用户名: 密码: 验证码:
甘蓝型油菜株型与角果相关性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,选育株型得到改良、适合机械化生产的油菜新品种是我国油菜育种的主攻方向之一,而开展油菜株型相关性状的遗传研究和QTL定位工作,是实现分子标记辅助选育特异株型油菜新品种的基础。本研究以矮秆紧凑型甘蓝型油菜4942C-5和正常株型油菜8008及其构建的包含181个株系的DH群体为材料,对甘蓝型油菜株型及产量相关的16个性状进行了QTL定位和分析,主要结果如下:
     1.甘蓝型油菜遗传图谱的构建及图谱比较基因组学信息
     利用DH群体构建了一张包含1902个标记(AFLP标记160个,SSR标记253个,IP标记80个,SCAR标记3个及SNP标记1406个)的高密度遗传连锁图,包含20条连锁群(C1连锁群被分成两条连锁群),图谱总长2328.97cM,标记间平均图距1.46cM,与国际上已发表的遗传图谱有较好的一致性。此外,通过Blastn分析将456个拟南芥同源基因、549个白菜同源基因和421个甘蓝同源基因定位到甘蓝型油菜A基因组,212个拟南芥基因、209个白菜同源基因和250个甘蓝基因定位到甘蓝型油菜C基因组。以已鉴定的拟南芥24个保守区段为基础,利用比对到图谱上的拟南芥基因鉴定了63个共线性片段和82个插入片段。
     2.共线性分析
     结果均表现为A基因组的共线性优于C基因组。对甘蓝型油菜连锁群与对应甘蓝型油菜假染色体的共线性分析,甘蓝型油菜连锁群与对应白菜、甘蓝假染色体的共线性分析,甘蓝型油菜染色体与对应白菜、甘蓝假染色体的共线性分析这三个结果进行比较,就共线性强弱程度而言,前两个基本一致,第三个大都优于前两个,这可能表明某些连锁关系还有待进一步确认,也可能本研究材料这些区域存在着染色体重排,但都进一步证实了甘蓝型油菜源于白菜和甘蓝;就甘蓝型油菜连锁群(BnAl-BnA10, BnCl-BnC9)、甘蓝型油菜染色体(Bnl-Bn19)、白菜(BrAl-BrA10)和甘蓝(BoC1-BoC9)染色体的方向来看,BnAl-Bnl-BrAl、 BnA2-Bn2-BrA2、 BnA4-Bn4-BrA4、 BnA6-Bn6-BrA6、 BnA7-Bn7-BrA7、 BnC3-Bnl3-BoC3、 BnC4-Bn14-BoC4、 BnC8-Bn18-BoC8、 BnC9-Bn19-BoC9三者两两间方向都相同。共线性分析结果揭示的方向及共线性程度的强弱对利用其他作物基因组序列信息来解决甘蓝型油菜的实际问题奠定了基础。
     3.DH群体频率分布与QTL定位
     分析了DH群体16个性状在三个环境下的频率分布,结果表明大多数性状呈连续分布且存在多峰,偏离了标准正态分布。通过复合区间作图法(CIM)在全基因组进行QTL扫描分析,16个性状在三个环境中分别检测到117个、122个、98个QTL,共计337个QTL。利用不同性状逐一进行QTL元分析后,这337个QTL最终整合为234个,分配在甘蓝型油菜20条连锁群上。其中平均分枝长度(ALPB)检测到17个QTL,分布在A1、A3、A5、A6、A7和C1a连锁群,单个QTL解释的遗传变异为3.9-25.9%;主花序长度(LMI)检测到23个QTL,分布在A1、A3、 A5、A6、A7、C8和C9连锁群,单个QTL解释的遗传变异为4.7-25.5%;角果层长度(LSL)检测到10个QTL,分布在A1、A3、A6、A9、C3和C8连锁群,单个QTL解释的遗传变异为5.1-11.8%;分枝角果数(NSB)检测到9个QTL,分布在A1、A3、A9和C3连锁群,单个QTL解释的遗传变异为4.4-20.1%;一次有效分枝数(PB)检测到15个QTL,分布在A1、A4、A7、Cla、Clb、C2、C3和C4连锁群,单个QTL解释的遗传变异为4.7-15.1%;株高(PH)检测到15个QTL,分布在A1、A3、A6、A7、Clb和C9连锁群,单个QTL解释的遗传变异为0.7-32.2%;分枝角果密度(SDB)检测到24个QTL,分布在A1、A3、A5、A6、A7、A9、Cla、 Clb、C6、C7和C9连锁群,单个QTL解释的遗传变异为4.4-16.0%;主花序角果密度(SDMI)检测到10个QTL,分布在A3、A6、A7、Cla和C7连锁群,单个QTL解释的遗传变异为5.3-12.9%;角果长度(SL)检测到11个QTL,分布在A1、A7、A9和A10连锁群,单个QTL解释的遗传变异为2.4-60.0%;主花序角果数(SMI)检测到17个QTL,分布在A1、A2、A3、A5、A9和C1a连锁群,单个QTL解释的遗传变异为4.7-14.8%;每角果粒数(SN)检测到15个QTL,分布在A1、A6、 A7、A8、Cla、Clb、C3和C5连锁群,单个QTL解释的遗传变异为4.9-26.6%;单株角果数(SNPP)检测到9个QTL,分布在A1、A9和C3连锁群,单个QTL解释的遗传变异为4.8-24.3%;单株种子产量(SY)检测到10个QTL,分布在A1、 A3.A9.C3和C8连锁群,单个QTL解释的遗传变异为4.4-35.7%;总分枝长度(TLPB)检测到13个QTL,分布在A1、A3、A6、A9、Cla和C3连锁群,单个QTL解释的遗传变异为5.3-17.9%;千粒重(TSW)检测到16个QTL,分布在A1、A7、A9、 Cla、Clb、C8和C9连锁群,单个QTL解释的遗传变异为3.4-38.8%;角果层宽度(WSL)检测到20个QTL,分布在A1、A2、A3、A5、A7和A9连锁群,单个QTL解释的遗传变异为4.2-31.3%。
     4.甘蓝型旁系同源保守区段内的QTL及同源QTL分析
     第一轮元分析的234个QTL中有168个能定位到十字花科保守区段上,包括U、H、F、W、E、R、J、C、X、M、N、B、I、A共计14个保守区段。根据QTL的分布情况,在甘蓝型油菜基因组的旁系同源保守区段寻找同源QTL,结果8个性状包括一次有效分枝数、角果长度、角果层宽度、每角果粒数、千粒重、株高、主花序长度、种子产量共发现了8对同源QTL,这8对同源QTL分布在E、U、X、R保守区段。
     5.多效性QTL及产量指示QTL
     第二轮元分析整合结果表明共存在59个多效性QTL,这些多效性QTL涉及2-8个性状不等,为设计理想株型提供了依据。如mqA1.114将株型性状、株型兼角果性状、角果性状、单株产量整合到一起。本研究中检测到的10个种子产量QTL中的7个存在于多效性QTL中。在这7个与产量相关的多效性QTL中,mqA1.14、mqA9.4、mqC8.11的指示性状分别是主花序长度、主花序角果数和千粒重千粒重,而mqA1.5、 mqA1.9、mqC3.2和mqC3.4中没有一个QTL能作为单株产量的指示QTL。
     6.株型与产量候选基因在图谱上的定位
     连锁分析表明,依据拟南芥株型及籽粒相关基因TCP24、Sep1、AP1、STM、 LFY、ANT、AXR6、PIN1、AP3、REV,、TTG2、TT5设计的21对引物获得的26个标记可被定位到图谱的不同位置上,且在某些基因标记附近能检测到QTL,但这些QTL与候选基因是否存在着一定的联系还需进一步证实。同时,本研究还以定位到图谱上的拟南芥基因为桥梁,将玉米、水稻中株型及产量相关的重要基因定位到本研究构建的遗传图谱的大致位置上,结果有6个候选基因(GS5、ARGOS、MINI3、 CLAVATA1、DEP2、IPA1/OsSPL14)定位到遗传图谱的8个不同位置,其中与籽粒相关的基因GS5.ARGOS和MINI3被定位到附近有千粒重、每角果粒数、角果长度、籽粒产量性状相关QTL的位置上;与花/花序相关的拟南芥基因CLAVATA1被定位到A2连锁群的E保守区段,在此位置附近有一个主花序角果数的QTL;直立密穗基因DEP2被定位到A5连锁群F保守区段,在其附近有平均分枝长度和总分枝长度的QTL;水稻理想株型基因IPAl/OsSPL14被定位到A9连锁群N区段,相应位置定位了两个分枝角果密度的QTL。
