用户名: 密码: 验证码:
四川小麦转基因技术体系构建及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1992年,Vasil等首次报道了以胚性愈伤为受体,通过基因枪法将gus/bar基因转入小麦品种“Pavon”,标志着转基因小麦研究获得突破性进展。一些改良品质、抗病、抗虫、抗逆和抗除草剂的基因已先后被转移到小麦基因组中,转化技术从单纯依赖基因枪发展到农杆菌介导和花粉管通道等多种途径,受体基因型己从“模式材料”扩展到推广品种。四川小麦转基因研究还处于初级阶段,研究基础薄弱。多年育种实践表明,外省育成品种难以适应四川特有的生态环境,因此急需充分利用我省自育的小麦品种,建立一套切实可行的转基因技术体系。本研究通过评价一些四川主要的小麦推广品种和农艺性状优良的育成品系的组培再生能力,从中筛选出优良的基因型供转基因研究使用,对农杆菌介导和基因枪法的一些影响因素进行研究优化,成功地利用基因枪法将抗除草剂bar基因导入小麦新品种川农16。本研究获得的主要研究结果如下:
     (1) 从四川麦区育成的8个小麦品种(系)中筛选出具有较强组培愈伤诱导能力和植株再生能力的国家审定(2003年)新品种川农16作为转基因研究的受体基因型。其幼胚在供试的6个培养基中平均愈伤诱导率达92.9%,显著高于其它基因型,在个别愈伤诱导培养基的诱导率可达99.25%,且平均出芽率仅1.13%,愈伤质量较好。所诱导的愈伤在MS_(10)培养基上的绿芽分化率达77.78%。结果表明,我们选育的川农16适合作为四川小麦转基因研究的受体基因型。
     (2) 从供试的6种愈伤诱导培养基和2种再分化培养基中筛选到具有较强愈伤
    
    诱导能力的MSZ培养基和较高绿芽分化率的MS:。培养基。MSZ对8个供试
    材料幼胚的平均愈伤诱导率为94.0%,高于其它愈伤诱导培养基的诱导能力
    其平均出芽率为7.8%。分析表明MS大量元素加倍的愈伤诱导培养基MSZ
    比较适合于在转基因操作初期用来诱导愈伤。各基因型在供试的2个再分
    化培养基Mslo和MS:。.,上的平均绿芽分化率分别为64.9%和40.2%,仅有
    1个基因型(异源2号)在MSJO-,培养基上的绿芽分化率高于Msl。,分别
    为87.5%和75.0%。据此认为,在小麦组织培养中利用MS:培养基进行愈
    伤诱导,并用MS:。培养基进行绿芽分化培养是一套适宜的组培再生体系。
    (3)分别采用不同浓度种类的筛选剂对川农16和川麦犯以及川育16的幼胚愈
     伤组织筛选发现,Kan不能抑制幼胚愈伤的生长,平均出愈率达87%,愈
     伤组织生长良好。川农16的幼胚在含不同G418剂量的MSZ中生长受抑制,
     但出愈率不随浓度变化而变化,说明G418不能很好地抑制幼胚生长,未能
     筛选出合适的选择浓度。川农16和力i麦32的幼胚在含不同L一PPT剂量的
     Ms:培养基中,生长受到明显抑制,L一PPT浓度为3m创L时就能完全抑制
     幼胚的生长,因此在小麦遗传转化诱导愈伤和继代阶段L一PPT合适的筛选
     浓度是2一3mg/L。用根癌农杆菌菌株(EHA 1 01)对这3个基因型的幼胚进
     行遗传转化,统计抗性愈伤获得率结果表明,侵染时间】hr对幼胚的生存和
     转化较为有利:侵染前对幼胚进行高渗处理和乙酞丁香酮(AS)处理后,
     出愈率与未经处理相比并未表现出明显的增加趋势,但基因型对不同处理
     的存在差异。
    (4)通过6种不同轰击压与轰击距离的组合,在显微镜下观察发现1100PsiX
     12cm,1350PsiX12cm两种参数的轰击效果较好,金粉比较均匀地分布于
     培养皿中心直径Zcm的区域,边缘部分与中心部分的分散程度较一致。而
     1100Psix6cm这个参数的分散状态最差,中心部分金粉集中,并且结块严
     重,边缘部分金粉较少。结果说明在利用基因枪进行轰击时,为使金粉尽
     可能地轰击到较多的受体,宜采用lloopsiX12em,135opsiX12em两种轰
     击参数。轰击7天后随机挑选了112块愈伤检测g卫绍基因活性,其中有6
     块出现了明显蓝斑,占5.4%。并且这6块愈伤中有4块来自必0.6林mX n00psi
    
    X 12em的轰击参数处理,另2块分别来自必0.6林mXll00psiXgem,必0.6林m
    X 135OPsiXgcm的处理。结果表明,直径0.6林m金粉用于轰击效果相对最
    好。
    (5)利用上述基因枪轰击参数将含有抗除草剂bar基因的质粒载体pDM803用
     于转化6个小麦基因型,通过在2-smg几PPT筛选后获得了27株再生小麦
     植株。利用bar基因上的一段特异序列而设计的引物进行PCR检测表明,
     其中有2株来源于川农16的抗性再生植株能扩增出一条约3lobP的特征片
     段,与质粒载体pDM803的扩增片段大小一致。对扩增片段回收纯化,并
     进行序列测定表明,扩增片段碱基序列与从NCBI数据库下载的2个bar
     基因全序列(X05822,X17220)的一段完全吻合,仅在3’端的286位上
     有一个碱基是G,而在X05822,X 1 7220上是C,虽然它们与一个人工
     修饰后的ba:基因序列(AY028212)有较大的差异,但5个DNA序列
     编码的氨基酸序列完全一致。据此认为,抗除草剂bar基因已经整合
     到小麦品种川农16的基因组上,目前这2株转基因植株已经正常结实。
    (6)对40个通过基因工程获得的组培单株收获的种子利用A队GE进行醇溶蛋
     白位点检测,从中发现了一些材料与对照相比,部分位点发生了细微的变
     化。分析表明,98一
First successful generation of transgenic wheat (Triticum aetuvivum L.) plants was reported by Vasil et al. (1992) through particle bombardment of plasmid vector pBARGUS into cells of type-C, long-term regenerable embryogenic callus derived form c.v. Pavan. It is a symboliz milestone in the history of wheat transformation. Although wheat transformation has lagged behind other important cereals such as rice and maize due to many reasons, in recent reports indicated that wheat genetic transformations is becoming a routine technique adopted worldwide in different laboratories. This technique was successfully being used for introduction of agronomically important genes for quality improvement, resistance against fungal pathogens, insects, drought stress and herbicide. The development of methodologies for the delivery of exogenous genes provided the new alternative approaches, such as Agrobacterium-mediated and pollen-tube pathway method for particle bombardment. The several elite culitvar genotypes were used, wh
    ich is not depended on 'model' genotypes, such as Bobwhite.
    In China, transgenic wheat plants were regenerated in different laboratories. However, in Sichuan province, the transformation of wheat was just carried out in few laboratories. In practice wheat breeding engineering, most foreign cultivars couldn't adapted to the unique entironment in Sichuan. So, it's necessary to establish a genetic transformation system for the elite wheat cultivars planted in Sichuan. In present study, the response in tissue culture of 8 elite varieties or breeding lines with good agronomic characteristics were investigated in order to select the best suitable donor genotypes for genetic transformation. Moreover, the main parameters of
    
