano Lett., 2010, 10: 347-351.
    [80] WERTZ J, SCHNEIDERS I. Advantages of nanofibre coating technology [J]. Filtration+Separation July/August 2009.
    [81] LI Z Y, ZHANG H N, ZHENG W, et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers [J]. J. Am. Chem. Soc., 2008, 130: 5036-5037.
    [82] (a) HOTA G, KUMAR B R, Ramakrishna W J N S. Fabrication and characterization of a boehmite nanoparticle impregnated electrospun fiber membrane for removal of metal ions [J]. J. Mater. Sci., 2008, 43: 212–217. (b) OH G-Y, JU Y-W, JUNG H-R, et al. Preparation of the novel manganese-embedded PAN-based activated carbon nanofibers by electrospinning and their toluene adsorption [J]. J. Anal. Appl. Pyrolysis., 2008, 81: 211–217. (c) Ramaseshan R, Sundarrajan S, Liu Y J, et al. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants [J]. Nanotechnology, 2006, 17: 2947-2953.
    [83] CHEN L P, HONG S G, ZHOU X P, et al. Novel Pd-carrying composite carbon nanofibers based on polyacrylonitrile as a catalyst for Sonogashira coupling reaction [J]. Catal. Commun., 2008, 9: 2221-2225.
    [84] FUJISHIMA A; HONDA K. Electrochemical Photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37.
    [85] CHUANGCHOTE S, JITPUTTI J, SAGAWA T, et al. Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers [J]. Applied materials & interfaces, 2009, 1: 1140-1143.
    [86] ZEN J M, KUMAR A S, TSAI D M. Recent updates of chemically modified electrodes in analytical chemistry [J]. Electroanalysis, 2003, 15: 1073-1087.
    [87] WANG H C, WANG X S, ZHANG X Q. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires [J]. Biosensor and Bioelectronics, 2009, 25: 142-146.
    [88] HOIGNE J, BADER H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions [J]. Water Res., 1976, 10: 377.
    [89] FENTON H J H. Oxidation of tartaric acid in presence of iron [J]. J. Chem. Soc., 1884, 65: 899-910.
    [90] SUI N, DUAN Y Z, JIAO X L, et al. Large-scale preparation and catalytic properties of one-dimensionalα/βMnO2 nanostructures [J]. J. Phys. Chem. C, 2009, 113: 8560–8565.
    [91] AI Z H, LU L R, LI J P, et al. Fe@Fe2O3 core-shell nanowires as the iron reagent. 2. An efficient and reusable sono-fenton system working at neutral pH [J]. J. Phys. Chem. C, 2007, 111: 7430-7436.
    [92] HOFFMANN M R, MARTIN S T, CHOI W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95: 69-96.
    [93] JUSTICIA I, ORDEJON P, CANTO G, et al. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis [J]. Adv. Mater., 2002, 14: 1399-1402.
    [94] SPANHEL L, HAASE M, WELLER H, et al. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles [J]. J. Am. Chem. Soc., 1987, 109: 5649-5655.
    [95] GOPIDAS K R, BOHORQUEZ M, KAMAT P V. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver (I) iodide systems [J]. J. Phys. Chem., 1990, 94: 6435-6440.
    [96] KHAN M A, AKHTAR M S, WOO S I, et al. Enhanced photoresponse under light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water [J]. Catal. Commun., 2008, 10: 1-5.
    [97] NAGAOKA K, TAKANABE K, AIKA K. Influence of phase composition of titania on catalytic behavior of Co/TiO2 for the dry reforming of methane [J]. Chem. Commun., 2002, 9: 1006-1007.
    [98] KAMAT P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces [J]. Chem. Rev., 1993, 93: 267-300.
    [99] MADHUGIRI S, SUN B, SMIRNIOTIS P G, et al. Electrospun mesoporous titanium dioxide fibers [J]. Microporous and mesoporous materials, 2004, 69: 77-83.
    [100] JIN M, ZHANG X, EMELINE A V, et al. Fibrous TiO2-SiO2 nanocomposite photocatalyst [J]. Chem. Commun., 2006, 43: 4483-4485.
    [101] LI D, MCCANN J T, XIA Y N, et al. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces [J]. Small, 2005, 1: 83-86.
    [102] LU X F, LIU X C, ZHANG W J, et al. Large-scale synthesis of tungsten oxide nanofibers by electrospinning [J]. J. Colloid. Interf. Sci., 2006, 298:996-999.
