用户名: 密码: 验证码:
北京城市优良抗旱节水植物材料的筛选与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京市属于严重缺水的地区,随着林木数量的增加和绿地覆盖率的增加,北京市缺水的问题势必会进一步加剧。为缓解北京城市绿化建设上规模和水分严重缺乏这一矛盾,筛选和应用抗旱节水的绿化植物材料成为关键因子。本文根据北京市近年来绿地建设的现状和城市缺水的实际状况,选取北京市常见的63种主要绿化植物材料(包括常绿针叶乔木6种、落叶阔叶乔木16种、灌木20种、木本地被5种、草本地被9种、藤本7种),从植物的解剖结构特征(主要包括上下表皮角质层厚度、上下表皮厚度、叶片厚度、海绵组织层数和厚度、栅栏组织层数和厚度、栅栏组织厚度与海绵组织厚度比值、叶片组织结构的紧密度和疏松度、气孔密度和气孔大小等)、生理特征(主要是植物春夏秋3个季节的长期和瞬时的水分利用效率及对环境因素的响应等)和苗木对水分胁迫的响应入手,进行多目标、多植物下的综合选择,从中选择一些具有一定抗旱潜力且观赏价值较高的绿化植物,并且对抗旱节水的指标进行综合评价,确定一些简便易操作并且指示抗旱节水比较可靠的指标,在此基础上建立北京城市绿化植物抗旱节水评价指标体系。本文主要有以下几个方面的研究结论:
     (1)通过叶片解剖结构指标初步确定4种类型绿化植物的抗旱性差异。常绿乔木树种的耐旱性为侧柏>桧柏,油松>白皮松>雪松>华山松;16种落叶乔木树种抗旱性强弱为馒头柳>玉兰、杜仲、柿树和元宝枫>国槐、栾树、毛白杨、刺槐、臭椿、山楂、白蜡、椴树和楸树>银杏和杂种马褂木;20种灌木抗旱性强弱为沙棘>Ⅰ类较抗旱的中生灌木(包括黄栌、金银木、银芽柳、珍珠梅、丁香、太平花、贴梗海棠、红玉海棠、紫穗槐、棣棠、醉鱼草和紫叶李)>Ⅱ类相对不抗旱的中生灌木(糯米条、碧桃、榆叶梅、海仙花和天目琼花)>大叶黄杨和红王子锦带;木本地被植物抗旱性强弱为平枝栒子>金叶女贞>紫叶小檗、金叶莸和月季;9个草本地被植物抗旱性强弱为八宝景天>萱草>孔雀草和金鸡菊>美国薄荷、婆婆那、玉簪、二月兰和紫花地丁;攀援绿化植物中小叶扶芳藤为最耐旱的一类,其次是金银花、紫藤和美国凌霄,再次为五叶地锦和南蛇藤,抗旱性最差的是山荞麦。
     (2)不同类型植物3个季节叶片碳同位素比率表明,常绿乔木叶片碳同位素比率种间差异达到极显著水平和季节差异未达到显著水平,而落叶乔木树种、灌木、地被和攀援植物叶片碳同位素比率值均是春季大于夏季和秋季,且落叶乔木树种、灌木和攀援植物季节间差异达到了极显著水平,种间差异(除木本地被植物外)也达到显著或极显著水平。由于水分利用效率与叶片碳同位素比率呈正比,可见落叶乔木树种、灌木、地被和攀援植物春季的水分利用效率大于夏秋两季,且通常夏季最小。木本植物的水分利用效率大于草本植物。瞬时水分利用效率的结果与长期水分利用效率的结果存在一致性,即春季和秋季瞬时水分利用效率大于夏季。
     (3)综合分析不同类型植物3个季节叶片碳同位素比率、植物的光合速率及瞬时水分利用效率表明:桧柏水分利用效率高于侧柏,水分利用效率高说明植物节水性强,白皮松和油松节水性都较高,而雪松相反;银杏和杂种马褂木抗旱性较差,但水分利用效率较高,即节水性较强。馒头柳属于深根抗旱耗水型植物,白蜡、玉兰、柿树、杜仲和元宝枫是节水性都较强的绿化植物,国槐、毛白杨、臭椿和山楂属于节水较低的树种,其余居中等水平。对于灌木树种,金银木、红王子锦带、海仙花和天目琼花的长期水分利用效率较高,即较节水,大叶黄杨抗旱性和节水性均较低;木本地被中平枝栒子和金叶女贞在节水性方面表现较好,其次是月季;八宝景天以其独特的结构和景天酸代谢途径,表现出较好地抗旱节水性,玉簪和婆婆那节水性较高;金银花、紫藤为抗旱性和节水都比较好的攀援植物,山荞麦则正好相反。
     (4)对4种类型的典型植物苗木进行水分胁迫试验表明,随着水分胁迫逐渐加剧,乔木树种白蜡苗木对干旱的适应性强于银杏、桧柏强于雪松;灌木树种天目琼花苗木抗旱性强于醉鱼草、碧桃和红王子锦带;地被植物中金叶女贞苗木的表现出较好的抗旱性,攀援植物小叶扶芳藤苗木抗旱性强于山荞麦。从苗木的水分胁迫试验来看,除天目琼花外其它植物均与前面的结论基本一致。
     (5)建立城市园林绿化树种抗旱节水评价指标体系。经灰色关联分析,各类型与抗旱节水关联度大的指标都非常相近,主要是春夏秋3个季节的叶片碳同位素比率、叶片的厚度、比叶面积、气孔密度、气孔长径、单个气孔的大小、叶片的紧密度和叶片的疏松度,这些指标在反映抗旱方面贡献较大。利用灰色关联分析综合比较苗木的对水分胁迫的适应性与与苗木实际抗旱能力较吻合。
Beijing is a city short of water severely. And the water shortage problem will be further deteriorated with the increase of forest and green space cover rates. To solve this problem, it is the key factor to select and apply plant species with characteristics of drought resistance and water-saving in Beijing. In this paper, according to present situation of the green space construction and the shortage of urban water resource in Beijing, the common 63 landscape plant species in Beijing (6 evergreen conifers, 16 deciduous trees, 20 shrubs, 5 wood ground cover plants and 9 herb ground cover plants, 7 climbers) were used to examined their anatomical characteristics (the leaves anatomical structure: thickness of both upper and lower epidermis cuticle, the thickness of both upper and lower epidermis, thickness of leaf, layers and thickness of spongy tissue, layers and thickness of the palisade tissue, width of spongy tissue cell and palisade cell, the ratio of thickness of palisade tissue versus thickness of spongy tissue, cell tense ratio, spongy ratio, stomatal density and size, etc), physiological characteristics (long-term and instantaneous water use efficiency in spring, summer and autumn and relationships betweenδ13C with soil temperature, humidity and the other weather variables) as well as responses of plant seedlings to water stress. Some potentially drought resistant greenism plant species with high ornamental value were selected by multi-objective, multi-plant comprehensive selection, and the indicators of selecting drought resistant and water-saving plants were also evaluated. Evaluation indicator system of Beijing urban landscape plants with characteristics of drought resistance and water-saving was established based on this. Main conclusions are as follows:
     (1) The differences of drought resistance characteristics among four kinds of greenism plant species were preliminarily identified by analyzing the leaf anatomical indicators. The order of drought resistant capability in evergreen trees was Platycladus orientalis>Sabina chinensis, Pinus tabulaeformis > Pinus bungeana>Pinus armandi>Cedrus deodara; while, that in the 16 kinds of hardwood plants was S. matsudana f.Umbraculifera>Magnolia denudate, Eucommia ulmoides, Diospyros kaki, Acer truncatum>Sophora japonica, Koelreuteria paniculata, Populus tomentos, Robinia pseudoacacia, Ailanthus altissima, Crataegus pinatifida, Fraxinus chinesis, Tilia mandshurica and Catalpa bungei>Ginkgo biloba and Liriodendron chinense×L.tulipifera; and the sequence of drought resistant capability for shrubs was Hippophae rhamnoides>groupⅠof shrubs with greater drought resistant capability (Cotinus coggygria, Lonicera maackii, S. leaucopithecia, Sorbaria sorbifola, Syringa oblata, Philadephus pekinensis, Chaenomeles speciosa, Malus‘Red jude’, Amorpha fruticosa, Kerria japonica var.pleniflora, Buddleja lindleyana and Prunus cerasifera f. atropurea)>groupⅡof shrubs with relatively weaker drought resistant capability (Abelia chinensis, Prunus persica f.duplex, Prunus triloba, Weigela coraeensis and Viburnum sargentii)>Euonymus japonicus and Weigela florida cv.Red Prince; the order in wood cover ground plants was Cotoneaster horizontalis>Ligustrum×vicaryi>Berberis thunbergii cv. Atropurpurea, Caryopteris clandonensis‘Worcester Gold’and Rosa chinensis, and that in herb cover ground plants, Sedum spectabile>Hemerocalis fulva>Tagetes patula and Corepsis grandiflora>Monarda didyma, Veronica didyma, Hosta plantaginea, Orychophragmus viloaceus and Viola philippcia; in the climbers, Euonymus var.microphyllus>Lonicera japonica, Wisteria sinensis, Campsis radicans>Parthenocissus quinquefolia and Celastrus orbiculatus>Polygonum aubertii.
     (2) The results inδ13C value of different plants during the 3 different season showed thatδ13C value in evergreen trees differed significantly among tree species and did not vary among seasons; whileδ13C value in deciduous hardwood trees, shrubs, ground cover and climber plants in spring were greater than that in summer and autumn, and differed significantly among seasons and plant species (except wood ground cover species). As there was a positive relationship between water use efficiency andδ13C value, the above results indicated that water use efficiency in deciduous hardwood trees, shrubs, ground cover and climber plants in spring was larger than that in summer and autumn, with the smallest in summer. The result of instantaneous water use efficiency was consistent with that of long term water use efficiency, that is, instantaneous water use efficiency in spring was greater than that in summer.
     (3) Comprehensive analysis ofδ13C, photosynthetic rate and instantaneous water use efficiency of different plants during the 3 seasons showed that water use efficiency of Sabina chinese was higher than that of Platycladus orientalis, higher water use efficiency suggesting stronger water saving characteristics. And water-saving capability of Pinus bungeana and Pinus tablaeformis were greater, and Cedrus deodara was the opposite, Drought resistance capability of Ginkgo biloba and Liriodendron chinense×L.tulipifera was weaker, but their WUE was higher, Salix matusdana f. Umbraculifera was a kind of plant with deep roots and strong drought resistant capability. Fraxinus chinese, Magnolia denudate, Diospyros kaki, Eucommia ulmoides and Acer truncatum were greater water-saving landscape plants, while Sophora japonica, Populus tomentosa, Ailanthus altissima and Crataegus pinatifida were lower water-saving landscape plants, and the rest species were in the middle level. For shrubs, Lonicera maackii, Weigela florida cv.Red Prince, Weigela coraeensis and Viburnum sargentii were higher water - saving landscape shrubs with higher long term water use efficiency, but drought resistant capability and water use efficiency of Euonymus japonicus were lower; In wood ground cover plants, Cotoneaster horizontalis and Ligustrum×vicaryi were better at water saving, next was Rosa chinensis; Sedum spectabile with special structure and CAM metabolic pathway showed the strongest drought resistance and water- saving capabilities, water use efficiency in Hosta plantaginea and Veronica didyma were higher; Drought resistance and water-saving of Lonicera japonica and Wisteria sinensis were higher among the climbers, Polygonum aubertii was the opposite.