    
    Agrobacterium-mediated and particle bombardment were demonstrated with the aim of optimize the procedures for their genetic transformation. Then two fertile transgenic plants ( c.v chuannongl6) with bar gene were regenerated successfully via microprojectile bombardment method and a transformation system for Sichuan elite cultivars was constructed successfully too. The main results were described as folio wings:
    1. The frequencies of induced-callus and regeneration capabilities of 8 elite wheat genotypes with good agronomical traits in Sichuan were investigated by the F-test and shortest significant ranges tests(SSR). The results showed that the immature embryo derived from novel cultivar Chuannongl6, which presented the highest callus induction frequency and better regeneration capabilities, was suitable donor explant for wheat transformation. The average frequency of induced-callus derived from immature embryo of chuannong16 (92.9%) was significant highest among 8 genotypes. In given media(N6o), it was 99.25%, with the lowest frequency of initiated shoot directly from explants(1.13%) and more embryogenic callus. 77.78% calli derived from Chuannong 16 cultured by dedifferentiation media MSio regenerated the leaf-like green spot. Chuannongl6, with stable and super high yield, is the new breakthrough of Sichuan wheat breeding. So, the elite genotype Chuannongl6 was selected for donor genotype in Sichuan wheat transformation.
    2. The significant effects of medium on callus induction were observed by .F-test and SSR. Among 6 media, the frequencies of callus induction on MS2 and N6o were higher than that of the others. The average frequencies of callus induction on MS2 and N60 were 94.0% and 93.1%, respectively. The lowest frequency (83.6%) of callus induction was observed on N61. When MS2 and N6o were selected for callus induction media, it was observed that the frequency of initiated shoot directly from explants on N60 (60.2%) was higher than that of MS2. It indicated that MS2 was superior to N60 for callus induction. Thus, we chose MS2 as callus induction medium in the following procedures. Comparison of the differentiation frequency for each genotype on two
    
    
    media MS10 and MS10-1(87.5%, 75.0%), it indicated that MS10 was superior to MS10-1 for green shoot differentiation. So, the call
引文
1. Ahmed KZ, Bartok T and Sagi F (1992) A modified method for rapid callus induction by utilization of endosperm, metabolites in mature and immature seeds of bread wheat (Tritieum aestivum L.) and durum wheat (Triticum durum L). Cereal Res Comm 20: 81-86. .
    2. Ahmed KZ, Sági F (1993) Culture of and fertile plant regeneration from regenerable embryogenic cell-derived protoplasts of wheat (Triticum aestivum L.). Plant Cell Reports 12: 175-179.
    3. Altpeter F. Vasil V, Srivastava V, Stger E, Vasil I.K (1996a) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Reporterl 6:12-17
    4. Altpeter F. Vasil V, Srivastava V, Stger E, Vasil I.K (1996b). Integration and expression of the High-molecular-weight glutenin subunits IAxl gene into wheat. Nature Biotechnology. 14:1155-1159
    5. Altpeter, F.; Diaz, I.; McAuslane, H.; Gaddour, K.; Carbonero, P. and Vasil, I.K. (1999). Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Molecular Breeding 5:53-63.
    6. Alvarez ML, Guelman S, Halfird NG, Lustig S,Reggiardo MI,Ryabushkina N, Schewry P, Stein J, Vailejos RH (2000) . Theor Appl Genet, 100 (2): 319-327
    7. Amoah, B.K.; Wu, H.; Sparks, C. and Jones, H.D. (2001). Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. Journal of Experimental Botany. 52:1135-1142..
    8. Assaad F F,Tucker K L,Signer E R,(1993).Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis.Plant Mol Bio, 22: 1067-1085.
    9. Balandin T,Castresana C.(1997).Silencing of a β-1,3,-glucanase transgne is overcome during seed formation,Plant Mol Bio1.,34:125-137.
    10. Barbara Witrzens, Richard I.S.Brettell,Fiona R.Murray, David McElroy, Zhongyi Li and Elizabeth S.Dennis (1998). Comparison of selectable marker genes for transformation of wheat by mieroprojectile bombardment. Aust.J.Plant Physiol., 25:39-44
    11. Barro F, Rooke L, Békés F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo
    
    P (1997) Transformation of wheat HMW subunit genes results in improved functional properties. Nature Biotechnoiogy 15:1295-1299.
    12. Barro, F.; Cannell, M.E.; Lazzeri, P.A. and Barcelo, P. (1998). The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theoretical and Applied Genetics 97:684-695.
    13. Becket, D.; Brettschneider, R. and Lorz, H. (1994). Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant Journal 5:299-307.
    14. Bed Z, Vida Gy, Láng L, Karsai I (1998) Breeding for bread making quality using old Hungarian wheat varieties. Euphytica 100:179-182.
    15. Ben Amer IM, Worland A J, Brner A (1995) Chromosomal location of genes affecting tissue culture response in wheat. Plant Breeding 114: 84-85.
    16. Ben Amer, I.M.; Korzun, V.; Worland, A.J. and Brner, A. (1997). Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theoretical and Applied Genetics 94:1047-1052.
    17. Bevan, M., Barnes, W.M., and Chilton, M. (1983). Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Research 11,369-385.
    18. Bieri, S.; Potrykus, I. and Futterer, J. (2000). Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theoretical and Applied Genetics 100:755-763
    19. Bietz JA.(1987).Genetic and biochemical studies of nonenzymatic endosperm proteins.In: Wheat and Wheat Improvement-Agronomy Monograph No11 (2ndEducation ).215-241
    20. Blechl AE, Anderson OD (1996) Expression of a novel highmolecular-weight glutenin subunit in transgenic wheat.Nature Biotechnology 14: 875-879.
    21. Bliffeld, M.; Mundy, J.; Potrykus, I. and Futterer, J. (1999). Genetic engineering of wheat for increased resistance to powdery mildew disease. Theoretical and Applied Genetics
    22. Bommineni, V.R.; Jauhar, P.P. and Peterson, T.S. (1997). Transgenic durum wheat by microprojecti le bombardment of isolated scutella. Journal of Heredity 88:301-313
    23. Broglie K E, Chet I, Holliday M, et al( 1991 ).Transgenic plants with enhanced resistance
    