    [103] DOEUFF S, DROMZEE Y, TAULELLE F, et al. Synthesis and solid- and liquid-state characterization of a hexameric cluster of titanium (IV): Ti6(μ2-O)2(μ3-O)2((μ2-OC4H9)2(OCOCH3)8 [J]. Inorg. Chem., 1989, 28: 4439-4445.
    [104] DOEUFF S, HENRY M, SANCHEZ C. Sol-gel synthesis and characterization of titanium oxo-acetate polymers [J]. Mater. Res. Bull., 1990, 25: 1519-1529.
    [105] PENG T Y, ZHAO D, DAI K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity [J]. J. Phys. Chem. B, 2005, 109: 4947-4952.
    [106] WU J M; HAYAKAWA S, TSURU K, et al. Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition [J]. J. Am. Ceram. Soc., 2004, 87: 1635-1642.
    [107] SONG H Y, JIANG H F, LIU X Q, et al. Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181: 421-428.
    [108] ZHANG H Z, BANFIELD J F. Thermodynamic analysis of phase stability of nanocrystalline titania [J]. J. Mater. Chem., 1998, 8: 2073-2076.
    [109] YANG H M, SHI R R, ZHANG K, et al. Synthesis of WO3/TiO2 nanocomposites via sol–gel method [J]. Journal of Alloys and Compounds, 2005, 398: 200-202.
    [110] HUANG G L, ZHU Y F. Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping [J]. J. Phys. Chem. C, 2007, 111: 11952–11958.
    [111] LI J X, XU J H, DAI W-L, et al. One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol [J]. Applied Catalysis B: Environmental, 2008, 82: 233-243.
    [112] ZHAN S H, CHEN D R, JIAO X L, et al. Long TiO2 hollow fibers with mesoporous walls: sol?gel combined electrospun fabrication and photocatalytic properties [J]. J. Phys. Chem. B, 2006, 110: 11199–11204.
    [113] ZHAO Y Y, WANG H Y, LU X F, et al. Fabrication of refining mesoporous silica nanofibers via electrospinning [J]. Mater. Lett., 2008, 62: 143-146.
    [114] PAN J H, LEE W I. Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties [J]. Chem. Mater., 2006, 18: 847-853.
    [115] YANG H M, SHI R R, ZHANG K, et al. Synthesis of WO3/TiO2 nanocomposites 113via sol–gel method. J. Alloy. Compd., 2005, 398: 200-202.
    [116] WU J M, ZHANG T W. Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity [J]. Langmuir, 2005, 21:6995-7002.
    [117] ZOU J J, ZHU B, WANG L, et al. Zn- and La-modified TiO2 photocatalysts for the isomerization of norbornadiene to quadricyclane [J]. J. Mol. Catal. A: Chem., 2008, 286: 63-69.
    [118] NGUYEN PHAN T-D, SONG M B, KIM E J, et al. Microporous and Mesoporous Materials [J]. 2009, 119: 290-298.
    [119] FRANCISCO M S P, MASTELARO V R. Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies [J]. Chem. Mater., 2002, 14: 2514-2518.
    [120] SHAH S I, LI W, HUANG C P, et al. Colloquium Paper: Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles [J]. Proc. Natl. Acad. Sci., 2002, 99: 6482-6486.
    [121] Li F B, Li X Z, Ao C H, et al. Enhanced photocatalytic degradation of VOCs using Ln(3+)-TiO2 catalysts for indoor air purification [J]. Chemosphere, 2005, 59:787-800.
    [122] GORSKA P; ZALESKA A; KOWALSKA E, et al. TiO2 photoactivity in vis and UV light: The influence of calcination temperature and surface properties [J]. Applied Catalysis B: Environmental, 2008, 84: 440–447.
    [123] SU C, HONG B-Y, TSENG C-M. Sol–gel preparation and photocatalysis of titanium dioxide [J]. Catalysis Today, 2004, 96: 119–126.
    [124] KORMANN C, BAHNEMANN DW, HOFFMANN MR. Preparation and characterization of quantum-size titanium dioxide [J]. J Phys Chem, 1988, 92: 5196-5201.
    [125] KOCI K, OBALOVA L, MATEJOVA L, et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol [J]. Appl Catal B: Environ., 2009, 89:494-502.
    [126] CHIOU C H, JUANG R S. Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles [J]. J Hazar Mater, 2007,149:1-7.
    [127] WU Y M, ZHANG J L, XIAO L, et al. Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants [J]. Appl Catal B: Environ 2009, 88:525-532.
