用户名: 密码: 验证码:
高寒草甸土壤碳和氮及微生物生物量碳和氮对温度和降水量变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳和氮以及微生物生物量碳和氮对温度和降水变化的响应时气候变化对陆地生态系统碳氮循环影响的关键。本研究以青藏高原的高寒草甸生态系统土壤为研究对象,采用野外控制实验方法,测定分析了不同季节不同温度和降水处理下土壤碳和氮含量以及微生物生物量碳和氮含量,以探索土壤有机碳和氮以及微生物生物量碳和氮对温度和降水变化的响应趋势、土壤微生物生物量碳和氮含量的季节变化以及土壤碳和氮含量与土壤微生物生物量碳和氮含量之间的相关关系。初步结果如下:
     1.在冰雪覆盖前的生长季,降水量和温度变化对高寒草甸土壤有机碳和全氮含量的影响与土层及降水与温度变化的交互作用有关。降水量变化对高寒草甸土壤有机碳含量影响不大,降水量不变时增温将使高寒草甸表层土壤的有机碳含量减少,温度升高而降水量减少将使土壤底层全氮含量增加,降水量不变而温度升高将使土壤全氮含量减少。温度升高对高寒草甸土壤微生物生物量碳和氮含量影响不大,温度不变而降水量减少将使底层土壤微生物生物量碳比例增加,温度升高而降水增加将使表层土壤微生物生物量氮比例增加。
     2.在冰雪覆盖的休眠季,温度和降水量变化对土壤有机碳和全氮含量已经没有显著影响,但是温度升高而降水增加使得土壤碳氮比升高。温度和降水变化对土壤微生物生物量碳和氮含量也没有显著的影响,但降水增加增温使得土壤微生物生物量碳比例降低。
     3.土壤有机碳含量在冰雪覆盖前的生长季和冰雪覆盖的休眠季没有显著差别,但土壤全氮含量在休眠季后有显著升高并且土壤碳氮比在休眠季后有显著降低。土壤微生物生物量碳含量在冰雪覆盖前的生长季和冰雪覆盖的休眠季没有显著差别,但土壤微生物生物量氮含量在修休眠季后有显著升高并且土壤微生物生物量碳氮比休眠季后有显著降低。土壤微生物生物量碳比例在冰雪覆盖前的休眠季和冰雪覆盖的休眠季后没有显著差别但是土壤微生物生物量氮比例在休眠季后有显著升高。
     4.在冰雪覆盖前的生长季和冰雪覆盖的休眠季土壤微生物生物量碳含量、微生物生物量氮含量分别与土壤有机碳及全氮含量呈显著的正相关关系。土壤微生物生物量氮含量与土壤微生物生物量碳含量也呈现显著的正相关性。土壤微生物生物量氮的比例和土壤微生物生物量碳比例的相关性不显著。土壤碳氮比和土壤微生物生物量碳氮比之间相关关系也不显著。
     总结这些结果可以看出,高寒草甸生态系统中土壤有机碳和全氮含量以及微生物生物量碳和氮含量对气候变化有一定响应,并且这种响应在冰雪覆盖前的生长季比在冰雪覆盖后的休眠季更加强烈。土壤有机碳和氮以及微生物生物量碳和氮呈一定的季节动态变化。土壤碳和氮与微生物生物量碳和氮呈显著的相关关系。
     土壤有机碳和氮以及土壤微生物生物碳和氮对温度和降水变化响应机制非常复杂。本文还只是初步探讨了温度和降水变化对土壤有机碳和全氮含量以及微生物生物量碳和氮含量影响趋势,其机制还需要进一步的深入研究。另外在研究中所设定温度的升高值较小,对于自然环境中的土壤微生物影响不够显著。建议改进实验方法,提出更为优化的方法,同时开展周期更长的试验,深入研究温度和降水变化对土壤微生物生物量碳和氮的影响机制。
The response of soil organic carbon and soil organic nitrogen to change in temperature and precipitation is crucial for the effects of climate change on the terrestrial ecosystem carbon and nitrogen cycles. In this study, alpine meadow ecosystem in Tibetan Plateau was chosen for a field experiment manipulating temperature and precipitation. The analysis of variance, the test of significance of difference were used to investigate how the soil organic carbon &nitrogen as well as microbial biomass carbon & nitrogen response to the variation of temperature and precipitation condition, the seasonal dynamics of the soil organic carbon &nitrogen as well as microbial biomass carbon & nitrogen, the relationship between the soil organic carbon & nitrogen and microbial biomass carbon & nitrogen.the main results are as follows:
     In the growing season before snow covering, the effect of precipitation and temperature variation to the content of soil organic carbon and nitrogen is relevant to soil depth and the interaction between precipitation and temperature. The effect of the variation of precipitation amount on soil organic carbon is not significant. While increasing temperature and no changing precipitation amount would cause a decreasing in soil organic carbon content at surface soil layer, while increasing temperature and reducing precipitation amount would cause an increasing in total soil nitrogen content at deep soil layer, while increasing temperature and on change on precipitation amount would cause a decreasing in total soil nitrogen content. Additionally, the variation of precipitation amount and temperature would not cause reduce soil microbial biomass C or N content under alpine meadows significantly, while increasing temperature and reducing precipitation amount would cause an increasing in the ratio of soil microbial biomass C at deep soil layer, while increasing temperature and increasing precipitation amount would cause an increasing in the ratio of soil microbial biomass N at deep soil layer.