    to the fungal pathogen Rhizoctonia solani. Science, 2541194-1197.
    24. Chawla, H.S.; Cass, L.A. and Simmonds, J.A. (1999a). Expression of antbocyanin pigmentation in wheat tissues transformed with anthocyanin regulatory genes. Current Science 76:1365-1370.
    25. Chawla, H.S.; Cass, L.A. and Simmonds, J.A. (1999b). Developmental and environmental regulation of anthocyanin pigmentation in wheat tissues transformed with anthocyanin regulatory genes. In Vitro Cell and Developmental Biology 35:403-408.
    26. Chen, D.F. and Dale, P.J. (1992). A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. Transgenic Research 1:93-100.
    27. Chen, W.P.; Chen, P.D.; Liu, D.J.; Kynast, R.; Friebe, B.; Velazhahan, R.; Muthukrishnan, S. and Gill, B.S. (1999). Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theoretical and Applied Genetics 99:755-760.
    28. Chen, W.P.; Gu, X.; Liang, G.H.; Muthukrishnan, S.; Chen, P.D.; Liu, D.J. and Gill, B.S. (1998). Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker. Theoretical and Applied Genetics 97:1296-1306.
    29. Cheng M, Fry J E Pang, s et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens plant physiol.. 115:971-980
    30. Cheng Zhuo-min,He Xia-yuan,Chen Caiceng et al. (1994)Barley yellow dwarf virus coat protein gene and transgenic wheat plants obtained by pollen tube pathway. Progress in nature Science, 4 (2): 235-240
    31. Chibbar RN, Kartha KK, Datla R S S et al.(1993)The effect of different promoter sequences on transient expression of gus reporter gene in culture barley (Hordeum vulgate L) cells. Plant cell reports 12:506-509
    32. Chibbar RN, Kartha KK, Leung N, et al ( 1991 ). Transient expression of market genes in immature zygotic embros of spring wheat ( Triticurn aestivum ) through microprojectile bombardment. Genome, 34:453-460
    33. Cho M J,Jiang W.Lemaux P G(1999). High-frequency transformation of oat via
    
    microprojectile bombardment of seed derived highly regenerative cultures Plant Science, 148:9-17
    34. Christensen, A.H., Sharrock, R.A,, and Quail, P.H. (1992). Maize polyubiquitin genes: genes, structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer toprotoplasts by electroporation. Plant Molecular Biology 18, 675-689.
    35. Christou P, Ford T L, Kofron M(1991) Production of transgenic rice (Oryza sativa L)plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos Bio/Technology 9:957-962
    36. Clausen, M.; Krauter, R.; Schachermayr, G.; Potrykus, I. and Sautter, C. (2000). Antifungal activity of a virally encoded gene in transgenic wheat. Nature Biotechnology 18:446-449
    37. Cooper D.B. and Sears R.G.(1986) Heritable somaclonal variation of gliadin protenins of wheat plant derives from immature embryo callus culture. Theor. Appl.Genet, 71:784-790
    38. Dale, P.J.; Marks, M.S.; Brown, M.M.; Woolston, C.J.; Gunn, H.; Boulton, M.I.; Mullineaux, P.M.; Lewis, D.M.; Kemp, J.M.; Chen, D.F.; Gilmour, D.M. and Flavell, R.B. (1989). Agroinfection of wheat: Inoculation of in vitro grown seedlings and embryos. Plant Science 63:237-245.
    39. De Block, M.; Debrouwer, D. and Moens, T. (1997). The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theoretical and Applied Genetics 95:125-131.
    40. Dhir S.K.; Pajeau M.E.; Fromm M.E. and Fry J.E. (1994). Anthocyanin genes as a visual marker for wheat transformation. In: Henry, R.J. and Ronalds, J.A., eds. Improvement of Cereal Quality by Genetic Engineering, Plenum Press, New York, USA. pp. 71-75.
    41. Diéguez M J,Vaucheret H,Paszkowski J,et al(1998).Cytosine methylation at GG and CNG sites is not a prerequisite for the initiation of transcriptional gene silencing in plants,but it is required for its maintenace,Mol Gen Genet, 259:207-215.
    42. Dong H.,.Cox T.S,. Sear R.G, et al ( 1991 ) . High molecular weight glutenin genes : Effect on quality in wheat. Crop Sci..31:974-979
    
    
    43. Dudits D, Német G, Haydu Z (1975) Study of callus growth and organ formation in wheat (Triticura aestivum) tissue cultures. Canadian Journal of Botany 53: 957-963.
    44. FAO (2003) Statistical Data Bases: Agriculture. http://apps.fao.org
    45. Fenneli S Bohorova N. Van Ginkel et al.(1996). Plant regeneration from immature embryos of 48 elite CIMMIYT bread wheats. Theor. Appl.Genet.92:163-169
    46. Fettig S and Hess D (1999) Expression of a chimeric stilbene synthase gene in transgenic wheat lines, Transgenic Research, 8:179-189
    47. Finnegan J,McElory D.(1994).Transgene inactivation: plants fight back! Bio/Technology, 12:883-888.
    48. Gabriela M Pastori,Mark D. Wilkinson, Sue H.Steele,et al (2001) Age-dependent transformation frequency in elite wheat varietiesJ.of Experimental Botany, 52(357):857-863
    49. Galiba G ,Kovcs G, Sutka J(1986). Substitution analysis of plant regeneration from callus culture in wheat. Plant Breeding. 97:261-263
    50. Gless C, Loerz H,Jaehne-Gaetner A,(1998). Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segment. Journal of Plant Physiology, 152:151-157
    51. Golemboski D.B.Lomonossoff G.P. Zaitlin M. (1990) .Plants transformed with a tobacco mosaic virus nonstructual gene sequency are resistant to the virus. Proc Nail Acad Sci.USA,1990,87:6311-6315
    52. Gorbunava V.Levy A.(1997).A non-honologous DNA end joining in plant cells is associated with deletions and filter DNA insertion .Nucl. Acid Res. 25(22):4650-4657
    53. Gordon-Kamm WJ, Baszczynski CL, Bruce WB, Tomes DT (1999) Transgenic cereals: Zea tnays (maize). Molecular Improvement of Cereal Crops. In Vasil IK (eds), Advancesin Cellular and Molecular Biology of Plants, V: 189-253. Kiuwer Academic Publishers, The Netherlands.
    54. Hauptmann, R.M.; Vasil, V.; Ozia-Akins, P.; Tabaeizadeh, Z.; Rogers, S.G.; Fraley, R.T.; Horsch, R.B. and Vasil, I.K. (1988). Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiology 86:602-606.
    
    
    55. He, D.G.; Mouradev, A.; Yang, Y.M.; Mouradeva, E. and Scott, K.J. (1994). Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Reports 14:192-196.
    56. He, G.Y.; Rooke, L.; Steele, S.; Bekes, F.; Gras, P.; Tatham, A.S.; Fido, R.; Barcelo, P.; Shewry, P.R. and Lazzeri, P.A. (1999). Transformation of pasta wheat (Triticum turgidum L. var durum) with high-molecular weight glutenin subunit genes and modification of dough functionality. Molecular Breeding 5:377-386.
    57. Hess J., Carman J.(1998)Competence of immature wheat embryo:genotype, donor plant environment and endogenous hormone levels. Crop Sci. 38:249-253
    58. Hiei Y.,Komar T.,Kubo T.(1997).Transformation of rice mediated by Agrobacterrium tumefaciens. Plant Mol Biol. 35:205-218
    59. Iglesias V A, Gisel A, Potrykus I, et al(1994). In vitro germ ination of wheat proembryos to fertile plants. Plant Cell Reports, 13.. 337-280
    60. Iglesias V A,Moscone E A,Papp l,et al.(1997).Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco,Plant Cell, 9:1251-1264.
    61. Ingram, H.M.; Power, J.B.; Lowe, K.C. and Davey, M.R. (1999). Optimisation of procedures for microprojectile bombardment of microspore-derived embryos in wheat. Plant Cell Tissue Organ Culture 57:207-210.
    62. Iser M, Fetting S, Scheyhing F, Viertel K, Hess D (1999) Genotype-dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential. Journal of Plant Physiology 154:509-516.
    63. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901.3907
    64. Khanna H K,Daggard G E ( 2001 a ) Enhanced shoot regeneration in nine Australian wheat cultivars by spermidine and water stress treatment. Aust J Plant Physioi,28:1243-1247
    65. Khanna H.K. Daggard G.E. (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a potyamine-supplemented regeneration medium. Plant Cell Reports, 21:429-436
    66. Khanna H.K.Daggard G(2001b).Transgenic wheat to fight frost.Prospects of wheat genetics and breeding for the 21st century—paper collection of international wheat
    