    [128] LIN H, HUANG C P, LI W, et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol [J]. Appl Catal B: Environ, 2006, 68:1-11.
    [129] HU W B, LI L P, LI G S, et al. High-Quality Brookite TiO2 Flowers: Synthesis, Characterization, and Dielectric Performance [J]. Cryst. Growth. & Des., 2009, 9: 3676-3682.
    [130] LIANG C H, HOU M F, ZHOU S G, et al. The effect of erbium on the adsorption and photodegradation of orange I in aqueous Er3+-TiO2 suspension [J]. J Hazard Mater, 2006, 138:471-478.
    [131]张金龙,陈锋,何斌。光催化[M].上海:华东理工大学出版社,2004.
    [132] WANG J, MUSAMEH M, LIN Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors [J]. J. Am. Chem. Soc., 2003, 125:2408-2409.
    [133] ZHANG J, LI J, YANG F, et al. Pt nanoparticles-assisted electroless deposition of Prussian blue on the electrode: detection of H2O2 with tunable sensitivity. Journal of electroanalytical chemistry, 2010, 638: 173-177.
    [134] LIN Y, CUI X, LI L. Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides [J]. Electrochem. Commun., 2005, 7:166-172.
    [135] NOSSOL E, ZARBIN A J G. A simple and innovative route to prepare a novel carbon nanotube/prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor [J]. Adv. Func. Mater., 2009, 19: 3980-3986.
    [136] LIN H, CHENG H M, MIAO X P, et al. A novel hydrogen peroxide amperometric sensor based on Thionin incorporated onto a Mo6S9-xIx nanowire modified glassy carbon electrode [J]. Electroanalysis, 2009, 21: 2602-2606.
    [137] ROSENZWEIG Z, KOPELMAN R. Analytical properties and sensor size effects of a micrometer-sized optical fiber glucose biosensor [J]. Anal. Chem., 1996, 68:1408-1413.
    [138] LUO L, ZHANG Z. Sensors based on galvanic cell generated electrochemiluminescence and its application Anal [J]. Chim. Acta., 2006, 580:14-17.
    [139] WENTZELL P D, VANSLYKE S J, BATEMAN K P. Evaluation of acoustic emission as a means of quantitative chemical analysisAnal [J]. Chim.Acta., 1991,246:43-53.
    [140] JIA J, WANG B, WU A. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol?Gel Network [J]. Anal. Chem., 2002, 74: 2217-2223.
    [141] GUO S, WANG E. Synthesis and electrochemical applications of gold nanoparticles [J]. Anal. Chim. Acta., 2007, 598: 181-192.
    [142] HUANG J S, WANG D W, HOU H Q, et al. Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH [J]. Adv. Funct. Mater., 2008, 18: 441-448.
    [143]吴大诚,杜仲良,高续珊。纳米纤维[M].北京:化学工业出版社,2002.
    [144] (a) BASOVA Y V, EDIE D D, BADHEKA P Y, et al. The effect of precursor chemistry and preparation conditions on the formation of pore structure in metal-containing carbon fibers [J]. Carbon, 2005, 43: 1533-1545. (b) BERA D, KUIRY S C, MCCUTCHEN M, et al. In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution [J]. Chem. Phys. Lett., 2004, 386:364-368.
    [145] (a) QIU J S, ZHANG H Z, LIANG C H, et al. Co/CNF catalysts tailored by controlling the deposition of metal colloids onto CNFs: preparation and catalytic properties [J]. Chem. Eur. J. 2006, 12:2147-2151. (b) VAN DER LEE M K, VAN DILLEN A J, BITTER J H, et al. Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts [J]. J. Am. Chem. Soc., 2005, 127: 13573-13582. (c) TIAN Z Q, JIANG S P, LIANG Y M, et al. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications [J]. J. Phys. Chem. B, 2006, 110: 5343-5350. (d) LI W Z, LIANG C H, ZHOU W J, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells [J]. J. Phys. Chem. B, 2003, 107: 6292-6299.
    [146] INAGAKI M, FUJITA K, TAKEUCHI Y, et al. Formation of graphite crystals at 1000–1200°C from mixtures of vinyl polymers with metal oxides [J]. Carbon, 2001, 39: 921-929.
    [147] (a) HU X B, ZHAO B Y, SONG Y P, et al. Improving the performance of carbon composites by liquid phase activated sintering of MCMBs doped with Ti/Ni or Fe/Ni [J]. Carbon, 2005, 43: 79-85. (b) YUDASAKA M, KASUYA Y, KOKAI F, etal. Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes [J]. Appl. Phys. A, 2002, 74: 377-385.