     In the dormancy season with snow covering, the variation of temperature and precipitation amount had no significant effect to the content of soil organic carbon and total nitrogen content. While increasing temperature and increasing precipitation amount would cause an increasing the soil C:N ratio. The variation of temperature and precipitation also had no significant effect to the soil microbial biomass carbon and nitrogen content, while increasing precipitation amount and increasing temperature would cause a decreasing in the ratio of soil microbial biomass C at deep soil layer.
     The soil organic carbon content showed no significant difference in the growing season before snows covering and the dormancy season with snow covering, but the soil total nitrogen content increased after the dormancy season and the soil C:N decreased. The soil microbial biomass carbon content showed no significant difference in the growing season before snows covering and the dormancy season with snow covering, but the soil microbial biomass nitrogen content increased after the dormancy season and the ratio of soil microbial biomass C:N decreased. The ration soil microbial biomass C showed no significant difference in the growing season before snows covering and the dormancy season with snow covering, but the ratio of microbial biomass N decreased after the dormancy season.
     In the growing season before snows covering and the dormancy season with snow covering, the soil microbial biomass carbon or nitrogen content showed significantly positively correlation with the soil organic carbon and total nitrogen content; the microbial biomass carbon content was positively significantly correlated with the microbial biornass nitrogen content; the ratio soil microbial biomass C showed no significantly correlation with the ratio of microbial biomass N; the ratio of soil C:N showed no significantly correlation with the ratio of microbial biomass C:N.
     The results indicated that the soil organic carbon & total nitrogen content and, microbial biomass carbon & nitrogen content under alpine meadow was slightly respond to the variation of temperature and precipitation.This response in the growing season before snow covering was stronger than that in the dormancy season with snow covering. The soil organic carbon & nitrogen content and soil microbial biomass carbon & nitrogen content all had the seasonal dynamic. The soil microbial biomass carbon or nitrogen content showed significantly positively correlation with the soil organic carbon and total nitrogen content.
     The mechanisms of soil organic carbon & nitrogen and soil microbial biomass carbon & nitrogen responding to the variation of temperature and precipitation were complex. This study only investigated the trend of the soil organic carbon & nitrogen content and soil microbial biomass carbon & nitrogen content responding to the variation of temperature and precipitation. The mechanisms of these need further study. The variation of the temperature in this study was not enough to effect on the soil microorganisms in field. So the experiment methods should be improved and the long-term field experiment should be constructed. The mechanisms of soil microbial biomass carbon and nitrogen responding to the variation of temperature and precipitation should also be further studied.
引文
[1]曾永年,冯兆东.黄河源区高寒草地土壤有机碳储量及分布特征[J].地理学报.2004,59(4):497-504.