    genetics and breeding symposium.Zhengzhou,China. China Agricultural Scientech Press, pp:150-154 Beijing
    67. Klein, T.M. and Jones, T.J. (1999). Methods of genetic transformation: The gene gun. In: Vasil, I.K. ed. Molecular Improvement of Cereal Crops. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 21-42.
    68. Klein, T.M.; Wolf, E.D.; Wu, R. and Sanford, J.C. (1987). High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70-73.
    69. Kloti, A.; Iglesias, V.A.; Wijnn, J.; Burkhardt, P.K.; Datta, S.K. and Potrykus, I. (1993). Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Reports 12:671-675.
    70. Koev G, Mohan B.R. Dinesh—Kumar S P.,et al (1998). Extreme reduction of disease in oats transformed with the 5'half of the barley yellow dwarf virus—PAV genome. Phytopathology, 88:1013-1019
    71. Kohli A, Griffiths S, Palacios N. (1999) . Molecular characterization of transforming plasmid rearragements in transgenic rice reveals a recombination hotspots in the CaMV35S promoter and comfirms the predominance of microhomology mediated recombination. The Plant Journal, 17 (6): 591-601
    72. Kohli,A. Leech M., Vain P., el ai (1998) . Transgene organization in rice engineered through direct NDA transfer supports a two-phase mechanism inedited by the establishment of intergration hot sports.Proc.Natl.Acad.Sci.USA, 95 (12): 7203-7208
    73. Kumpatla S P,Teng W M,Buchholz W C,et al(1997).Epigenetic transcriptional silencing and 5-azacytidinemediated reactivation of a complex transgene in rice,Plant Physiology, 115:361-373
    74. Lafiandra D.,Kasarda D D., Morris R(1984)Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivars Cheynne and Chinese Spring by two-dimensional (two-PH) electrophoresis. Theor. Appl.Genet.68:531-539
    75. Lamacchia C.,Shewry P R.,Fonzo N D.,et al(2001)Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J. of Experimental Botany , 52:243-250
    76. Larkin P.J. and Rvan S.A.,(1984)Heritable somaclonal variation in wheat. Theor.
    
    Appl.Genet, ,67:443-455
    77. Lazzeri PA, Barcelo P, Barro F, Rooke L, Cannell ME, Rasco-Gaunt S, Tatham A, Fido R, Shewry PR.(1997). Biotechnology of cereals: genetic manipulation techniques and their use for the improvement of quality, resistance and input use efficiency traits. Aspects of Applied Biology 50, 1-8
    78. Leckband G, Lrz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theoretical Applied Genetics 96:1004-1012.
    79. Lee S J, Penner G A, Devos K M,(1995)Characterization of loci containing microsatellite sequence among Canadian wheat cultivars. Genome, 38:1037-1040
    80. Lemaux PG, Cho MJ, Zhang S, Breigitzer P (1999) Transgenic cereals: Hordeum vulgare L. (barley). In Vasil IK (eds), Molecular Improvement of Cereal Crops, pp. 255-316. Kluwer Academic Publishers, Dordrecht.
    81. Li Z, Upadhyaya NM, Meena S et al(1997) Comparison of promoters and selectable marker genes for use in Indica rice transformation. Molecular Breeding 3:1-14
    82. Liang H.,Zheng J.,Duan X.,et al (2000).A transgenic wheat with a stilbene synthase gene resisitant to powery mildew obtained by biolistic method. Chinese Science Bulletin 45(7):634-638
    83. Liu Z, Z Yan, Y Wang, K Liu, Y Zheng, D Wang. (2003)Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor. Appl. Genet., 106:1368-1378
    84. Loeb, T.A. and Reynolds, T.L. (1994). Transient expression of the uidA gene in pollen embryoids of wheat following microprojectile bombardment. Plant Science 104:81-91.
    85. Lorz H, Becker D. and Lutticke S(1998)Molecular wheat breeding by direct gene transfers in wheat. Euphytica, 100:219-223
    86. Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T (1998) Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell Tissue and Organ Culture 53:67-74.
    
    
    87. Mahalakshmi, A. and Khurana, P. (1995). Agrobacterium-mediated gene delivery in various tissues and genotypes of wheat (Triticum aestivum L.). Journal of Plant Biochemistry and Biotechnology 4:55-59.
    88. Mahalakshmi, A. and Khurana, P. (1997). Agrobacterium-mediated cereal transformation: A critical appraisal. Indian Journal of Experimental Biology 35:416-426.
    89. Mariana N.Melchiorre, Hernan R.Lascano and Victorio S.Trippi (2002) . Transgenic wheat plants resistant to herbicide BASTA obtained by microprojectile bombardment. BIOCELL, 26 (2): 217-223
    90. McCarthy P I,Hansen J,Shiel P J(1996) CP-mediated resistance to wheat streak mosoic and barley yellow dwarf viruses in soft white winter wheat .Poster obstract at International Congress of Virology Jeruslem10th, PP184
    91. McCormac, A.C.; Wu, H.; Bao, M.; Wang, Y.; Xu, R.; Elliot, M.C. and Chert. D.F. (1998). The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgate L.). Euphytica 99:17-25
    92. McElroy, D., Blowers, A.D., Jenes, B.. and Wu, R. (1991). Construction of expression vectors based on the rice actin 1 (Actl) 5' region for use in monocot transformation. Molecular and General Genetics 231, 150-160.
    93. McIntosh R.A.(1998) Breeding for resistance to biotic stresses. Euphytica 100:19-34
    94. Mol J N M,Stuitje A,Van der Krol A(1989).Genetic manipulation of floral pigmentation genes,Plant Mol Biol. 13:287-294.
    95. Mooney, P.A.; Goodwin, P.B.; Dennis, E.S. and Llewelleyn, D.J. (1991). Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tissue Organ Culture 25:209-218
    96. Neeta-Singh.(1999)Use of silcon carbide fibers for Agrobacterium-mediaed transformation in wheat.Curr.Sci.,76(11): 1483-1485
    97. Nehra, N.S.; Chibbar, R.N.; Leung, N.; Caswell, K.; Mallard, C.; Steinhauer, L.; Baga, M. and Kartha, K.K. (1994). Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues from microprojectile bombardment with two distinct gene constructs. Plant Journal 5:285-297.
    