     (4) The water stress experiment on typical plants among four types of plant species showed that the adaptability to drought in Fraxinus chinese was better than that in Ginkgo biloba, Sabina Chinese, with Cedrus deodara the weakest, for shrubs, Viburnum sargentii was stronger than Buddleja lindleyana, Prunus persica and Weigela florida cv.Red Prince; drought resistance of Ligustrum×vicaryi was the strongest among the ground cover plants; For climbers, the adaptability to drought in Euonymus var.microphyllus was better than that in Polygonum aubertii. Thus, it can be concluded that the drought adaptability of seedlings was consistent with the above results except that in V. sargentii.
     (4) Evaluating indicators system of drought-resistant and water-saving urban landscape plants in Beijing was established. The grey correlative degree analysis showed that the indicators that highly associated with drought-resistant and water-saving plants in various groups were very close, mainly includingδ13C value in spring, summer and autumn, the thickness of leaves, specific leaf area, stomatal density, stomatal long diameter, the size of a single stoma, cell tense ratio and spongy ratio of leaves, The conclusion reflected that these indicators contributed more than the others to drought-resistant and water-saving capability. The grey correlative degree analysis showed the drought adaptability of seedlings to water stress was consistent with actual drought resistant capability of seedlings.
引文
[1] 安锋和张硕新 . 7 种木本植物根和小枝木质部栓塞的脆弱性 [J]. 生态学报 , 2005, 25(8):1928-1933
    [2] 敖红和张羽. 水分胁迫对云杉光合特性的影响[J]. 植物研究, 2007, 27(4):446-449
    [3] 北 京 市 发 展 和 改 革 委 员 会 , 北 京 市 “ 十 五 ” 时 期 水 利 发 展 规 划 . 北 京 之 窗http://www.bjpc.gov.cn.2004-06-24
    [4] 北京 7 年新增城市绿地 15 万亩. http://news.sina.com.cn/c/2008-05-12/133015522111.shtml
    [5] 蔡永立, 王希华, 宋永昌. 中国东部亚热带青冈种群叶片的生态解剖[J]. 生态学报, 1999, 19(6):844-849
    [6] 蔡永立和郭佳. 藤本植物适应生态学研究进展及存在问题[J]. 生态学杂志, 2000, 19(6):28-33
    [7] 蔡永立和宋永昌. 浙江天童常绿阔叶林藤本植物的适应生态学 Ⅱ .叶片解剖特征的比较[J]. 植物生态学报, 2001, 25(1):90-98
    [8] 曾凡江, Andrea Foetzki, 李向义, 等. 策勒绿洲多枝柽柳灌溉前后水分生理指标变化的初步研究[J].应用生态学报, 2002, 13(7):849-853
    [9] 常金宝和李吉跃.干旱半干旱地区城市森林抗旱建植技术及生态效益评价[M]. 北京:中国科学技术出版社, 2005:22-24, 100
    [10] 陈拓, 秦大河, 康兴成, 等. 稳定碳同位素的研究现状及前景[J].大自然探索, 1999, 18(1):59-65
    [11] 陈拓, 杨梅学, 冯虎元,等. 青藏高原北部植物叶片碳同位素组成的空间特征[J].冰川冻土, 2003, 25(1):83-87
    [12] 陈英华, 胡俊, 李裕红, 等.碳稳定同位素技术在植物水分胁迫研究中的应用[J]. 生态学报, 2004, 24(5):1027-1033
    [13] 陈兆波.生物节水研究进展及发展方向[J]. 中国农业科学, 2007, 40(7):1456-1462
    [14] 陈之欢, 孙国峰, 张金政, 等.耐旱节水型宿根花卉在北京城市绿化中的应用[J].中国农学通报, 2003, 19(5):157-159
    [15] 程福厚, 赵志军, 张纪英, 等. 分区交替灌溉对梨生长结果及水分利用效率的影响[J]. 干旱地区农业研究, 2007, 25(4):130-134
    [16] 崔秀萍, 刘果厚, 张瑞麟. 浑善达克沙地不同生境下黄柳叶片解剖结构的比较[J]. 生态学报, 2006, 26(6):1842-1847
    [17] 邓西平和山仑.旱地春小麦对有效灌溉水高效利用的研究[J].干旱地区农业研究, 1995, 13(3):42-46
    [18] 邓艳, 蒋忠诚, 曹建华, 等. 弄拉典型峰丛岩溶区青冈栎叶片形态特征及对环境的适应[J]. 广西植物, 2004, 24(4):317-322
    [19] 邓彦斌, 姜彦成, 刘健. 新疆 10 种藜科植物叶片和同化枝的旱生和盐生结构的研究[J]. 植物生态学报, 1998, 22(2):164-170
    [20] 董学军. 九种沙生灌木水分参数的实验测定及生态意义[J]. 植物学报, 1998, 40(7):657-664.