    [2]Perruchoud D,Joos F.Evaluating timescales of carbon turnover in temperate forest soils with radiocarbon data[J].Global Biogeochemical Cycles.1999,13(2):555-573.
    [3]Raich J W,Potter C S,Bhagawati D.Interannul variability in global soil respitation[J]. Global Change Biology.2002,8:800-812.
    [4]陶波,葛全胜,李克让等.陆地生态系统碳循环研究进展[J].地理研究.2001,20(5):564-574.
    [5]张志强,孙成权.全球变化研究十年新进展.科学进展.1999,44:464-477.
    [6]Trumbore S.Carbon respired by terrestrial ecosyetem-recent progress and challenges[J].Global Change Biology.2006,12:141-153.
    [7]Davidson E A,Janssens I A,Luo Y.On the variability of respiration on terrestrial ecosystem moving beyond Q10[J].Global Change Biology.2006,12(2):165-176.
    [8]Kirschbaum M U F.Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J].Biogeochemistry.2000,48:21-51.
    [9]Houghton R A.Why are estimates of the terrestrial carbon balance so difference[J]. Global Change Biology.2003,9:500-509.
    [10]Mcmurtrie R E,Medlyn B E,Dewar R C.Incresed understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystem over the next 100 years[J].Tree Physiology.2001,21:831-839.
    [11]Joose F,Prentice I C,Sitch S,et al.Global warming feedbacks on terrestrial carbon up take under the intergovernmental panel on climate change emission scenarios[J].Global Biogeochemistry Cycles.2001,15(4):891-907.
    [12]Cox P M,Betts R A,Jones C D,et al.Acceleration of global warming due to carbon-cycle feedbacks in coupled climate model[J].Nature.2000,408:184-187.
    [13]Levy P E,Cannel M G R,Friend A D.Modelling the impacts of future changes in climate,CO2 concentration and land use on natural ecosystem and the terrestrial carbon sink[J].Global Environmental Change.2004,14(1):21-30.
    [14]White A,Cannell M G R,Friend A D.CO2 stabilization,climate change and the terrestrial carbon sink[J].Global Change Biology.2000,6:817-833.
    [15]Cramer W,Bondeau A,Woodward F I,et al.Global response of terrestrial ecosystem strutucture and function to CO2 and climate change:Results from six dynamic global vegetation models[J].Global Change Biology.2001 7:357-373.
    [16]Schlesinger W H,Andrews J A.Soil respiration and global carbon cycles[J].Biogeochemistry.2000,48:7-20.
    [17]Jenkinson D S,Ladd J N.Microbial biomass in soil measurement and turnover[A].In:Paul E A,Ladd J N,Marcel Dekker.Soil Biochemistry[G].New York.1981,414-417.
    [18]Anderson T H,Dormsch K H.The metablic quotient for CO2(q CO2)as a specific activity parameter to assess the effects of environmental conditions,such as pH,on the microbial biomass of forest soils[J].Soil Biology&Biochemistry.1993,25:393-395.
    [19]Landgraf D,Klose S.Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activity in a sandy soil under different management systems[J] Journal plant N utrition and Soil Science.2002,165:9-16.
    [20]Davet P.Microbial Ecology of the Soil and Plant Growth in field [M].NH, USA: Science Publishers, Inc,2004.
    [21]汤苍,程国栋.青藏高原近代气候变化及其对环境的影响[M].广州:广东科技出版社,1998.
    [22]吴建国,吕佳佳.气候变化对青藏高原高寒草甸适宜气候分布范围的潜在影响[J].草地学报.2009,17(6):699-705.
    [23]王邵武,董光荣.中国西部环境演变评估.第一卷.中国西部环境特征及其演变.北京:科学出版社,2002.
    [24]Scholes M C,Powlson D,Tian G. Input control of organic matter dynamics[J].Geoderma.1997,79:25-47.
    [25]Post W M, Emanuel W R, Zinke P J. Soil carbon pools and world life zones[J]. Nature.1982,298:156-159.