At present, the breeding of rapeseed varieties with improved plant type and suitable for the mechanised production is one of the major directions of rapeseed breeding in China. The work on the genetic basis and QTL mapping of the traits associated with plant type could provide a basis for molecular marker assisted breeding of the new B. napus varieties with specific plant type. In this study, a population consisting of181DH lines, which was derived from F1microspore culture of a cross of the B. napus lines8008(normal plant type, high seed-yield per plant) and94942C-5(compact plant type, low seed-yield per plant), was used as the field test materials. Sixteen plant type-or yield-associated traits were analyzed, and the QTLs for these traits were mapped. The major results are as following:
     1. The genetic map construction and comparative genomics information of B. napus
     Using the double haploid population, a linkage map containing1904markers, including160AFLPs,254SSRs,79IPs,3SCARs and1048SNPs, was constructed. The resulting map consisted of20linkage groups (the C1was divided into two linkage groups), covering2328.97cM with an average of1.46cM between markers, with a considerable consistence to the previously published linkage maps. Moreover, the BLASTN analysis showed that456,549and421homologous genes from A. thaliana, B. rapa and B. oleracea respectively, could be mapped on A genome of B. napus. And212,209and250homologous genes from A. thaliana, B. rapa and B. oleracea respectively, could be mapped on C genome of B. napus. Based on the24identified conserved regions in A. thaliana,63sythenic blocks and82insertion fragments were identified by using the A. thaliana genes mapped on the genetic map of B. napus.
     2. Synteny analysis
     The results indicated that the synteny in A genome was better than that in C genome. Alignments of linkage groups in B. napus to pseudochromosomes in B. napus, linkage group in B. napus to the pseudochromosomes in B. rapa and B. oleracea, and the pseudochromosomes in B. napus to pseudochromosomes in B. rapa and B. oleracea showed that the synteny extents in the first two alignments were equivalent and the synteny extent in the third alignment was mostly better than that in in the first two alignments. These results suggested that though the linkage relationship between some loci on the genetic map constructed in this study maybe needs further confirmation, or it is possible that chromosomal rearrangement really exits in these regions, the results from synteny analysis still fully confirmed the fact that B. napus is derived from B. rapa and B. oleracea. Considering the arrangement directions in the linkage groups in B. napus (BnA1-BnA10, BnC1-BnC9), the pseudochromosomes in B. napus (Bnl-Bnl9), B. rapa (BrA1-BrA10) and B. oleracea (BoC1-BoC9), the consistent direction was found in each element of the trisomes of BnAl-Bnl-BrAl, BnA2-Bn2-BrA2, BnA4-Bn4-BrA4, BnA6-Bn6-BrA6, BnA7-Bn7-BrA7, BnC3-Bn13-BoC3, BnC4-Bn14-BoC4, BnC8-Bnl8-BoC8, BnC9-Bnl9-BoC9. The information on direction and synteny extent could provide a basis for the revolution of the practical problem in B. napus by utilizing the genome sequence information from other crops.