    
    98. Oard J H, Paige DF, Simmonds JA, etal (1990)。 Transient gone expression in maize, and wheat cells using an airgun apparatus。 Plant Phvsiol,, 92:334-339
    99. Ortiz, J.P.A.; Reggiardo, M.I.; Ravizzini, R.A.; Altabe, S.G.; Cervigni, G.D.L.; Spitleler, M,A.; Morata, M.M.; Elias, F.E. and Vallejos, R.H. (1996). Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Reports 15:877-881.
    100. Pang, S.; DeBoer, D.U; Wan, Y.; Ye, G.; Layton, L.G.; Neher, M.K.; Armstrong, C.L.; Fry, J.E.; Hinchee, M.A.W. and Fromm, M.E. (1996). An improved green fluorescent protein as a vital marker in plants. Plant Physiology 112:893-900.
    101. Park Y D, Papp I,Moscone E A,et al(1996).Gene silencing mediated by promoter homology occur at the level of transcription and results in meiotically heritable alterations in methylation and gene acitivity.Plant J,9(2):183-194.
    102. Patnaik D.& Khurana P.(2001). Wheat biotechnology: A minireview. Electronic Journal of Biotechnology, 4(2):74-102
    103. Pauk J, Kertész Z, Jones B, Purnhauser L, Manninen O, Pulli S, Barabas Z, Dudits D (1994) Fertile wheat (Triticumaestivum L.) regenerants from protoplasts of embryogenic suspension culture. Plant Cell Tissue and Organ Culture 38: 1-10.
    104. Payne P I, Lawrence G J. (1983) Catalogue of alleles for the complex gone loci ,Glu-Al, Glu-Bl, Glu-Dl which code for high-molecular-weight subunits of glutenin in hexapoid wheat. Cer. Res Commun, 11:29-35
    105. Payne P I. (1987) . The genetical basis of bread-making quality in wheat. Aspects Appl. Biol. 15:79-90
    106. Payne P I. (1987) Genetics of wheat storage protein and the effect of allelic variation in bread making quality Ann. Rev. Plant.Physid, 38:141-153
    107. Pederson C, Zimny J, Becket D, Jahne-Gartner A, Lorz H (1997) . Theor Appl Genet, 94:749-757
    108. Peerbolte R Leenhouts K. Hooykass-van Slogteren G M S Wulloms G J (1986) . Clone from a short tobacco crown gall tumoll:irregular T-DNA structures and organization T-DNA. Methylation and conditional expression of opine genes. Planrt Mol Biol, 7: 285-299
    
    
    109. Peng J H, Fahima T, Rder M S, Li Y C, Dahan A, Grama A, Ronin Y I, Korol A B, Nevo E. (1999) . Microsatellite tagging of the stripe-rust resistent gene YrH52 derived from wild cromer wheat, Triticum dicoccoides ,and suggestive negative crossover interference on chromosome 1B. Theor Appi Genet..98:862-872
    110. Perl A, Kless H, Blumenthal A, Galili G, Galun E (1992) Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimizations of culture conditions and DNA-microprojectile delivery procedures. Molecular and General Genetics 235: 279-284.
    111. Pestsova E., Ganal M W., Rder M S(2000).lsolation and mapping of microsatellite markers specific for the D genome of bread wheat.Genome,43:689-697
    112. Plaschke J, Ganal M W, Rder M S. (1995) Detection of genetic diversity in closely related bread wheats using microsatellit markers. Theor Appl Genet, 91:1001-1007
    113. Prasad M, Varshney R K, Kumar A, .Balyan H S, Sharma P C, Edwards K J, Singh H, Dhaliwal H S, Kroy J, Gupta P K (2000) A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theorl Appl Genet.,. 100:341-345
    114. Que Q,Wang H H,English J J,et al.(1997)The frequency and degree of cosuppression by sense chalcone synthase transgene are dependent on transgene promoter strength and are reduced by premature nonsense codon in the transgene coding seuqence,Plant Cell,9:1357-1368.
    115. Rakszegi M., Tamas C., Szucs P, et al(2001). Current Status of wheat transformation.J Plant Biotechnoiogy 3(2):67-81
    116. Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri PA(2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.)varieties via particle bombardment J.of Experimental Batany,52:865-874
    117. Rasco-Gaunt S., Riley A, Lazzeri P., Baroelo P., De Block M., (1999a). A facile method for screening for phosphinothricin(PPT)-resistant transgenic wheats. Molecular Breeding, 5:255-262
    118. Rasco-Gaunt S.; Riley A.; Barcelo P. and Lazzeri P.A. (1999b). Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Reports 19:118-127.
    
    
    119. Rder M S, Korzum V, Wendehake K.,. Plaschke J, Tixier M H, Leroy P, Ganal M W. (1998). A microsatellite map of wheat. Genetics., 149:2007-2023
    120. Rder M S., Plaschke J.,Susanne U.,Brner K A.,Sorrelis M E., Tanksley S D.,Ganal M W(1995). Abundance, variability and chromosomal location of microsatelltes in wheat. Mol Gen. Genet. 246:327-333
    121. Rooke I.,Békés F.Fido R.et al.,(1999).Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J.ofCereai Science 30:115-120
    122. Sambrook J.et al.(1989). Molecular Cloning:A Laboratory Manual.Cold Sprong Harbar Laboratory Press,New York
    123. Sanford, J.C., Klein, T.M.,Wolf, E.D., and Allen, N. (1987). Delivery of substances into cells and tissues using a particle bombardment process. Particulate Science and Technology 5, 27-37.
    124. Sawasaki T.,Takahashi M.,Goshima N,et al.(1998). Structure of transgenic Arabidopsis plants obtained by particle bombardment:Junction regions can bind to nuclear matrices.Gene, 218(1): 17-35
    125. Serik, O.; Ainur, I.; Murat, K.; Tetsuo, M. and Masaki, I. (1996). Silicon carbide fiber-mediated DNA delivery into cells of wheat (Triticum aestivum L.) mature embryos. Plant Cell Reports 16:133-136.
    126. Shimada, T.; Seki, M. and Morikawa, H. (1991). Transient expression of glucuronidase (Gus) gene in wheat pollen embryos via microprojectile bombardment. Wheat Information Service 72:106-108.
    127. Simmonds, J.; Stewart, P. and Simmonds, D. (1992). Regeneration of Triticum aestivum apical explants after microinjection of germ line progenitor cells with DNA. Physiologia Plantarum 85:197-206.
    128. Sivamani E., Bahieldin A., Wraith J.M.,AI-Niemi T.,et al.(2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HV.41 gene. Plant Science 155:1-9
    129. Sivamani E.,Brey C.W.,Talbert L.E.,Young M.A.,Dyer E.W.,Kaniewski W.K.,Qu R.(2002).Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene.Transgenic Research, 11:31-41
    