    [26]Holdridge L R.Determination of world plant formation from simple climate data[J].Science.1947,105(27):367-368.
    [27]Conen F, Yakutin M V, Sambuu A D. Potential for detecting changes in soil organic carbon concentrations resulting from climate change[J]. Global Change Biology. 2003,9:1515-1520.
    [28]Callesen I, Liski J, Raulund-Rasmussen K, et al. Soil carbon stores in Nordic well-drained forest soils-Relationships with climate and texture class. Global Change Biology.2003.9 (3):358-370.
    [29]Cambell C A.Soil organic carbon,nitrogen and fertility[A].Schnitzer M,Khan SU,eds Soil Oraganic Matter.Developments in Soil Scince[C].Amsterdam.the Netherlands:Elsevier Science Publishing Company,1978:173-271.
    [30]Simith JL,Halvorson JJ,Bolton JH.Soil properties and microbial activity across a 500m elevation gradient in a semi-arid environment [J].Soil Biology and Biochemistry.2002,34:1749-1757.
    [31]王淑平,周广胜,吕育财,等.中国东北样带土壤碳氮磷与气候因素的关系[J].植物生态学报.2002,26(5):513-517
    [32]王长庭,龙瑞军,王启基,等.高等草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J].草业学报.2005,14(4):15-20.
    [33]Ojima D S,Stafor S M,Beardsley M.Factors affecting carbon storage in semiarid and arid ecosystem//Squires VR,ed.Combating Global Warning by Combating Land Degradation.Nairobi:Kenya UNEP,1995:60-80.
    [34]Parshotam A,Sagsar S,Searle PL,et al.Carbon residence times obtained from labeled ryegrass decomposition in soils under contrasting environmental conditions.Soil Biology&Biochemistry.2000,32:75-83.
    [35]傅华,裴世华,张洪荣.贺兰山西坡不同海拔梯度草地土壤氮特征[J].草业学报.2005,14(6):55-56
    [36]姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳库及其影响因子[J].生态学杂志.2007,26(2):278-285.
    [37]Papatheodorou E M,Ayguropoulou M D,Stamou G P.The effects of large-and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes[J].Applied Soil Ecology.2004,25:37-49
    [38]Staddon P L,Thompson K,Jakobsen I,et al.Mycorrhizal fungal abundance is affected by long-term climatic manipulation in the field [J].Global Change Bioligy.2003,9:186-194
    [39]Bergener B,Johnstone L,Terseder KK.Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest[J].Global Change Bioligy.2004,10:1996-2004
    [40]Jonasson S,Michelsen A,Schmidt IK,et al.Responses in microbes and plants to changed temperature,nutrient and light regimes in the arctic[J].Ecology.1999,80:1828-1843.
    [41]Boissier J M, Fontvieille D. Biololgical characteristics of forest soils and seepalge waters during simulated rainfalls of high intensity[J]. Soil Biology & Biochemistry. 1995,27(2):139-145
    [42]Steenwertha K L, Jacksonb L E., Caldero'nc F J., et al. Response of microbial community composition and activity in agricultural and grassland soils after a simulated rainfall[J]. Soil Biology & Biochemistry.2005,37:2249-2262
    [43]刘恩科,赵秉强,李秀英,等.不同施肥制度土壤微生物碳氮变化及细菌群落16SrDNA V3片段PCR产物的DGGE分析[J].生态学报.2007,27(3):1082-1085.
    [44]毕明丽,宇万太,姜子绍,等.施肥和土壤管理对土壤微生物生物量碳、氮和群落结构的影响[J].生态学报.2010,30(1):0032-0042.
    [45]吴建国,艾丽.祁连山3种典型生态系统土壤微生物活性和微生物量碳氮含量[J].植物生态学报.2008,32(2):465-476.
    [46]何容,王国兵,汪家社,等.武夷山不同海拔植被土壤微生物生物量的季节动态及其主要影响因子[J].生态学杂志.2009,28(3):394-399.
    [47]王国兵,阮宏华,唐燕飞,等.北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用生态学报.2008,19(1):37-42.