     3. Frequency distribution in DH population
     The frequency distribution of the16traits in the DH population was analyzed in three environments. The results indicated that most traits showed a multimodal continuous distribution, deviating from the standard normal distribution. Using the composite interval mapping (MCIM), a genome-wide scan for QTLs was conducted. A total of337QTLs for the16traits were detected in three environments (117QTLs in11WH,122QTLs in12WH,98QTLs in11EZ). After meta-analysis was conducted for each trait, the337QTLs were consolidated into234QTLs covering20LGs. Seventeen QTLs controlling average length of primary branches (ALPB) were identified on6LGs:A1, A3, A5, A6, A7and Cla, with the individual QTL explaining3.9-25.9%of the phenotypic variation. For length of main inflorescence (LMI),10QTLs were detected on LGs Al, A3, A5, A6, A7, C8and C9, with the individual QTL explaining4.7-25.5%of the phenotypic variation. For the length of silique layer (LSL),10QTLs were detected on LGs A1, A3, A6, A9, C3and C8, with the individual QTL explaining5.1-11.8%of the phenotypic variation. Nine QTLs for number of siliques on branches (NSB) were assigned on four LGs: A1, A3, A9and C3, with the individual QTL accounting for4.4-20.1%of the phenotypic variation. For the number of primary branches (PB),15QTLs were detected on LGs Al, A4, A7, Cla, Clb, C2, C3and C4, with the individual QTL explaining4.7-15.1%of the phenotypic variation. Fifteen QTLs controlling plant height (PH) were detected on6LGs:A1, A3, A6, A7, Clb and C9, with the individual QTL explaining0.7-32.2%of the phenotypic variation. Twenty-four QTLs for silique density of branches (SDB) were assigned on11LGs:A1, A3, A5, A6, A7, A9, Cla, Clb, C6, C7and C9, with the individual QTL accounting for4.4-16.0%of the phenotypic variation. For silique density on main inflorescence (SDMI), 10QTLs were detected on LGs A3, A6, A7, Cla, and C7, with the individual QTL explaining5.3-12.9%of the phenotypic variation. For silique length (SL),11QTLs were detected on LGs Al, A7, A9and A10, with the individual QTL explaining2.4-60.0%of the phenotypic variation. Seventeen QTLs controlling number of siliques on main inflorescence (SMI) were detected on6LGs:Al, A2, A3, A5, A9and Cla, with the individual QTL explaining4.7-14.8%of the phenotypic variation. For number of seeds per silique (SN),15QTLs were detected on8LGs:Al, A6, A7, A8, Cla, Clb, C3and C5, with the individual QTL explaining4.9-26.6%of the phenotypic variation. Nine QTLs for silique number per plant (SNPP) were assigned on3LGs:Al, A9and C3, with the individual QTL accounting for4.8-24.3%of the phenotypic variation. For seeds yield per plant (SY),10QTLs were identified on5LGs: A1, A3, A9, C3and C8, with the individual QTL explaining4.4-35.7%of the phenotypic variation. Thirteen QTLs for total length of primary branches (TLPB) were assigned on6LGs:A1, A3, A6, A9, Cla and C3, with the individual QTL accounting for5.3-17.9%of the phenotypic variation. For and thousand seed weight (TSW),16QTLs were detected on7LGs:Al, A7, A9, Cla, Clb, C8and C9, with the individual QTL explaining3.4-38.8%of the phenotypic variation. Twenty QTLs for silique the width of silique layer (WSL) were assigned on6LGs:Al, A2, A3, A7and A9, with the individual QTL accounting for4.2-31.3%of the phenotypic variation.
     4. QTLs and homologous QTLs mapped in paralogous conserved blocks in B. napus.
     One hundred and sixty-eight of the234QTLs identified by the first round meta-analysis could be mapped in silico in the14conserved crucifer blocks (U, H, F, W, E, R, J, C, X, M, N, B, I and A). Eight pairs of homologous QTLs for PB, SL, WSL, SN, TSW, PH, LMI and SY were found in paralogous conserved blocks E, U, X and R in B. napus.
     5. Pleiotropic QTLs and indicator-QTLs for yield
     The integrated results from the second round meta-analysis showed that there were59pleiotropic QTLs, and each of them was associated with2to8traits for designing ideal plant architecture. For example, mqA1.14integrated the traits on plant architecture traits, plant architecture and silique-traits, silique traits and seed yield together. Seven of ten QTLs detected in this study for seed yield were identified as pleiotropic QTLs. Among these pleiotropic QTLs, indicator traits of mqA1.14, mqA9.4and mqC8.1were length of main inflorescence, number of siliques on main inflorescence and thousand seeds weight, respectively, but no a QTL could be regarded as yield-indicator QTL in mqA1.5, mqA1.9, mqC3.2and mqC3.4.