    
    130. Sozinov A A.& Poperelya F A(1980)Genetic classification of prolamines and its use for plant breeding .Ann. Technol. Agric.29:229-245
    131. Srivastava, V.; Anderson, O.D. and Ow, D.W, (1999). Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proceedings in National Academy of Science of the United States of America 96:11117-11121
    132. Stoger, E.; Williams, S.; Christou, P.; Down, R.E. and Gatehouse, J.A. (1999). Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: Effect on predation by the grain aphid Sitobion avenae. Molecular Breeding 5:65-73.
    133. Takno M ,Egawa H.,Ikeda E.et al.(1997)The structure oftransgenic loci in transgenic rice .Plant J.; 11 (3):353-361.
    134. Takumi S., Murai K., Mori N., Nakamure C.(1999a)Variation in the maize Ac transposase transcript level and the Ds excision frequency in transgenic wheat callus lines. Genome 42:1234-1241
    135. Takumi S., Murai K., Mori N., Nakamure C.(1999b).Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Actransposase gene. Theor. Appl.Genet. 98:947-953
    136. Takumi S., Shimada T. (1997) Variation in transformation frequencies among six common wheat cultivars through particle bombardment of scutellar tissues. Genes Genet. Syst. 72:63-69
    137. Takumi, S., and Shimada, T. (1996) Production of trangenic wheat through particle bombardment of scutellar tissue: frequency is influenced by culture duration. Journal of Plant Physiology 149:418-423.
    138. Tamás C, Rakszüegi M, Szcs P, Tam,is L, BedZ (2000). Temperature, light and medium optimisation for plant regeneration of winter wheat varieties. 6th International Wheat Conference, p. 308. Budapest, Hungary, 5-9 June 2000
    139. Tang KX, Tinjuangjun P, Xu Y, Sun XF, Gatehouse JA,Ronaid PC, Qi HX, Lu XG, Christou P, Kohli A (1999)Particle bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208: 552-585.
    140. Tautz D, Renz M. (1984) Simple sequence repeats are ubiquitous repetitive component
    
    of eukaryotic genomes. Nucleic Acids Res,, 12:4127-4138
    141. Tautz D, Trick M, Dover G A. (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature,,22:652-656
    142. Thompson, C.J., Nowa, N.R., Tizard, R., Crameri, R., Davies, J.E.,Lauwereys, M,, and Botterman, J. (1987). Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO Journal 6, 2519-2523.
    143. Tzafrir I.,Torbert K.A., Lockhart B.E.L, et al(1998).The sugarcane bacilliform badnavirus promoter is active in both monocots and docots.Plant Molecular Biology,38:347-356
    144. Uze M, Potrykus I, Sautter C (1999).Single-stranded DNA in the genetic transformation of wheat (Triticum aestivum L):transformation frequency and integration pattern. Theor Appl Genet, 99 (3) : 487-496
    145. Van Houdt H,Ingelbrecht I,Van Montagu M,et al. (1997)Post-transcriptional silencing of a neomycin phosphotransferase transgene correlates with the accumulation of unproductive RNAs and with increase cytosine methylation of 3'flanking regions,Plant J, 12(2):379-392.
    146. Vasil I. K.(1998). Biotrchnology and food security for 21 st century: a real-world perspective. Nature Biotechnology 16;399-400
    147. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992). Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. BioTechnology 10: 667-674.
    148. Vasil V, Srivastava V, Castillo AM, et al(1993)。 Rapid production of transgenie wheat plants by direct bombardment of cultured immature embryos.Bio/technology,, 11: 1553-1558
    149. Vasil, V.; Brown, S.M.; Re, D.; Fromm, M.E:and Vasil, I.K. (1991). Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Biotechnology 9:743-747.
    150. Vaucheret H,Nussaume L,Palauqui J C,et al(1997).A transcriptionally active state is required for posttranscriptional silencing (cosuppression) of nitrate reductase host genes and transgenes,Plant Cell,9:1495-1504.
    
    
    151. Vaucheret H. (1993) .Identification of a general silencer for 19S and 35S promoter in a trangenic tobacco plant:90 bp of homology in the promoter sequence are sufficient for tran-inactivation,CR Acad Sci Paris, 316:1471-1483.
    152. WANG Li-Ping, ZHAO Jie (2003) . High Frequency of GFP Gene Transient in Electroporated Zygotes and Early Proembryos of Wheat. Acta Botaniea Sinica, 45 (2): 200-204
    153. Wang, Y.C.; Klein, T.M.; Fromm, M.; Cao, J.; Sanford, J.C. and Wu, R. (1988). Transient expression of foreign genes in rice, wheat and soybean cells following particle bambardment. Plant Molecular Biology 11:433-439.
    154. Weeks JT, Anderson OD, Blechl AE (1993) .Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum) .Plant Physiol, 102:1077-1084
    155. Weeks, J.T.Koshiyama K.Y.Maier-Greiner U.,et al (2000). wheat Transformation using cyanamide as a new selevtive agent. Crop Sci. 40:1749-1754
    156. Woolston, C.J.; Barker, R.; Gunn, H.; Boulton, MT and Mullineaux, P.M. (1988). Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Molecular Biology 11:35-43.
    157. Wu B.H.,Zheng Y.L., Liu D.C., Zhou Y.H.(2003a)Trait correlation of immature embryo culture in bread wheat. Plant Breeding, 122(1) 47-51
    158. Wu B.H.,Zheng Y.L.,Liu D.C.,Zhou Y.H., Yan Z.H. (2003b)Unisexual pistillate flower regeneration in immature embryo culture of wheat. Acta Botanica Sinica.,45(4) 452-459
    159. XIA Guang-min,LI ZhonYi,HE Chen-xia,CHEN Hui-min and Richard Brettell.(1999)Transgenic Plant Regeneration from Wheat(Triticum aestivum L.) Mediated by Agrobacterium tumefaciens. Acta Phytophysiologiea Sinica 25(1) :22-28
    160. Yan Z.H., Wan Y.F., Liu K.F., Zheng Y.L.,Wang D.W.(2002) Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those homologous subunits. Chinese Science Bulletin, 47(3): 220-225
    161. Yang YM, He DD, Scott KJ (1993) Plant regeneration from protoplasts of durum wheat (Triticum durum Desf. Cv. D6962). Plant Cell Reports 12: 320-323.
    162. Zaghmout, O.M. and Trolinder, N.L. (1993). Simple and efficient method for directly electroporating Agrobacterium plasmid DNA into wheat callus cells. Nucleic Acids
    