    [148] CROY J R, MOSTAFA S, HEINRICH H, et al. Size-selected pt nanoparticles synthesized via micelle encapsulation: effect of pretreatment and oxidation state on the activity for methanol decomposition and oxidation [J]. Catal. Lett., 2009, 131: 21-32.
    [149] HUANG C-H, WANG I-K, LIN Y-M, et al. Visible light photocatalytic degradation of nitric oxides on PtOx-modified TiO2 via sol–gel and impregnation method [J]. Journal of Molecular Catalysis A: Chemical, 2010, 316: 163-170.
    [150] KHANDERI J, SCHNEIDER J J. Polyacrylonitrile-Derived 1D Carbon Structures via Template Wetting and Electrospinning [J]. Z. Anorg. Allg. Chem., 2009, 635: 2135–2142.
    [151] HUANG S J, SHIMIZU T, SAKAUE H, et al. Fabrication of Carbon Nanotube and Nanorod Arrays Using Nanoporous Templates [J]. Jpn. J. Appl. Phys., 2005, 44, 5289–5291.
    [152] BAILEY J E, CLARKE A J. Carbon Fibre Formation—the Oxidation Treatment [J]. Nature, 1971, 234: 529–531.
    [153] KANG Z H, WANG E B, GAO L, et al. One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite [J]. J. Am. Chem. Soc., 2003, 125: 13652-13653.
    [154] CHE A F, HUANG X J, WANG Z G, et al. Preparation and Surface Modification of Poly(acrylonitrile-co-acrylic acid) Electrospun Nanofibrous Membranes [J]. Aust. J. Chem., 2008, 61: 446-454.
    [155] KOBAYASHI T, WANG H Y, FUJII N. Molecular imprinting of theophylline in acrylonitrile-acrylic acid copolymer membrane [J]. Chem. Lett., 1995, 927-928.
    [156] PERATHONER S, CENTI G. Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams [J]. Top. Catal., 2005, 33: 207-224.
    [157] KUSVURAN E, IRMAK S, YAVUZ H I, et al. Comparison of the treatment methods efficiency for decolorization and mineralization of Reactive Black 5 azo dye [J]. J Hazard Mater, 2005, 119: 109-116.
    [158] ZHOU M H, HE J J. Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode [J]. J Hazard Mater, 2008, 153: 357-363.
    [159] GUPTA A K, PAL A, SAHOO C. Photocatalytic degradation of amixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2 [J]. Dyes Pigments, 2006, 69: 224-232.
    [160] POON C S, HUANG Q P, FUNG C. Degradation of cuprophenyl Yellow RL by UV/H2O2/Ultrasonication (US) process in aqueous solution [J]. Chemosphere, 1999, 38: 1005-1014.
    [161] XIE Y B, LI X Z. Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes [J]. Mater. Chem. Phys., 2006, 95: 39-50.
    [162] PRUCEK R, HERMANEK M, ZBORIL R. An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation—A competition between homogeneous and heterogeneous catalysis [J]. Applied Catalysis A: General, 2009, 366: 325-332.
    [163]刘春艳。纳米光催化及光催化环境净化材料[M].北京:化学工业出版社,2008.
    [164] XU H Y, MURARI P, HE X L. Discoloration of Rhodamine B dyeing wastewater by schorl-catalyzed Fenton-like reaction [J]. Science in China Series E: Technological Sciences, 2009, 52: 3054-3060
    [165] PERA-TITUS M, GARCIA-MOLINA V, BANOS M A, et al. Degradation of chlorophenols by means of advanced oxidation processes: a generalreview [J]. Appl. Catal. B, 2004, 47: 219-256.
    [166] LEUNG Y F. Development of MCM-41 based catalysts for the photo-Fenton’s degradation of dye pollutants. Doctoral Dissertation. Hong Kong: The Hong Kong University of Science and Technology. 2005, 8-10.
    [167] LIN S S, GUROL M D. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications [J]. Environ. Sci. Technol., 1998, 32: 1417-1423.
    [168] WATTS R J, FOGET M K, KONG S H, et al. Hydrogen peroxide decomposition in model subsurface systems [J]. J. Hazard. Mater., 1999, 69:229-243.
    [169] KWAN W P, VOELKER B M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite [J]. Environ. Sci. Technol., 2002, 36: 1467-1476.