     6. The mapping of candidate genes governing plant type and yield traits on the genetic map
     Linkage analysis showed that26markers, which derived from21primer pairs designed by the A. thaliana genes governing plant type and seed traits (TCP24, Sepl, API, STM, LFY, ANT, AXR6, PIN1, AP3, REV, TTG2and TT5), could be mapped at the different locations on this genetic map. Nearby some genic-markers, QTLs could be detected. However, the correlation between these QTLs and the candidate genes needs further confirmation. Using the A. thaliana genes mapped on the genetic map in this study as a bridge, some important genes governing plant type and yield component traits in rice and corn were roughly mapped on the genetic map in this study. The results showed that6candidate genes(GS5, ARGOS, MINI3, CLAVATA1, DEP2and IPAl/OsSPL14) could be mapped at eight locations. Among these candidate genes, GS5, ARGOS and MINI3which controlling seed component traits were mapped at the locations neighboring QTLs for thousand seeds weight (TSW), the number of seeds per silique (SN), silique length (SL) and seed yield (SY). The A. thaliana gene CLAVATA1, which governs flower/inflorescence traits, was mapped in the E conserved blocks neighboring a QTL for number of siliques on main inflorescence (SMI) on LG A2. The dense and erect panicle gene DEP2was mapped in the F conserved blocks neighboring QTLs for average length of primary branches (ALPB) and total length of primary branches (TLPB) on LG A5. The rice ideal plant architecture gene IPA1/OsSPL14was mapped in the N conserved blocks neighboring two QTLs for silique density of branches (SDB) on LG A9.
引文
1.陈恒鹤,李楠.大豆株型性状的相对遗传进度与配合力.大豆科学,1984,04:268-280.
    2.陈伟.用分子标记剖析油菜重要农艺性状的遗传基础.[博士学位论文].华中农业大学,2007.
    3.丁广大.甘蓝型油菜磷高效分子整合图谱的构建及磷高效QTL的定位与分析.[博士学位论文].华中农业大学,2011.
    4. 傅寿仲,张洁夫.油菜株型结构及其理想型研究:I有,无花瓣油菜原型结构比较.中国油料,1996,18(4):23-27.
    5.贺再新.水稻理想株型研究进展与育种策略.湖南农业科学,2005,01:11-13.
    6.孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2005.
    7.雷绍林.甘蓝型油菜隐性核不育恢复基因BnMS2的精细定位与候选基因鉴定.[博士学位论文].华中农业大学,2009.
    8.李付鹏.甘蓝型油菜蔗糖载体基因BnA7.SUTl的分离及功能分析.[博士学位论文].华中农业大学,2012.
    9.李佳,沈斌章,韩继祥,甘莉.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13:521-523.
    10.李慧慧,张鲁燕,王建康.数量性状基因定位研究中若干常见问题的分析与解答.作物学报,2010,06:918-931.
    11.唐佳.甘蓝型油菜株型相关性状的杂种优势及配合力分析.[硕士学位论文].四川农业大学,2012.
    12.唐继宏,刘后利.油菜株型研究的现状和一些设想.作物杂志,1990,4:2-5.
    13.陆光远.甘蓝型油菜显性细胞核雄性不育基因和抑制基因的分子标记及其应用.[博士学位论文].华中农业大学,2004.
    14.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,03:317-321.
    15.刘志文.人工合成甘蓝型黄籽油菜的分子标记和利用研究.[博士学位论文].华中农业大学,2005.
    16.麻浩,田森林,李乐农,李大恒.大豆高产理想株型的构成.湖南农业大学学报,1996,03:309-314.
    17.潘学彪,韩月澎,陈宗祥,张洪熙.水稻植株形态遗传改良的研究进展.扬州大学学报,2004,01:36-40.
    18.沈金雄,漆丽萍,杨军,文静,易斌,涂金星,马朝芝,傅廷栋.甘蓝型油菜“棒状”突变体的发现及初步研究.中国油料作物学报,2009,03:380-382.
    19.石利娟,邓启云,刘国华,庄文,陈立云.水稻理想株型育种研究进展.杂交水稻,2006,04:1-6.
    20.苏成付,赵团结,盖钧镒.不同统计遗传模型QTL定位方法应用效果的模拟比较.作物学报,2010,07:1100-1107.
    21.孙成明,苏祖芳.水稻株型的研究进展(综述).上海农业学报,2004,01:41-44.
    22.孙林静.水稻理想株型及其育种模式.天津农业科学,1998,04:54-56.
    23.孙思龙.白菜、甘蓝与拟南芥比较基因组分析.[硕士学位论文].中国农业科学院,2011.
    24.王建林,徐正进,魏树和.水稻株型育种生理生态特性的研究现状与展望.辽宁农业科学,2000,04:23-27.
    25.王俊生,张文学,田建华,李殿荣.紧凑型油菜数量性状的遗传与杂种优势研究.西北农业学报,2006,03:31-36
    26.夏玉凤,夏桂雪.影响植物分枝的一些基因及其分子机制.河北师范大学学报.自然科学版,2007,31(5):671-675.
    27.肖巧珍.水稻簇生穗簇生基因的等位性鉴定和遗传分析.[硕士学位论文].广西大学,2007.
    28.叶新福.初探超级稻育种与理想株型.福建稻麦科技,1998,01:41-44.
    29.俞敬忠,周萃.棉花高产品种理想株型雏议.中国棉花,1982,03:11-12.
    30.曾秀红.水稻簇生穗基因c1-4的精细定位.[硕士学位论文].扬州大学,2009.