    Research 21:1048.
    163. Zhang L.. J.J Rybczynski. W.G.Langenberg. A.Mitra. R. French (2000) . An efficient wheat transformation procedure:transformed calli with long-term morphogenic potential for plant regeneration. Plant Cell Reports. 19:241-250
    164. Zhang S, Cho MJ, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Reports 18: 959-966.
    165. Zhou, H.; Arrowsmith, J.W.; Fromm, M.E.; Hironaka, C.M.; Taylor, M.L.; Rodriguez, D.; Pajeay, M.E.; Brown, S.M.; Santino, C.G. and Fry, J.E. (1995). Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Reports 15:159-163.
    166. Zhou, H.; Stiff, C.M. and Konzak, C.F. (1993). Stably transformed callus of wheat by electroporation-induced direct gene transfer. Plant Cell Reports 12:612-616.
    167. Zillam R R.&Bushuk W.(1979).Wheat cultivar identification by gliadin electrophoregrams Ⅱ .Effect of environmental and experiment factors on the gliadin electrophoregram,Can.J. Plant Sci,59:281-285
    168.安海龙,卫志明,黄健秋(2001).基因枪法转化小麦的金粉用量及转基因植株表型特征分析.植物生理学报,27(1):21-27
    169.安韩冰,朱祯(1997).基因枪在植物转化中的应用.生物工程进展,17(1):18-26
    170.陈梁鸿,王新望,张晓东等(1998).基因枪转化小麦不同受体的研究.华北农学报,13 (1): 1-5
    171.成卓敏,何小源,陈彩层等(1993)大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株启然科学进展,3(6):560-564
    172.成卓敏,吴茂森,夏光敏等(2000).应用基因枪法获得抗大麦黄矮病毒转基因小麦.植物病理学报,20(2):116-121
    173.崔国惠,倪中福,刘志勇等(1999). 小麦杂种优势群研究:Ⅱ普通小麦和斯卑尔脱小麦微卫星分子标记遗传差异的研究.农业生物技术学报,7(4):333-338
    174.崔洪志.郭三堆(1998)双价杀虫基因植物表达载体的构建及其在烟草中的表达.农业生物技术学报,6(1):7-13
    
    
    175.崔欣,陈庆山,杨庆凯,曹越平(2002).植物转基因沉默与消除.植物学通报,19(3):374-379
    176.单丽波,李义文,赵铁汉等(2000).利用花色素苷合成调节基因C1-R作为基因枪转化效果指示的研究.遗传学报,27(1):65-69
    177.董槿,何震天,韩成贵等(2002).抗小麦黄花叶病毒转基因小麦的获得及病毒诱导的基因沉默.科学通报,47(10):763-767
    178.方进,瞿文学,王文明,等(2001)转基因水稻T-DNA侧翼序列扩增与分析.遗传学报,28(4):345-351
    179.付永彩,吴茂森,成卓敏(2002)。小麦不同品种外植体的农杆菌转化方法的研究.农业生物技术学报,10(1):25-28
    180.傅荣昭,曹光诚,马江生等(1997).用基因枪法将人工雄性不育基因导入小麦的研究初报.遗传学报,24(4):358~361
    181.高必达(1999).转几丁质酶基因防植物病害研究:进展、问题与展望.生物工程进展.19(2):2~28
    182.高明尉,成雄鹰,梁竹青,等(1994). 小麦体细胞组织离体诱变效应研究.作物学报,20(1):18-25[2]
    183.郭北海,张艳敏,李洪杰等(2000).甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,42(3):279-283
    184.郭光泌,许智宏,卫志明,等(1993)用PEG法向小麦原生质体导入外源基因获得转基因植株.科学通报,38(13):1227-1231
    185.侯文胜,郭三堆,路明(2003).利用花粉管通道法获得转雪花莲凝集素基因(sgna)小麦.植物学通报,20(2):198-204
    186.胡尚连,李文雄,曾寒冰(1998). 小麦未成熟胚离体培养的研究——再生植株后代子粒醇溶蛋白和谷蛋白亚基及蛋白质含量变化.作物学报,24(2):204-212
    187.华志华,黄大年(1999).转基因植物中外源基因的遗传学行为.植物学报,41(1):1-5
    188.黄益洪,周淼平,叶兴国,唐克轩,程红梅,陆维忠(2002).农杆菌介导法获得小麦转基因植株的研究.作物学报,28(4):510-515
    189.黄粤,柯遐义,李宝健(1997).通过基因枪轰击转化获得转基因小麦植株的研究.
    
    西北植物学报,17(2):142-146
    190.冀俊丽,盛长忠,石明等(2002)通过负压花粉管法将耐盐基因HVAl转入小麦的研究.麦类作物学报.22(2):10-13
    191.贾力,吴茂森,张文蔚等大麦黄矮病毒单双价外壳蛋白基因植物表达载体构建及小麦遗传转化.农业生物技术学报,2001,9(2):23-27
    192.贾士荣(1992).植物遗传转化的研究进展.见:魏建昆主编.农业高新技术论.北京:科学技术文献出版社,121-128
    193.贾士荣(1997).转基因植物食品中标记基因的安全性评价.中国农业科学,30(2):1-15
    194.景蕊莲,昌小平.SSR标记在小麦种质资源研究中的应用.(1999).作物品种资源.,(2):17-20
    195.蓝海燕,田颖川,王长海,等(2000).表达1-3葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报..27(1):70-77
    196.李德森,渠荣达.(1997)基因枪获得可育抗除草剂转基因小麦 南开大学学报,30(3):69-75
    197.李汝刚,范云六(2000).植物抗菌物病害的遗传工程研究进展.生物工程进展.20(2):9-13
    198.李艳红,肖兴国,赵广荣,聂秀玲,张爱民,阎隆飞(1999).将新的人工雄性不育基因导入小麦栽培品种的研究初报.农业生物技术学报,7(3):255-258
    199.梁辉,赵铁汉,李良材等(1998).影响基因枪法转化小麦幼胚的几个因素的研究.遗传学报,25(5):443-448
    200.梁辉,郑近,段霞瑜等(1999).用基因枪法获得抗白粉病转芪合酶基因小麦.科学通报,44(24).2644-2648
    201.梁竹青,高明尉,成雄鹰,等(1995).普通小麦体细胞无性系R2代变异发生特点.作物学报,21(1):49-56
    202.刘广田,许明辉(1988).普通小麦胚乳高分子谷蛋白亚基的变异和遗传.中国农业科学,21(1):56-58
    203.刘录祥,郑企成,赵林姝等(2001)小麦遗传转化无基因型障碍受体系统的研究.核农学报,15(5):308-310
    
    
    204.刘巧泉,张景六,王宗阳等(1998).农杆菌介导的水稻高效转化系统的建立.植物生理学报,24(3):259-270
    205.刘庆法,唐克轩,叶建明,郝峥嵘,何艺园,沈大棱(1998).农杆菌介导小麦遗传转化条件的研究.复旦学报(自然科学版), 37(4):569-572
    206.刘伟华,李文雄,刘绵红等(2001).菜豆几丁质酶基因转化小麦的研究。东北农业大学学报.32(2):105-110
    207.刘伟华,李文雄,胡尚连等(2002)小麦组织培养和基因枪轰击影响因素探讨.西北植物学报,22(3):602-610
    208.刘伟华,李文雄,胡尚连等等(2003).基因枪法向小麦导入几丁质酶基因的研究.西北植物学报,23(1):54-59
    209.刘文轩,李锁平,张振臣等(2000).现代生物技术与小麦品种改良.北京:中国科学技术出版社,
    210.马慧,赵开军,徐正进(2003).农杆菌介导的水稻遗传转化现状及展望.中国生物工程杂志,23(4):23-26
    211.牟红梅,刘树俊,周文娟等(1999).慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析.遗传学报,26(6):634-642
    212.荣廷昭.(1993)农业试验与统计分析四川科学技术出版社 成都pp:95-155
    213.孙岩,唐凤兰。李忠杰等(1999)麦醇溶蛋白在鉴定小麦体细胞无性系变异上的应用研究,黑龙江农业科学,2:5-7
    214.覃建兵,何光源(2001)不同小麦基因型及其不同外植体离体培养研究初探.华中农业大学学报20(6):522-527
    215.田苗英,吴茂森,陈彩层等(1999).大麦黄矮病毒缺失复制酶基因植物表达载体的构建及转基因小麦的获得.中国农业科学,32(5):49-54
    216.田兆丰,陈笑瑜,朱坤等(2000).禾谷多黏菌(Polymyxa graminis)浸染及传毒体系的研究.微生物学报,40:352-358
    217.王培,范光年,方仁,等(1992,).幼穗无性系变异在小麦育种上的应用 作物学报,18(5):391-396
    218.王关林,方宏筠(1998).植物基因工程原理与技术.科学出版社.北京
    219.王永勤,肖兴国,张爱民(2002).农杆菌介导的小麦遗传转化几个影响因素的研
    