    [21] 董志新, 韩清芳, 贾志宽, 等.不同苜蓿(Medicago sativa L. )品种光合速率对光和 CO2 浓度的响应特征[J].生态学报, 2007, 27(6):2272-2278
    [22] 杜太生, 康绍忠, 张霁, 等. 不同沟灌模式对沙漠绿洲区葡萄生长和水分利用的效应[J]. 应用生态学报, 2006, 17(5):805-810
    [23] 段爱国, 保尔江, 张建国.水分胁迫下华北地区主要造林树种离体枝条叶片的叶绿素荧光参数[J].林业科学研究, 2005, 18(5):578-584
    [24] 樊巍. 农林复合系统的林网对冬小麦水分利用效率影响的研究[J].林业科学, 2000, 6(4):16-20
    [25] 方精云, 费松林, 樊拥军, 等. 贵州梵净山亮叶水青冈解剖特征的生态格局及主导因子分析[J]. 植物学报, 2000, 42(6):636-642
    [26] 冯玉龙, 张亚杰, 巨关升, 等. 杨树无性系幼苗光合作用的光抑制[J]. 植物研究, 2001, 21(4):578-582
    [27] 高涵, 吴伟, 刘秀萍, 等.水分胁迫下几种冷季型草坪草抗旱机理研究[J].水土保持研究, 2006, 13(30):126-128
    [28] 高建平, 王彦涵, 陈道峰. 不同产地华中五味子叶表皮结构和导管分子的解剖学特征及其与环境因子的关系[J]. 西北植物学报, 2003, 23(5):715-723
    [29] 高三基, 罗俊, 张华, 等.甘蔗抗旱性生理生化鉴定指标. 应用生态学报, 2006, 17(6):1051 -1054
    [30] 高世斌, 李晚忱, 荣廷昭. 玉米耐旱相关性状的 QTLs 研究[J]. 分子植物育种, 2003, 1(5/6):701-706
    [31] 龚伟, 宫渊波, 胡庭兴, 等. CO2 浓度升高对湿地松针叶蒸腾特性和水分利用效率的影响[J]. 水土保持学报, 2005, 19(5):178-182
    [32] 郭连生和田有亮. 9 种针阔叶幼树的蒸腾速率、叶水势与环境因子关系的研究[J]. 生态学报, 1992, 12(1):47-52
    [33] 郭志华, 王伯荪, 张宏达. 银杏的蒸腾特性及其对遮荫的响应[J]. 植物学报, 1998, 40(6):567-57
    [34] 韩德梁和王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展[J]. 草业学报, 2005, 14(6):7-13
    [35] 韩刚, 李少雄, 徐鹏, 等. 6 种灌木叶片解剖结构的抗旱性分析[J]. 西北林学院学报, 2006, 21(4): 43-46
    [36] 郝日明, 李晓征, 王中磊. 8 种常绿阔叶树木的叶结构特点及其对光照变化的适应性分析[J].西北植物学报, 2004, 24(9):1616-1623
    [37] 何军, 许兴, 李树华, 等. 水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响[J].西北植物学报, 2004, 24(9):1594-1598
    [38] 胡新生和王世绩. 树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学, 1998, 3(44):76-89
    [39] 黄颜梅, 张健, 罗承德. 树木抗旱性研究[J].四川农业大学学报, 1997, 15(1):49-54
    [40] 黄振英, 吴鸿, 胡正海. 30 种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报, 1997, 21(6):521-530
    [41] 贾万利, 苗海霞, 孙明高, 等.6 种苗木抗旱性评价指标分析[J]. 山东农业大学学报(自然科学版), 2007, 38 (2):163~168
    [42] 蒋高明, 林光辉, Marino B DV. 美国生物圈二号内生长在高 CO2 浓度下的 10 种植物气孔导度、蒸腾速率及水分利用效率的变化[J]. 植物学报, 1997, 39(6):546-553
    [43] 蒋高明和何维明. 毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异[J]. 植物学报, 1999, 41(10):1114-1124
    [44] 蒋进. 八种荒漠珍稀濒危植物的抗旱性研究[J]. 干旱区研究, 1991, 8(2):39-43
    [45] 蒋进和王永增. 集中旱生植物盆栽苗木的水分关系和抗旱性排序[J]. 干旱区研究, 1992, 9(4):31-37
    [46] 鞠强, 贡璐, 杨金龙, 等. 梭梭光合生理生态过程与干旱环境的相互关系[J]. 干旱区资源与环境, 2005, 19(4):201-204
    [47] 康博文, 侯琳, 王得祥, 等. 几种主要绿化树种苗木耗水特性的研究[J]. 西北林学院学报, 2005, 20(1):29-33
    [48] 康绍忠, 张建华, 粱宗锁, 等. 控制性分根灌溉一种新的农田节水调控思路[J]. 干旱地区农业研究, 1997, 15(1):1–6
    [49] 兰小中, 杨春贤, 陈敏, 等. 水分胁迫对中华芦荟部分药用成分含量的影响[J].西南大学学报(自然科学版), 2007, 29(4):106-109
    [50] 李代琼. 半干旱黄土区沙棘的水分生理生态与形态解剖学特性研究[J].沙棘, 1999, 12(3):11-16
    [51] 李吉跃, 张建国, 姜金璞. 北方主要造林树种耐旱机理及其分类模型的研究[J]. 北京林业大学学报, 1993, 15(3):1-11