    31.张洁夫,严建民.油菜株型结构及其理想型研究:Ⅱ.无花瓣性状对构建理想株型.中国油料作物学报,1998,20(1):33-37.
    32.张立武.甘蓝型油菜每角粒数的遗传和主效QTL的定位.[博士学位论文].华中农业大学,2010.
    33.张倩.甘蓝型油菜主要株型性状的遗传分析和QTL初步定位.[硕士学位论文].西南大学,2013.
    34.张熔,戴小鹏,陈垦,黄璜,王艳平.水稻理想株型的知识模型研究.湖南农业科学,2006,06:14-17.
    35.张文学,李殿荣.甘蓝型油菜紧凑型和松散型杂种一代分枝性状的遗传效应.中国农学通报,2000,16(5):17-19.
    36.张战,李明.浅谈水稻理想株型育种.垦殖与稻作,2003,04:9-10.
    37.郑雷英,朱旭东,钱前,赵忠,张建军,胡筱荷,林鸿宣,罗达.水稻穗部突变体C1的形态和定位分析.科学通报,2003,03:264-267.
    38.朱耕如,邓秀兰.油菜结角层的结构.江苏农业学报,1987,3(3):16-22.
    39. Aguilar-Martinez JA, Poza-Carrion C, Cubas P. Arabidopsis BRANCHED1 Acts as in Integrator of Branching Signals within Axillary Buds. PLANT CELL,2007: 458-472.
    40. Ait-ali T, Rands C, Harberd NP. Flexible control of plant architecture and yield via switchable expression of Arabidopsis gai. PLANT BIOTECHNOL J,2003,1(5): 337-343.
    41. Alvarez J, Guli CL, Yu XH, Smyth DR. terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. PLANT J,1992,2(1):103-116.
    42. Arcade A, Labourdette A, Falque M, ManginB, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. BIOINFORMATICS,2004,20(14):2324-2326.
    43. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles A, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. SCIENCE,2005,309(5735):741-745.
    44. Bangerth F. Response of cytokinin concentration in the xylem exudate of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance. PLACENTA,1994,194(3):439-442.
    45. Becraft PW, Stinard PS, McCarty DR. CRINKLY4:a TNFR-like receptor kinase involved in maize epidermal differentiation. SCIENCE,1996,273(5280):1406-1409.
    46. Beveridge CA, Ross JJ, Murfet IC. Branching mutant rms-2 in Pisum sativum (grafting studies and endogenous indole-3-acetic acid levels). PLANT PHYSIOL, 1994,104(3):953-959.
    47. Beveridge CA, Ross JJ, Murfet IC. Branching in pea (action of genes Rms3 and Rms4). PLANT PHYSIOL,1996,110(3):859-865.
    48. Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C. The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. PLANT J,1997,11(2):339-345.
    49. Beveridge Christine A., Symons Gregory M., Turnbull Colin G.N. Auxin Inhibition of Decapitation-Induced Branching Is Dependent on Graft-Transmissible Signals Regulated by Genes Rmsl and Rms2. PLANT PHYSIOL,2000,123(2):689-698.
    50. Bommert P, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W. thick tassel dwarfl encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. DEVELOPMENT,2005,132(6):1235-1245.
    51. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. CURR BIOL,2004,14(14):1232-1238.
    52. Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. DEV CELL,2005,8(3):443.
    53. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet,1980, 32(3):314-331.
    54. Caetano-Anolles G, Bassam BJ, Gresshoff PM. DNA amplification fingerprinting: a strategy for genome analysis. PLANT MOL BIOL REP,1991,9(4):294-307.
    55. Caetano-Anolles G, Bassam BJ, Gresshoff PM. DNA fingerprinting:MAAPing out a RAPD redefinition. NAT BIOTECHNOL,1992,10(9):937-937.
    56. Chatfield SP, Stirnberg P, Forde BG, Leyser O. The hormonal regulation of axillary bud growth in Arabidopsis. PLANT J,2000,24(2):159-169.
    57. Chen W, Zhang Y, Liu XP, Chen BY, Tu JX, F TD. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. THEOR APPL GENET,2007,115(6):849-858.
    58. Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang X. Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa. PLANT CELL,2013,25(5): 1541-1554.
    59. Cheng WH, Taliercio EW, Chourey PS. The miniaturel seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. PLANT CELL,1996,8(6):971-983.
    60. Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22a-hydroxylation steps in brassinosteroid biosynthesis. PLANT CELL,1998,10(2): 231-243.
    61. Clark SE, Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. DEVELOPMENT,1993,119(2):397-418.
    62. Cubas P, Lauter N, Doebley J, Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. PLANT J,1999,18(2):215-222.
    63. Dai Y, Wang HZ, Li BH, Huang J, Liu XF, Zhou YH, Mou ZL, Li JY. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. PLANT CELL,2006, 18(2):308-320.
    64. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J, Deschamps M. Genetic control of oil content in oilseed rape (Brassica napus L.). THEOR APPL GENET,2006,113(7):1331-1345.
    65. Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, Andre I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribiere N, Trotoux G, Blanchard P, Riviere N, Martinant JP, Pauquet J. High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC GENOMICS,2013,14(1):120.
    66. Ding GD, Zhao ZK, Liao Y, H YF, Shi L, Long Y, Xu FS. Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. ANN BOT-LONDON,2012,109(4):747-759.
    67. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. NATURE,1997,386:485-488.
    68. Donald CM. The breeding of crop ideotypes. EUPHYTICA,1968,17(3):385-403.
    69. Douglas SJ, Chuck G, Dengler RE, Pelecanda L, Riggs CD. KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. PLANT CELL, 2002, 14(3): 547-558.