    究.遗传学报,29(3):260-265
    220.韦珂,黄艳,何勇强(2003).植物转基因沉默及控制.广西植物,23(1):31-35
    221.吴刚,夏英武(2000)植物转基因沉默及对策.生物技术,10(2):27-32
    222.吴丽芳,李红,冯慧云,吴李君,余增亮(2000).用低能氩离子柬介导将水稻几丁质酶基因导入小麦.科学通报.45(21):2316-2321
    223.吴茂森,田苗英,陈彩层等(2000)通过花粉管途径将BYDV—GPV株系缺失复制酶基因导入小麦.农业生物技术学报,8(2):125-127
    224.吴茂森,许雷,贾力等.(1999).小麦抗病毒基因工程研究进展.农业生物技术学报,(3)增刊:48-52
    225.伍碧华,郑有良,刘登才等(2001a).四川小麦幼胚离体培养变异性及其性状的相关研究.西南农业学报,14(4):20-24
    226.伍碧华,郑有良,周永红等(2001b).四川小麦幼胚脱分化特性研究.麦类作物学报.21(2):25-30
    227.肖兴国,张爱民,聂秀玲(2000).转基因小麦的研究进展与展望.农业生物技术学报,8(2):111-116
    228.谢启光,黄占景,沈银柱(2001).基因工程改良小麦品质的研究进展和展望
    229.徐琼芳,李连城,陈孝等(2001).基因枪法获得GNA转基因小麦植株的研究.中国农业科学,34(1):1-4
    230.徐琼芳,李连城,马有志,叶新国等(2001).用天花粉蛋白基因转化小麦获得转基因植株.遗传,23(2):135-137
    231.闫新甫(2003).转基因植物.科学出版社,pp:239-256北京
    232.闫新甫,刘文轩,林秋萍(1994).外源DNA导入小麦后代变异株系的酯酶同工酶分析.华北农学报,19(1):39-43
    233.颜启传,黄亚军.徐嫒(1992)试用ISTA推荐的种子醇溶蛋白电泳方法鉴定大麦和小麦品种.作物学报,18(1):61-68
    234.杨景成,于元杰,刘凤珍等(2000)外源λDNA导入普通小麦雄性不育变异的分子验证.核农学报,14(6):371-374
    235.叶兴国,徐惠君,赵乐莲,等(1998). 组织培养途径改良定型小麦品种的研究.作
    
    物学报,24(3):314
    236.叶兴国,Shirleysato,徐惠君,杜丽璞.Tom Clemente(2001a)小麦农杆菌介导转基因植株的稳定获得和检测.中国农业科学,34(5):465-468
    237.叶兴国,徐惠君,杜丽璞,辛志勇(2001b).小麦遗传转化几个因素的研究.中国农业科学,34(2):128-132
    238.于洪欣,柳建军,冯兆礼等(1999).通过花粉管途径将抗虫基因(CpTI)导入小麦的研究.山东农业科学, (1):5-8
    239.于嘉林,晏立英等(1995).一种中国发生的真菌传小麦花叶病毒RNA-13’末端核苷酸序列分析.病毒学报.11(3):248-254
    240.于晓红,朱祯,徐鸿林,朱玉等(2000).基因枪法转化小麦及转基因植株的获得.高技术通讯,13-17
    241.曾君祉,王东江,吴有强等(1993).花粉管途径获得小麦转基因植株.中国科学(B辑),23(3):256-261
    242.曾黎琼,程在全,段玉云,寸守铣,徐增富(1999).用PDS-1000/He型基因枪将外源基因质粒pZFX_2导入小麦细胞的研究.植物资源与环境,8(3):61-63
    243.曾黎琼,程在全,段玉云,寸守铣,徐增富(2000).几种基因转移技术在小麦上的应用.西南农业学报,13(4):25-29
    244.张怀刚,陈集贤,胡含(1997,). 小麦体细胞无性系Glu1基因突变体的遗传分析.遗传,19(1):23-25
    245.张怀刚,陈集贤,胡含.(1998,).小麦体细胞无性系SDS沉淀值的变异与遗传.西北农业学报,7(2):1-5
    246.张茂银,刘庆昌,王子霞等(2000).用花粉管通道法将新疆大赖草DNA导入普通小麦的研究.农业生物技术学报.8(2):165-168
    247.张晓东,李冬梅,徐文英等(1998).利用基因枪HMW谷蛋白的亚基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株.遗传,20(增刊):3-8
    248.张晓东,李冬梅,徐文英等.(1995)用基因枪将除草剂Basta抗性基因与小麦HMW谷蛋白基因导入小麦获得转基因植株.华北农学报。12(1):133-136
    249.张晓东,梁永奇,陈绪清等(2003).优质HMW谷蛋白亚基转基因小麦的获得及其遗传稳定性和品质性状分析.科学通报,48(5):474-479
    
    
    250.张学勇,杨欣明,董玉琛,(1995).醇溶蛋白电泳在小麦种质资源遗传分析中的应用.中国农业科学,28(4):25-32
    251.赵虹,李名扬,裴炎,董玉梅(2002).用基因枪法将除草剂基因导入小麦栽培品种的研究.植物学通报,19(4):457-461
    252.赵虹,李名扬,裴炎等(2001).影响基因枪转化小麦的几个因素.四川大学学报(自然科学版)38(4):570-574
    253.赵艳,于彦春,黄大年(2003).植物中转基因的整合机制.中国生物工程杂志,23(2):29-32
    254.郑有良,兰秀锦,魏育明等(2002).小麦新品种川农16农艺性状分析.四川农业大学学报,9(3):194-196
    255.郑有良,周永红,魏育明(2001).小麦分子生物学应用研究。四川科学技术出版社,成都.
    256.周淼平,沈晓蓉,章静娟等(1999).小麦基因枪法转化技术的改进.江苏农业学报,15(1):62-64
    257.周岩,田颖川,陶慧中,莽克强(1996).雪花莲外源凝集素基因的克隆及序列分析.生物工程学报,12(4):495-498
    258.周兆斓,朱祯(1994).植物抗虫基因工程研究进展.生物工程进展,14(4):18-24
    259.朱金宝,刘广田(1996)小麦籽粒高,低分子谷蛋白亚基及其与品质的关系.中国农业科学, 29(1):34-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700