    [52] 李吉跃, 周平, 招礼军. 干旱胁迫对苗木蒸腾耗水的影响[J].生态学报, 2002, 22(9):1380-1386
    [53] 李吉跃. PV 技术在油松侧柏苗木抗旱特性研究中的应用[J]. 北京林业大学学报, 1989, 11(1):3-11
    [54] 李吉跃. 太行山区主要造林树种耐旱特性的研究(I)~(VI)[J]. 北京林业大学学报, 1991a, 13 (增):1~24;230~280
    [55] 李吉跃. 太行山区主要造林树种耐旱特性的研究[D].北京林业大学博士学位论文. 北京:北京林业大学图书馆, 1990
    [56] 李吉跃. 油松侧柏苗木抗旱特性初探[J]. 北京林业大学学报, 1988, 10(2):23-30
    [57] 李吉跃. 植物耐旱性及其机理[J]. 北京林业大学学报, 1991b, 13(3):92-100
    [58] 李吉跃和朱妍. 干旱胁迫对北京城市绿化树种耗水特性的影响[J].北京林业大学学报, 2006, supp.(1):32-37
    [59] 李俊和于沪宁.冬小麦水分利用效率及其环境影响因素分析[J].地理学报, 1997, 52(6):551-560
    [60] 李丽萍, 马履一, 王瑞辉. 北京市3种园林绿化灌木树种的耗水特性[J]. 中南林业科技大学学报, 2007, 27(2):44-47, 51
    [61] 李明财, 易现峰, 李来兴, 等. 青藏高原东部典型高山植物叶片δ13C的季节变化[J]. 西北植物学报, 2005, 25(1):77-81
    [62] 李鹏, 李占斌, 赵忠, 等. 渭北黄土高原不同立地上刺槐根系分布特征研究[J]. 水土保持通报, 2002, 22(5):15-19
    [63] 李小燕, 王林和, 李连国, 等. 沙棘叶片组织解剖构造与其生态适应性研究[J]. 干旱区资源与环境, 2006, 20(5):219-222
    [64] 李玉灵, 尚国亮, 殷晓洁. 从切枝蒸腾失水比较几种园林植物的节水特性[J].河北林业科技, 2007, (3):6-9
    [65] 梁松洁, 张金政, 张启翔, 等. 北方地区藤本类忍冬叶表皮结构及其生态适应性比较研究[J].植物研究, 2004, 24(4):434-440
    [66] 廖建雄和王根轩. 干旱、CO2 和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响[J]. 应用生态学报, 2002, 13(5):547-550
    [67] 廖建雄和王根轩. 谷子叶片光合速率日变化及水分利用效率[J]. 植物生理学报, 1999, 25(4):362-368
    [68] 廖建雄和王根轩. 植物的气孔振荡及其应用前景[J]. 植物生理学通讯, 2000, 36(3):272-276
    [69] 林金科, 赖明志, 詹梓金. 茶树叶片净光合速率对生态因子的响应[J]. 生态学报, 2000, 20(3):404-408
    [70] 林植芳, 林桂珠, 孔国辉, 等. 生长光强对亚热带自然林两种木本植物稳定碳同位素比、细胞间 CO2浓度和水分利用效率的影响[J]. 热带亚热带植物学报, 1995, 3(2):77-82
    [71] 刘丹和陈祥伟.水分胁迫对银中杨耗水特征与水分利用的影响[J]. 生态学杂志, 2006, 25 (3):290-294
    [72] 刘广明, 杨劲松, 姜艳, 等. 节水灌溉条件下水稻需水规律及水分利用效率研究[J]. 灌溉排水学报, 2005, 24(6):49-53
    [73] 刘广全, 赖亚飞, 李文华, 等. 4 种针叶树抗旱性研究[J]. 西北林学院学报, 2004, 19(1):22-26
    [74] 刘洪禄, 吴文勇, 郝仲勇, 等. 城市绿地节水技术[M].北京:中国水电水利出版社, 2006:264-26
    [75] 刘家琼. 我国荒漠不同生态类型植物的旱生结构[J]. 植物生态学与地植物学丛刊, 1982, 6(4):314-319
    [76] 刘全宏, 王孝安, 田先华, 等. 太白红杉(Larix chinensis)叶的形态解剖学特征与环境因子的关系[J]. 西北植物学报, 2001, 21(5):885-893
    [77] 刘淑明, 王得祥, 孙长忠. 干旱胁迫下雪松土壤水分及生理特性的研究[J]. 西北植物学报, 2004, 24(11):2057-2060
    [78] 刘秀晨. 绿色奥运和绿地系统规划[J].建设科技.2007, (9):16-17
    [79] 刘永红. 玉米根、叶器官对花期干旱的响应及其复水补偿生长研究[D]. 四川农业大学博士学位论文, CNKI 博硕论文数据库, 2005
    [80] 刘友良. 植物水分逆境生理[M]. 北京:农业出版社, 1992:128-138
    [81] 刘宇锋, 萧浪涛, 童建华, 等. 非直线双曲线模型在光合光响应曲线数据分析中的应用[J].农业基础科学, 2005, 21(8):76-79
    [82] 刘志民, K.THOMPSON, R E SPENCER, 等. 在旱化土壤条件下来自不同生境的 20 种植物幼苗根系的形态反应的比较[J]. 植物学报, 2000, 42(6):628-635
    [83] 刘祖琪.植物抗性生理学研究[M]. 北京:中国农业出版社. 1994: 43-44
    [84] 马焕成, 吴延熊, JackA.McConchie. 元谋干热河谷几种外来树种在旱季的光合特点[J]. 浙江林学院学报, 2001, 18(1):46-49
    [85] 马洁和韩烈保.北京地区野生草本地被植物引种、筛选与利用[J]. 四川草原, 2006, (2):30-33