    70. Edwards D, Forster JW, Cogan NOI, Forster JW, Chagne D. Single nucleotide polymorphism discovery. Association mapping in plants,2007:53-76.
    71. Ehrenreich IM, Stafford PA, Purugganan MD. The genetic architecture of shoot branching in Arabidopsis thaliana:a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. GENETICS,2007, 176(2): 1223-1236.
    72. Evenson RE, Gollin D. Assessing the impact of the Green Revolution,1960 to 2000. SCIENCE,2003,300(5620):758-762.
    73. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu C, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. THEOR APPL GENET, 2006, 112 (6):1164-1171.
    74. Fan CC, Cai GQ, Qin J, Li QY, Wu JZ, Fu TD, Liu KD, Zhou YM. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. THEOR APPL GENET,2010,121(7):1289-1301.
    75. Ferguson BJ, Beveridge CA. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. PLANT PHYSIOL,2009,149(4):1929-1944.
    76. Foo E, Turnbull CGN, Beveridge CA. Long-Distance Signaling and the Control of Branching inthermsl Mutant of Pea. PLANT PHYSIOL,2001,126(1):203-209.
    77. Fourmann M, Barret P, Froger N, Baron C, Charlot F, Delourme R, Brunel D. From Arabidopsis thaliana to Brassica napus:development of amplified consensus genetic markers (ACGM) for construction of a gene map. THEOR APPL GENET, 2002, 105(8):1196-1206.
    78. Franzke A, Lysak M A, Al-Shehbaz I A, Koch MA, Mummenhoff K. Cabbage family affairs:the evolutionary history of Brassicaceae. TRENDS PLANT SCI,2011,16(2): 108-116.
    79. Frary A, Nesbitt TC, Frary A, Grandillo A, Van Der Knaap S, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanks ley, SD. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. SCIENCE,2000,289(5476):85-88.
    80. Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. PLANT PHYSIOL, 2003, 131(4):1661-1670.
    81. Garcia D, Gerald JNF, Berger F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. PLANT CELL,2005,17(1):52-60.
    82. Gordon SP. Hormone and gene feedback during development and regeneration in Arabidopsis thaliana. Dissertation (Ph.D.), California Institute of Technology,2009. http://resolver.caltech.edu/CaltechETD:etd-05022009-103703.
    83. Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. GENE DEV,2003,17(9): 1175-1187.
    84. Hayward A, Mason AS, Dalton-Morgan J, Zander M, Edwards D, Batley J. SNP discovery and applications in Brassica napus. J PLANT BIOLOGY,2012,39(1): 49-61.
    85. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu, S, Fujioka, S, Takatsuto, S, Yoshida S, Ashikar M, Kitano H, Matsuoka, M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. PLANT CELL,2003,15(12):2900-2910.
    86. Hu YX, Xie Q, Chua N-H. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. PLANT CELL,2003a,15(9):1951-1961.
    87. Hu WJ, Zhang SH, Zhao Z, Sun C, Zhao YJ, Luo D. The analysis of the structure and expression of OsTB1 gene in rice. J. PLANT PHYSIOL. MOL. BIOL,2003b,29(6): 507-514.
    88. Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD. Natural variation at the DEP1 locus enhances grain yield in rice. NAT GENET,2009, 41(4):494-497.
    89. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. PLANT CELL,2001,13(5):999-1010.
    90. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. PLANT CELL PHYSIOL,2005, 46(1):79-86.
    91. Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci. GENETICS,1995,140(3):1111-1127.
    92. Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. NAT GENET,2010,42(6):541-544.
    93. Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. NAT GENET,2008,40(11):1365-1369.
    94. Jofuku KD, Omidyar PK, Gee Z, Okamuro JK. Control of seed mass and seed yield by the floral homeotic gene apetala2. P NATL ACAD SCI USA,2005, 102(8):3117-3122.
    95. Kaczmarek M, Koczyk G, Ziolkowski P, Babula-Skowronska D, Sadowski J. Comparative analysis of the brassica oleracea genetic map and the arabidopsis thaliana genome. GENOME,2009,52(7):620-63.
    96. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. GENETICS,1999,152(3):1203-1216.
    97. Keller T, Abbott J, Moritz T, Doerner P. Arabidopsis regulator of axillary meristemsl controls a leaf axil stem cell niche and modulates vegetative development. PLANT CELL,2006,18(3):598-611.
    98. Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. Lax and spa: Major regulators of shoot branching in rice. P NATL ACAD SCI,2003a,100(20):11765-11770.
    99. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. Frizzy panicle is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. DEVELOPMENT,2003b,130(16):3841-3850.
    100.Kosambi D. The estimation of map distances from recombination values. ANN EUGENIC,1943,12(1):172-175.
    101.Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. PLANT CELL,1997,9(9):1607-1619.
    102.Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. PLANT J,2002,30(3):337-348.
    103.Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. GENETICS,1989,121(1):185-199.
    104.Lewis JM, Mackintosh CA, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer GJ. Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. PLANT CELL REP,2008,27(7):1217-1225.
    105.Li F, Liu WB, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen M, Chu CS, Chu CC. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. CELL RES,2010,20(7):838-849.
    106.Li HH, Ribaut JM, Li ZL, Wang JK. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116(2):243-260.
    107.Li HH, Ye GY, Wang JK. A modified algorithm for the improvement of composite interval mapping. GENETICS, 2007a, 175(1):361-374.