    [48]杨凯,朱教君,张金鑫,等.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J].生态学报.2009,29(10):5500-5507.
    [49]Diaz-Ravina M,Acea M J,Carballas T.Seasonal changes in microbial biomass and nutrient flush in forest soil [J]. Biology Fertil Soil.1995,19:220-226.
    [50]Barbhuiya A R.Arunachalam A,Pandey H N,Arunachalam K, et al.Dynamics of soil microbial C.N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest[J]. European Journal of Soil Biology.2004,40:113-121.
    [51]Devi Bijayalaxmi N,Yadava Seasonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Manipur.North-east India[J]. Applied Soil Ecology.2006,31:220-227.
    [52]徐华勤,章家恩,冯丽芳,等.广东省不同土地利用方式对土壤微生物生物量碳氮的影响[J].生态学报.2009,29(8):4112-4117.
    [53]Contin M,Corcimaru S,De Nobili M,et al.Temperature changes and the ATP concentrations of the soil microbial biomass[J].Soil Biology&Biochemistry.2000,32:1219-1225.
    [54]李世清,任书杰,李生秀.土壤微生物生物体氮的季节性变化及其与土壤水分和温度的关系[J].植物营养与肥料学报.2004,10(1):18-23.
    [55]魏天凤,任艳林,曾辉等.降水改变对樟子松人工林土壤微生量碳及微生物商动态变化的影响[J].北京大学学报(自然科学版).2008,4:52-59.
    [56]Pulleman M,Tietema A.Microbial C and N transformations during drying and rewetting of coniferous forest floor material[J].Soil Biochemitry.1999,31:275-285.
    [57]Van Gestel M,Ladd J N,Amato M.Carbon and nitrogen mineralization from two soils of contrasting texture and micro aggregate stability:Influence of sequence of sequential fumigation,dry and storage[J].Soil Boilogy Biochemistry.1991,23:313-322.
    [58]吴建国,吕佳佳.土壤有机碳和氮分解对温度变化的响应机制.生态学杂志.2008,27(9):1601-1611.
    [59]丁爽,王传宽.春季解冻期不同纬度兴安落叶林的土壤微生物生物量[J].应用生态学报.2009.20(9);2072-2078
    [60]鲍士旦.土壤农化分析[M].北京:中国农业业出版社,2000:34-49.
    [61]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004:47-48.
    [62]吴金水,林启美,黄巧云.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:54-78.
    [63]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006:144-146.
    [64]方萍,何延.试验设计与统计[M].浙江:浙江大学出版社,2003:38-50.
    [65]李忠佩,王效举.小区域水平土壤有机质动态变化的评价与分析[J].地理科学.2000,20(2):182-187.
    [66]王其兵,李凌浩,刘先华等.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J].植物生态学报.1998,22(5):409-414.
    [67]余晓鹤,朱培立,黄东迈.土壤表层管理对稻田土壤矿化势、固氮强度及铵态氮的影响[J].中国农业科学.1991,24(2):73-79.
    [68]吴金水.土壤有机质及其周转动力学[A].中国南方土壤肥力及栽培作物施肥[G].北京:科学出版社,1994.
    [69]李贵才,韩兴国,黄建辉等.森林生态系统土壤氮矿化影响因素研究进展[J].生态学报.2001,21(7):1187-1195.
    [70]Brookes P C,Aedrea L,Pruden G,et al.Chloroform fumion and the release of soil nitrogen:A rapid direct extraction method to measure microbial biomass nitrogen in soil[J].Soil Biology Biochemistry.1985,12(6):837-842.
    [71]Arunachalam A,Arunachalam K.Influnce of gap size and soil properties on microbial biomass in a subtropical humid forest of North-east India[J].Plant Soil.2000,223:185-193.
    [72]Martikaiinen PJ,Palojar A.Evaluation of the fumigation extraction method for the determination of microbial C and N in a range of forest soil[J].Soil Biology Biochemistry.1990,22:797-802.
    [73]Diaz-Ravina M,Carballas T,Acea M J.Microbial N and biomass and metabolic activity in four acid soils[J].Soil Biology Biochemistry.1998,20:817-823.