    [86] 马书荣, 阎秀峰, 陈柏林, 等. 不同海拔裂叶沙参和泡沙参气孔形态的对比研究[J]. 东北林业大学学报, 1999, 27(6):94-97
    [87] 马武昌, 王雁, 彭镇华. 车前和紫花地丁对水分胁迫的生理反应[J]. 林业科学研究, 2006, 19(5):633-637
    [88] 梅秀英, 姜在民, 高绍棠. 核桃和铁核桃品种(优系)叶形态构造与其抗旱性的研究[J]. 西北林学院学报, 1998, 13(1):16-20
    [89] 孟凡荣, 乔芳, 张志强. 北京城区种绿化树种蒸腾耗水性比较[J]. 福建林学院学报, 2005, 25(2):176-180
    [90] 孟平, 张劲松, 高峻.山茱萸幼树光合及水分生理生态特性[J]. 林业科学研究, 2005, 18(1):47-51
    [91] 孟庆辉, 潘青华, 鲁韧强, 等. 4 个品种扶芳藤茎叶解剖结构及其与抗旱性的关系[J]. 农业基础科学, 2006, 22(4):138-142
    [92] 孟庆杰, 王光全, 董绍锋, 等.桃叶片组织结构与其抗旱性关系的研究[J]. 西北林学院学报 2005, 20(1):65-67
    [93] 潘瑞炽. 植物生理学(第五版)[M]. 北京:高等教育出版社, 2004:15-17
    [94] 彭致功, 杨培岭, 任树梅, 等.再生水灌溉草坪观赏品质及其综合评价[J]. 中国农业大学学报, 2006, 11(5):81-87
    [95] 丘国雄.植物光合作用效率∥余叔文.植物生理学和分子生物学[M]. 1 版.北京:科学出版社, 1992:236-243
    [96] 渠春梅, 韩兴国, 苏波, 等. 云南西双版纳片断化热带雨林植物叶片 δ13C 值的特点及其对水分利用效率的指示[J]. 植物学报, 2001, 43(2):186-192
    [97] 茹桃勤.刺槐无性系水分利用效率和适应性研究[D]. 北京:北京林业大学图书馆, 2007
    [98] 阮本清和魏传江. 首都圈水资源安全保障体系建设[M]. 北京:科学出版社, 2004:1-2
    [99] 山仑和陈培元.旱地农业生理生态基础[M]. 北京:科学出版社, 1998:44-46
    [100] 沈成国. 植物衰老生理与分子生物学[M]. 北京:中国农业出版社, 2001:70- 93
    [101] 沈国舫和王礼先.中国生态环境建设与水资源保护利用[M]. 北京:中国水利水电出版社, 2001:1-10
    [102] 史刚荣. 七种阔叶常绿植物叶片的生态解剖学研究[J]. 广西植物, 2004, 24(4):334-338
    [103] 史刚荣和邢海涛. 淮北相山 8 个树种叶片的生态解剖特征[J]. 林业科学, 2007a, 43(3):28-33
    [104] 史刚荣, 赵金丽, 马成仓. 淮北相山不同群落中 3 种禾草叶片的生态解剖[J].草业学报, 2007b, 16(3):62-68
    [105] 史作民, 程瑞梅, 刘世荣. 高山植物叶片 δ13C 的海拔响应及其机理[J]. 生态学报, 2004, 24(12):2901-2906
    [106] 宋凤斌和戴俊英. 玉米茎叶和根系的生长对干旱胁迫的反应和适应性[J]. 干旱区研究, 2005, 22(2):256-258
    [107] 苏波, 韩兴国, 李凌浩, 等. 中国东北样带草原区植物 δ13C 值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6):648-655
    [108] 孙黛珍, 周福平, 王曙光, 等. 六倍体小黑麦灌浆期抗旱性分析[J]. 中国农学通报, 2007, 23(7):236-240
    [109] 孙伟, 王德利, 王立, 等. 贝加尔针茅不同枝条叶片蒸腾特性与水分利用效率对瞬时 CO2 和光照变化的响应[J]. 生态学报, 2004, 24(11):2437-2443
    [110] 孙伟, 王德利, 王立, 等. 模拟光条件下禾本科植物和藜科植物蒸腾特性与水分利用效率比较[J]. 生态学报, 2003, 23(4):814-819
    [111] 汤飞宇, 吴国平, 杨俊, 等. 优质高产抗虫杂交棉组合的灰色评判分析[J]. 江西农业大学学报, 2006, 28(1):21-24
    [112] 滕胜, 钱前, 曾大力, 等. 水稻苗期耐旱性基因位点及其互作的分析[J]. 遗传学报, 2002, 29(3):235-240
    [113] 田有亮和郭连生. 呼和浩特地区不同种源油松个体光合和水分生理特性的研究[J]. 干旱区资源与环境, 1994, 8(3): 96-101
    [114] 王才斌, 郑亚萍, 成波, 等.高产花生冠层光截获和光合、呼吸特性研究[J].作物学报, 2004, 30(3):274-278
    [115] 王得祥, 康博文, 刘建军, 等. 主要城市绿化树种苗木耗水特性研究[J]. 西北林学院学报, 2004, 19(4):20-23
    [116] 王非, 于成龙, 刘丹. 植物生长调节剂对苗木抗旱性影响的综合评价[J]. 林业科技, 2007, 32(3):56-60
    [117] 王根轩, 廖建雄, 吴冬秀. 荒漠条件下甘草气孔振荡的水被动证据[J]. 植物学报, 2001, 43(1):41-45
    [118] 王国富, 李连国, 李晓燕, 等. 沙棘叶片表面形态特征与抗旱性的关系[J]. 园艺学报, 2006, 33(6):1310-1312
    [119] 王华芳, 张建华, 梁建生, 等. 木本植物根系和木质部汁液 ATP 对土壤干旱信息的响应[J].科学通报, 1999a, 44(10):1063-1068.