    108.Li J. Brassinosteroid signaling:from receptor kinases to transcription factors. CURR OPIN PLANT BIOL,2005,8(5):526-531.
    109.Li PJ, Wang YH, Qian Q, Fu ZM, Wang M, Zeng DL, Li BH, Wang XJ, Li JY. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. CELL RES,2007b,17(5):402-410.
    110.Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. PLANT J,2009,58(4):592-605.
    111.Li SY, Zhao BY, Yuan DY, Duan MJ, Qian Q, Tang, L, Wang B, Liu XQ, Zhang J, Wang J, Sun JQ, Liu Z, Feng YQ, Yuan LP, Li, CY. Rice zinc finger protein DST enhances grain production through controlling Gnla/OsCKX2 expression. P NATL ACAD SCI,2013a,110(8):3167-3172.
    112.Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F. Control of tillering in rice. NATURE,2003,422(6932):618-621.
    113.Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. NAT GENET,2011a,43(12):1266-1269.
    114.Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T. Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNARES,2011b, 18(5):401-411.
    115.Li XN, Ramchiary N, Dhandapani V, Choi SR, Hur Y, Nou IS, Yoon MK, Lim YP. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNARES,2013b,20(1):1-16.
    116.Li YY, Shen JX, Wang TH, Fu TD, Ma CZ. Construction of a linkage map using SRAP, SSR and AFLP markers in Brassica napus L. Scientia Agricultura Sinica, 2007c,40(6):1118-1126.
    117.Lorenc MT, Hayashi S, Stiller J, Lee H, Manoli S, Ruperao P, Visendi P, Berkman PJ, Lai K, Batley J. Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP BIOLOGY,2012, 1(2):370-382.
    118.Lorieux M, Goffinet B, Perrier X, De Leon DG, Lanaud C. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. THEOR APPL GENET,1995a,90(1):73-80.
    119.Lorieux M, Perrier X, Goffmet B, Lanaud C, De Leon DG. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. THEOR APPL GENET,1995b,90(1):81-89.
    120.Lu GY, Yang GS, Fu TD. Molecular mapping of a dominant genie male sterility gene Ms in rapeseed (Brassica napus). PLANT BREED,2004,123(3):262-265.
    121.Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. P NATL ACAD SCI USA,2005, 102(48):17531-17536.
    122.Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. P NATL ACAD SCI USA,2006,103(13):5224-5229.
    123.Mandakova T, Lysak MA. Chromosomal phylogeny and karyotype evolution in x= 7 crucifer species (Brassicaceae). PLANT CELL,2008,20(10):2559-2570.
    124.Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. NAT GENET,2010,42(6):545-549.
    125.Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1:rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA RES,2002,9(1):11-17.
    126.Morris SE, Turnbull CG, Murfet IC, Beveridge CA. Mutational Analysis of Branching in Pea. Evidence ThatRmsl and Rms5 Regulate the Same Novel Signal. PLANT PHYSIOL,2001,126(3):1205-1213.
    127.Muller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. PLANT CELL,2006, 18(3):586-597.
    128.Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. SCIENCE,1987 235(4796):1616-1622.
    129.Napoli C. Highly branched phenotype of the petunia dadl-1 mutant is reversed by grafting. PLANT PHYSIOL,1996, 111(1):27-37.
    130.Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. P NATL ACAD SCI USA,2004,101(21):8039-8044.
    131.Norusis M. SPSS 16.0 guide to data analysis. PRENTICE HALL PRESS,2008.
    132.Ohto M-a, Fischer RL, Goldberg RB, Nakamura K, Harada JJ. 2005. Control of seed mass by APETALA2. P NATL ACAD SCI USA, 2005,102(8):3123-3128.
    133.Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE. REVOLUTA regulates meristem initiation at lateral positions. PLANT J,2001,25(2):223-236.
    134.Palni L, Burch L, Horgan R. The effect of auxin concentration on cytokinin stability and metabolism. PLANTA,1988,174(2):231-234.
    135.Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC GENOMICS,2008,9(1):113.
    136.Parkin IA P, SharPe AG, Keith DJ, Lydiate DJ. Identification of the A and Cgenomes of amphidiploid Brassica napus (oilseed rape). GENOME,1995,38:1122-1131.
    137.Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. GENETICS,2005,171(2):765-781.
    138.Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln, SE, Tanksley, SD. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. NATURE, 1988,335(6192): 721-726.
    139.Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. GENE DEV,1997, 11(23):3194-3205.
    140.Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F.'Green revolution'genes encode mutant gibberellin response modulators. NATURE,1999,400(6741):256-261.
    141.Qiao YL, Piao RH, Shi JX, Lee S-I, Jiang WZ, Kim B-K, Lee J, Han LZ, Ma WB, Koh H-J. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). THEOR APPL GENET, 2011, 122(7):1439-1449.
    142.Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. THEOR APPL GENET,2006,114(1):67-80.
    143.Rameau C, Murfet IC, Laucou V, Floyd RS, Morris SE, Beveridge CA. Pea rms6 mutants exhibit increased basal branching. PHYSIOLOGIA PLANTARUM,2002, 115(3):458-467.
    144.Rameau C. Strigolactones, a novel class of plant hormone controlling shoot branching. CR BIOL,2010,333(4):344-349.
    145.Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G. Green revolution: a mutant gibberellin-synthesis gene in rice. NATURE,2002,416(6882):701-702.
    146.Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. PNATLACAD SCI,2002,99(2):1064-1069.
    147.Schranz ME, Lysak MA, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. TRENDS PLANT SCI,2006, 11(11):535-542.