    [170] KWAN W P, VOELKER B M. Rates of hydroxyl radical generation and organiccompound oxidation in mineral-catalyzed Fenton-like systems [J]. Environ. Sci. Technol., 2003, 37: 1150-1158.
    [171] KONG S H, WATTS R J, CHOI J-H. Treatment of petroleum-contaminated soil using iron mineral catalyzed hydrogen peroxide [J]. Chemosphere, 1998, 37: 1473-1482.
    [172] WATTS R J, UDELL M D, KONG S G. Fenton-like soil remediation catalysis by naturally occurring iron minerals [J]. Environ. Eng. Sci., 1999, 16: 93-103.
    [173] CHOI H, CHOI SR, ZHOU R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery [J]. Acad Radiol, 2004, 11:996-1004.
    [174] TERRIS B D, THOMSON T. Nanofabricated and self-assembled magnetic structures as data storage media [J]. J. Phys. D: Appl. Phys., 2005, 38: R199-222.
    [175] ALEXIOU C, ARNOLD W, KLEIN RJ, et al. Locoregional cancer treatment with magnetic drug targeting [J]. Cancer Res, 2000, 60: 6641-6648.
    [176] HAIK Y, PAI V, CHEN C J. Development of magnetic device for cell separation [J]. J. Magn. Mater., 1999, 194: 254-61.
    [177] GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nat Nanotechnol, 2007, 2:577-83.
    [178] ZHUANG J, ZHANG J, GAO L, et al. A novel application of iron oxide nanoparticles for detection of hydrogen peroxide in acid rain [J]. Mater Lett, 2008, 62: 3972-4.
    [179] LI Z Y, HUANG H M SHANG T C et al. Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres [J]. Nanotechnology, 2006, 17: 917-920.
    [180] TEJA A S, KOH P-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles [J]. Progress in Crystal Growth and Characterization of Materials, 2009, 55: 22-45.
    [181] WAN S R, HUANG J S, YAN H S, et al. Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers [J]. J. Mater. Chem., 2006, 16: 298-303.
    [182] ZHAO S, ASUHA S. One-pot synthesis of magnetite nanopowder and their magnetic properties [J]. Powder Technology, 2010, 197: 295–297.
    [183] Morales M P, Veitemillas-Verdaguer S, Montero M I, et al. Surface and Internal Spin 119Canting inγ-Fe2O3 Nanoparticles [J]. Chem. Mater., 1999, 11: 3058–3064.
    [184] KIM J W, LEE J-M, YUN S-M, et al. Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination [J]. Journal of Industrial and Engineering Chemistry, 2009, 15: 876–882.
    [185] WONG P K J, WANG W, CUI X G, et al. Ultrathin Fe3O4 epitaxial films on wide bandgap GaN(0001) [J]. Physical Review B, 2010, 81: 035419-1-035419-5.
    [186] RUBY C, HUMBERT B, FUSY J. Surface and interface properties of epitaxial iron oxide thin films deposited on MgO (001) studied by XPS and Raman spectroscopy [J]. Surf. Interface Anal., 2000, 29: 377–380.
    [187] GOTA S, GUIOT E, HENRIOT M, et al. Atomic-oxygen-assisted MBE growth ofα-Fe2O3 onα-Al2O3 (0001): Metastable FeO (111)-like phase at subnanometer thicknesses [J]. Phys. Rev. B, 1999, 60: 14387-14395.
    [188] MITTAL A K, VENKOBACHAR C. Uptake of cationic dyes by sulfonated coal: sorption mechanism [J]. Ind. Eng. Chem. Res., 1996, 35: 1472-1474.
    [189] AI Z H, LU L R, LI J P, et al. Fe/@Fe2O3 coreshell nanowires as iron reagent.1.Efficient degradation of Rhodamine B by a novel sono-Fenton process [J]. Phys. Chem. C., 2007, 111:4087-4093.
    [190] ELMOLLA E, CHAUDHURI M. Optimization of Fenton process for treatment of amoxicillin,ampicillin and cloxacillin antibiotics in aqueous solution [J]. Journal of Hazardous Materials, 2009, 170: 666–672.
    [191] TSENG G Y, ELLENBOGEN J C. Nanotechnology - Toward nanocomputers [J]. Science, 2001, 294: 1293-1294.
    [192] DARKRIM F L, MALBRUNOT P, TARTAGLIA G P. Review of hydrogen storage by adsorption in carbon nanotubes [J]. Int. J. Hydrogen Energy, 2002, 27: 193-202.