    [120] 王华芳, 张建华, 梁建生, 等. 木本植物根系及木质部汁液 ABA 对土壤干旱信息的感应[J]. 科学通报, 1999b, 44(10):2053-2069
    [121] 王继强, 李吉跃, 刘娟娟. 八个绿化树种水分状况与水力结构的季节变化[J].北京林业大学学报, 2005, 27(4):43-48
    [122] 王建伟和周凌云. 土壤水分变化对金银花叶片生理生态特征的影响[J]. 土壤, 2007, 39(3): 479-482
    [123] 王沙生, 高荣孚, 吴贯明编.植物生理学[M].北京:中国林业出版社, 1991:192-201
    [124] 王天铎.植物群落的光利用效率与数学模型∥王天铎.光合作用研究进展[M].1 版.北京:科学出版社, 1990, 128-211
    [125] 王万里. 压力室(PRESSURE CHAMBER) 在植物水分状况研究中的应用[J]. 植物生理学通讯, 1984, (3):52-57
    [126] 王晓琦, 张艳馥, 沙伟, 等. 三江平原不同生境下小叶章茎解剖结构的比较[J].生态学杂志, 2006, 25(7):785-788
    [127] 王勋陵和王静. 植物的形态结构与环境[M]. 兰州:兰州大学出版社, 1989:105-138
    [128] 王玉涛. 节水抗旱优良沙柳种源的筛选与抗旱造林技术研究[Master].北京林业大学硕士毕业论文. 北京:北京林业大学图书馆, 2005
    [129] 温国胜, 田海涛, 张明如, 等.叶绿素荧光分析技术在林木培育中的应用[J]. 应用生态学报, 2006, 17(10):1973-1977
    [130] 吴吉林, 李永华, 叶庆生.美丽异木棉光合特性的研究[J].园艺学报, 2005, 32(6):1061-1064
    [131] 吴林, 霍焰, 聂小兰, 等. 沙棘叶片组织结构观察及其与抗旱性关系的研究[J].吉林农业大学学报, 2003, 25(4):390-393
    [132] 吴佩林和张伟.北京市水危机与水资源可持续利用对策[J]. 辽宁工程技术大学学报. 2005, 24(3):437-440
    [133] 伍维模, 李志军, 罗青红, 等. 土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响[J]. 林业科学, 2007, 43(5):30-35
    [134] 夏江宝, 张光灿, 刘刚, 等. 不同土壤水分条件下紫藤叶片生理参数的光响应[J]. 应用生态学报, 2007, 18(1): 30-34
    [135] 肖洪浪, 段争虎, 宋耀选, 等. 黄土高原西部兰州市郊植被的水环境响应[J]. 中国沙漠, 2006, 26(4):517-521
    [136] 谢洋, 吴军, 马晓, 等. 银杏观叶新品种叶片解剖结构研究[J].河南农业大学学报, 2005, 39(3):265-269
    [137] 徐玲玲, 张宪洲, 石培礼, 等. 青藏高原高寒草甸生态系统表观量子产额和表观最大光合速率的确定[J].中国科学·D 辑, 2004, supp(2)34:125-130
    [138] 徐世昌和崔钦. 水分胁迫对玉米光合性能及产量的影响[J]. 作物学报, 1995, 21(3):356-363
    [139] 许大全, 张玉忠, 张荣铣.植物光合作用的光抑制[J].植物生理学通讯, 1992, 28 (4):237-243
    [140] 许大全. 气孔的不均匀关闭与光合作用的非气孔限制[J]. 植物生理学通讯, 1995, 31(4):246-252
    [141] 许大全.光合作用效率[M].1 版. 上海:上海科学技术出版社, 2002:33-40
    [142] 薛慧勤, 甘信民, 孙明辉, 等. 干旱条件下花生水分利用效率与叶片碳同位素辨别力的相关性研究[J]. 中国油料作物学报, 1999, 21(1):27-34
    [143] 薛智德, 韩蕊莲, 侯庆春, 等. 延安地区 5 种灌木叶旱性结构的解剖研究[J]. 西北植物学报, 2004, 24(7):1200-1206
    [144] 严昌荣, 韩兴国, 陈灵芝, 等. 温带落叶林叶片 δ13C 的空间变化和种间变化[J]. 植物学报, 1998, 40(8):853-859
    [145] 严昌荣, 韩兴国, 陈灵芝. 六种木本植物水分利用效率和其小生境关系研究[J]. 生态学报, 2001, 21(11):1952-1956
    [146] 杨甲定, 赵哈林, 张铜会. 黄柳与垂柳的耐热性和耐旱性比较研究[J]. 植物生态学报, 2005, 29(1):42-47
    [147] 杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析[J]. 林业科学, 2002, 38(6): 36-42
    [148] 姚允聪, 高遐虹, 程继鸿. 苹果种质资源抗旱性鉴定研究 Ⅶ :干旱条件下苹果幼树生长与叶片形态特征变化[J]. 北京农学院学报, 2001, 16(2):16-21
    [149] 郁继华和秦舒浩. 黄瓜品种间嫁接苗和自根苗光合特性研究[J]. 兰州大学学报(自然科学版), 2001, 37(6):63-68
    [150] 张建国, 李吉跃, 姜金璞. 京西山区人工林水分参数的研究(Ⅰ ) [J]. 北京林业大学学报, 1994a, 16(1):1-12
    [151] 张建国, 李吉跃, 姜金璞. 京西山区人工林水分参数的研究(Ⅲ ) [J]. 北京林业大学学报, 1994b, 16(4):46-54
    [152] 张建国. 中国北方主要造林树种耐旱特性及其机理的研究[D].北京林业大学博士学位论文. 北京: 北京林业大学图书馆, 1993
    [153] 张建华, 贾文锁, 康绍忠. 根系分区灌溉和水分利用效率[J]. 西北植物学报, 2001, 21(2):191-197
    [154] 张弥, 吴家兵, 关德新, 等.长白山阔叶红松林主要树种光合作用的光响应曲线[J]. 应用生态学报[J], 2006, 17(9): 1575-1578
    [155] 张乃群, 舒理慧, 祝莉莉, 等. 中国稻属植物叶片亚显微结构比较研究[J]. 西北植物学报, 2005, 25(11):2204-2208
    [156] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16 (4):444-448
    [157] 张守仁和高荣孚. 白杨派新无性系气孔生理生态特性的研究[J]. 生态学报, 1998, 18(4):22-31