    [74]HolmesW E,Zak D R.Soil microbial biomass dynamics and nitrogen mineralization in Northern Hardwood ecosystems [J].Soil Science Society of America Journal.1994,58:238-243.
    [75]Contin M,Corcimaru S,De Nobili M. Temperature changes and the ATP concentrations of the soil microbial biomass[J].Soil Biology&Biochemistry.2000,32:1219-1225.
    [76]Domisch T,Finer L,Letho T,et al.Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedings [J].Plant and soil.2002,239:173-185.
    [77]Zhang Jiang-shan,GuoJian-fen,ChenGuang-shui,et al.Soil microbial biomass and its controls[J] Journal of Forestry Research.2005,16(4,):327-330.
    [78]Zak D R.Ringelberg D B,Pregitzer K S,et al.Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2[J]. Ecological Applications.1996,6(1):257-262.
    [79]Teesier L,Gregorich E G,Topp E.Spatial variability of soil microbial biomass measured by depth and manure application[J].Soil Biology&Biochemistry.1998,30(11):1369-1377.
    [80]Waldle D A.A comparative assessment of factors which influence microbial biomass carbon and nitrogen in soil[J].Biological Reviews.1992,67(3):321-358.
    [81]Tate RL III.Soil Microbiology 2nd edn[M].Jone Wiley,New York,2000.
    [82]Acea,M J,Carballas T.Principal components analysis of the soil microbial population of humid zone of Galicia[J]. Soil Biology&Biochemistry.1990,22(6):749-759.
    [83]Van Gestel M, Ladd J N, Amato M. Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability:Influence of sequential fumigation, drying and storage [J]. Soil Biology&Biochemistry.1991,23:313-322.
    [84]Pulleman M, Tietema A.Microbial C and N transformations during drying and rewetting of coniferous forest floor material [J]. Soil Biology&Biochemistry.1999,31: 275-285.
    [85]Joslin J D,Wolfe M H,Hanson P J.Effects of altered water regimes on forest root systems[J].New Phytologist.2000,147(l):117-129.
    [86]Vance E D,Brookes P C,Jenkinson D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology Biochemistry.1987,19(6):703-707.
    [87]Bijayalaxmi D N,Yadava P S.Sessonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Manipur,North-east India[J].Applied Soil Ecology.2006,31 (3):220-227.
    [88]陈国潮,何振立,姚槐应红壤微生物量的季节性变化研究[J]浙江大学学报(农业与生命科学版).1999,25(4):387-387.
    [89]Harte J C,Kinzig A P.Mutualism and competition between plants and decomposers:Inplication for nutrient allocations in ecosystems[J]. American Naturalist.1993,141:829-846.
    [90]Kaye J P,Hart S C.Competition for nitrogen between plants and soil microorganisms[J].Trend in Ecology &Evolution.1997,12:139-143.
    [91]Brookes P C,Ocio J A,Wu J.The soil microbial biomass:its measurement properties and role in nitrogen carbon dynamics following substrate incorporation[J].Soil Microorganisms.1990,35-51.
    [92]Paul E A,Clark F E.Soil Microbiology and Biochemistry[M].San Diego:Academic Press,1989.
    [93]Fenn M E,Poth M A,Dunn PH,et al.Microbial N and biomass respiration and N mineralization in soil beneath two chaparral species along a fire-induced age gradient[J].Soil Biology Biochemistry.1993,25:457-466.
    [94]Van Gestel M,Merckx R,Vlassak K.Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying[J].Soil Biology&Biochemistry.1995,27:1027-1033.
    [95]Landgraf D,Klose S.Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activitied in a sandy soil under different management system[J].Soil Science.2002,165:9-16.
    [96]王岩,沈其溶,史瑞和等.土壤微生物量及其生态效应[J].南京农业大学学报.1996,19(4),45-51.
    [97]李香真,曲秋皓.蒙古高原草原土壤微生物生物量碳氮特征[J].土壤学报.2002,39(1):98-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700