    [193] YOON S H, LIM S Y, HONG S H, et al. Carbon nano-rod as a structural unit of carbon nanofibers [J]. Carbon, 2004, 42: 3087-3095.
    [194] FLETCHER B L, HULLANDER E D, MELECHKO A V, et al. Microarrays of biomimetic cells formed by the controlled synthesis of carbon nanofiber membranes [J]. Nano Lett., 2004, 4: 1809.
    [195] KO K R, RYU S K, PARK S J. Effect of ozone treatment on Cr(VI) and Cu(II) adsorption behaviors of activated carbon fibers [J]. Carbon, 2004, 42: 1864-1867.
    [196] MARELLA M, TOMASELLI M. Synthesis of carbon nanofibers and measurements of hydrogen storage [J]. Carbon, 2006, 44: 1404-1413.
    [197] KIM S U, LEE K H. Carbon nanofiber composites for the electrodes of electrochemical capacitors [J]. Chem. Phys. Lett., 2004, 400: 253-257.
    [198] CHAMBERS A, NEMES T, RODRIGUEZ N M, et al. Catalytic behavior of graphite nanofiber supported nickel particles. 1. comparison with other support media [J]. J. Phys. Chem. B, 1998, 102: 2251-2258.
    [199] SUTASINPROMPRAE J, JITJAICHAM S, NITHITANAKUL M, et al. Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers [J]. Polym. Int., 2006, 55: 825-833.
    [200] RIEGLER J, NANN T. Application of luminescent nanocrystals as labels for biological molecules [J]. Anal. Bioanal. Chem., 2004, 379: 913-919.
    [201] BAO J M, ZIMMLER M A, CAPASSO F. Broadband ZnO Single-Nanowire Light-Emitting Diode [J]. Nano Lett., 2006, 6: 1719-1722.
    [202] CUI Y, ZHONG Z H, WANG D L, et al. High performance silicon nanowire field effect transistors [J]. Nano Lett., 2003, 3: 149-152.
    [203] GHOSH P K, MAITI U N, CHATTOPADHYAY K K. Structural and optical characterization of CdS nanofibers synthesized by dc-sputtering technique [J]. Mater. Lett., 2006, 60: 2881-2885.
    [204] KHANNA P K, GOKHALE R R, SUBBARAO V V V S, et al. Synthesis and optical properties of CdS/PVA nanocomposites [J]. Mater. Chem. Phys., 2005, 94: 454.
    [205] LEE H, KANG Y S, LEE P S, et al. Hydrogen plasma treatment on catalytic layer and effect of oxygen additions on plasma enhanced chemical vapor deposition of carbon nanotube [J]. J. Alloys Compd., 2002, 330: 569-573.
    [206] HUANG H J, KAJIURA H, MURAKAMI Y, et al. Metal sulfide catalyzed growth of carbon nanofibers and nanotubes [J]. Carbon, 2003, 41: 615-618.
    [207] WNEK G E, CARR M E, SIMPSON D G, et al. Electrospinning of nanofiber fibrinogen structures [J]. Nano Lett., 2003, 3: 213-216.
    [208] JIA H F, ZHU G Y, VUGRINOVICH B, et al. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts [J]. Biotechnol. Prog. 2002, 18: 1027.
    [209] WANG X Y, DREW C, LEE S H, et al. Electrospun nanofibrous membranes for highly sensitive optical sensors [J]. Nano Lett., 2002, 2: 1273-1275.
    [210] ZHU Y, ZHANG J C, ZHAI J, et al. Multifunctional carbon nanofibers with conductive, magnetic and superhydrophobic properties [J]. Chem. Phys.Chem.,2006, 7: 336-341.
    [211] CHEN M, XIE Y, CHEN H Y, et al. Templated Synthesis of CdS/PAN Composite Nanowires under Ambient Conditions [J]. J. Colloid Interf. Sci., 2000, 229: 217-221.
    [212] LI J, VERGNE M J, Mowles E D, et al. Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs) [J]. Carbon, 2005, 43: 2883-2893.
    [213] PINNA N, WEISS K, URBAN J, et al. Triangular CdS nanocrystals: structural and optical studies [J]. Adv. Mater., 2001, 13: 261-264.
    [214] COLANERI N F, SHACKLETTE L W. EMI shielding measurements of conductive polymer blends [J]. IEEE Trans. Instrum. Meas., 1992, 41: 291-297.
    [215] KUHN H H, CHILD A D, KIMBRELL W C. Toward real applications of conductive polymers [J]. Synth. Met., 1995, 71: 2139-2142. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700