    148.Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. DEVELOPMENT,2006,133(2):251-261.
    149.Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. P NATL AC AD SCI,1999,96(1):290-295.
    150.Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. GENETICS,2009,182(3):851-861.
    151.Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. NAT GENET,2008,40(8):1023-1028.
    152.Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS. The ABC model and its applicability to basal angiosperms. ANN BOT-LONDON,2007,100(2):155-163.
    153.Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. NAT GENET,2007, 39(5):623-630.
    154.Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. GENE DEV,2003,17(12):1469-1474.
    155.Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1),"green revolution" rice, contains a defective gibberellin 20-oxidase gene. P NATL ACAD SCI,2002, 99(13):9043-9048.
    156.Springer N. Shaping a better rice plant. NAT GENET,2010,42(6):475-476.
    157.Stirnberg P, van De Sande K, Leyser HO. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. DEVELOPMENT,2002,129(5):1131-1141.
    158.Stone JM, Liang X, Nekl ER, Stiers JJ. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. PLANT J,2005,41(5):744-754.
    159.Sun H, Zhang JD, Huang M, Xu CK. The 19th Crucifer Genetic Workshop and Brassica,2014.
    160. Sun XD, Shantharaj D, Kang XJ, Ni M. Transcriptional and hormonal signaling control of Arabidopsis seed development. CURR OPIN PLANT BIOL,2010, 13(5):611-620.
    161.Suwabe K, Tsukazaki H, Ikcetani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. GENETICS,2006,173(1):309-319.
    162.Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H-Y The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. DEVELOPMENT,2004,131(22):5649-5657.
    163.Snowden KC, Napoli CA. A quantitative study of lateral branching in petunia. FUNCT PLANT BIOL,2003,30(9):987-994.
    164.Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. PLANT J,2003,33(3):513-520.
    165.Tan LB, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ. Control of a key transition from prostrate to erect growth in rice domestication. NAT GENET,2008,40(11):1360-1364.
    166.Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarfl 1, with reduced seed length. PLANT CELL,2005,17(3):776-790.
    167.Tantikanjana T, Yong JW, Letham DS, Griffith M, Hussain M, Ljung K, Sandberg G, Sundaresan V. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. GENE DEV,2001,15(12):1577-1588.
    168.Turnbull CG, Booker JP, Leyser H. Micrografting techniques for testing long-distance signalling in Arabidopsis. PLANT J,2002,32(2):255-262.
    169.Udall JA, Quijada PA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.):2. Identification of alleles from unadapted germplasm. THEOR APPL GENET,2006, 113(4):597-609.
    17O.Umehara M, Hanada A, Yoshida S, Akiyama S, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi H1. Inhibition of shoot branching by new terpenoid plant hormones. NATURE,2008,455(7210):195-200.
    171. Van Ooijen J W. JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands,2006.
    172.Venglat S, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. P NATL AC AD SCI,2002, 99(7):4730-4735.
    173.Vos P, Hogers R, Bleeker M, Reijans M, van De Lee T, Homes M, Friters A, Pot J, Paleman J, Ruiper M. AFLP:a new technique for DNA fingerprinting. NUCLEIC ACIDS RES,1995,23(21):4407-4414.
    174. Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock WJ, Dennis ES, Luo M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. PLANT J,2010,63(4):670-679.
    175.Wang SC, Bastern J, Zeng ZB. Windows QTL Cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University,2011.
    176. Wang RL, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. NATURE,1999,398(6724):236-239.
    177.Weller J. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics,1986,42:627>640
    178.Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. NUCLEIC ACIDS RES,1990,18(24):7213-7218.
    179.Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. CELL RES,2008,18(12):1199-1209.
    180.Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang QF. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. THEOR APPL GENET,2008,116(6):789-796.
    181.Xu SZ. Quantitative trait locus mapping can benefit from segregation distortion. GENETICS,2008,180(4):2201-2208.
    182.Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HG, Yu SB, Xu CQ Li XH. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. NAT GENET,2008,40(6):761-767.
    183.Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitivel homo log prevents internode elongation and bending of the lamina joint. PLANT CELL,2000, 12(9):1591-1605.
    184.Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. BIOINFORMATICS,2008,24(5):721-723.
    185.Yang J, Zhu J, Williams RW. Mapping the genetic architecture of complex traits in experimental populations. BIOINFORMATICS,2007,23(12):1527-1536.
    186.Yang P, Shu C, Chen L, Xu JS, Wu J, Liu KD. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). THEOR APPL GENET,2012,125(2):285-296.
    187.YU BS, Lin ZW, Li HX, Li XJ, Li JY, Wang YH, Zhang X, Zhu ZF, Zhai WX, Wang XK. TAC1, a major quantitative trait locus controlling tiller angle in rice. PLANT J, 2007,52(5):891-898.
    188.Zabeau M. Amplified fragment lenght polymorphism (AFLP). European Patent Application,1993,92402629.
    189.Zeng ZB. Precision of quantitative trait loci of sheep. GENETICS,1993,136: 1442-1451.
    190.Zhang LY, Li HH, Li ZL, Wang JK. Interactions between markers can be caused by the dominance effect of quantitative trait loci. GENETICS,2008,180(2):1177-1190.
    191.Zhang LW, Yang GS, Liu PW, Hong DF, Li SP, He QB. Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. THEOR APPL GENET,2011,122(1):21-31.
    192.Zhang LW, Li SP, Chen L, Yang GS. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. THEOR APPL GENET,2012,125(4):695-705.
    193.Zhao YD, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. SCIENCE, 2001,291(5502):306-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700