    [158] 章英才和闫天珍. 花柴叶片解剖结构与生态环境关系的研究[J]. 宁夏农学院学报, 2003, 24(1):31-34
    [159] 张迎辉, 王华田, 亓立云, 等.水分胁迫对 3 个藤本树种蒸腾耗水性的影响[J]. 江西农业大学, 2005, 27(5):723-728
    [160] 张正斌. 植物对环境胁迫整体抗逆性研究若干问题[J]. 西北农业学报, 2000, 9(3):112-116
    [161] 张正斌. 作物抗旱节水的生理遗传育种基础[M]. 北京:科学出版社, 2003:1-60
    [162] 张正斌和王德轩.小麦抗旱生态育种[M]. 西安: 陕西人民教育出版社, 1992
    [163] 招礼军.我国北方主要造林树种耗水特性及抗旱造林技术研究.[D].北京林业大学博士学位论文. 北京: 北京林业大学图书馆, 2003
    [164] 赵忠, 李鹏, 王乃江. 渭北主要造林树种根系抗旱性研究[J].水土保持研究, 2000, 7(1):92-94
    [165] 赵凤君, 沈应柏, 高荣孚. 叶片 δ13C 与长期水分利用效率的关系[J]. 北京林业大学学报, 2006, 28(6):40-45
    [166] 赵天宏, 沈秀瑛, 杨德光, 等. 灰色关联度分析在玉米抗旱生理鉴定中的应用[J]. 辽宁农业科学, 2003, (1):1-4
    [167] 赵长明, 魏小平, 尉秋实, 等. 民勤绿洲荒漠过渡带植物白刺和梭梭光合特性[J]. 生态学报, 2005, 25(8):1908-1913
    [168] 郑淑霞和上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J]. 应用生态学报, 2007, 18(1): 16-22
    [169] 钟章成. 攀援植物行为生态学的理论与研究方法[M].北京:科学出版社, 2005:19-26
    [170] 周秀梅.金叶女贞气孔特性研究[J]. 河南职业技术师范学院学报, 2004, 32(1):39-41
    [171] 朱妍 李吉跃 史剑波.北京六个绿化树种盆栽蒸腾耗水量的比较研究[J].北京林业大学学报, 2006, 28(1):65-70
    [172] Anderson J E, Kriedemann P E, Austin M P, et al.. Eucalypts forming a canopy functional type in dry sclerophyll forests respond differentially to environment [J]. Australian Journal of Botany, 2000, 48(6):759-775
    [173] Aroca R, Ferrante A,Vernier P, et al.. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in phaseolus vulgaris plants[J]. Annals of Botany, 2006, 98(6):1301-1310
    [174] Arslan A, Zapata F, Kumarasinghe K S. Carbon isotope discrimination as indicator of water use efficiency of spring wheat as affected by salinity and gypsum additions [J]. Communications in Soil Science and Plant Analysis, 1999, 30(18):2681-2693.
    [175] Baquedano F J, Castilo F J. Comparative ecophysiogical effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spender Quercus coccifera and Quercus ilex[J]. Trees, 2006, 20(6):689-700
    [176] Bassman J B, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa×P.deltoidesclone [J]. Tree Physiology, 1991, 9(1-2):145-149
    [177] Bergmann T, Richardson T L, Paerl H W, et al.. Synergy of light and nutrients on the photosynthetic efficiency of phytoplankton populations from the Neuse river estuary, North Carolina[J]. Journal of Plankton Research, 2002, 24(9):923-933
    [178] Bettarini I, Calderoni G, Miglietta F, et al.. Isotopic carbon discrimination and leaf nitrogen content of Erica arborea L. along a CO2 concentration gradient in a CO2 spring in Italy[J]. Tree Physiology, 1995, 15(5):327-332
    [179] Bohn B A & Kershner J L. Establishing aquatic restoration priorities using a watershed approach[J]. Journal of Environmental Management, 2002, 64(4):355-363
    [180] Bonal D, BornC, Brechet C, et al.. The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and function traits[J]. Annals of Forest Science, 2007, 64(2):169-176
    [181] Bosabalidis A M, Kofidis G. Comparative effects of drought stress on leaf anatomy of two olive cultivars[J]. Plant Science, 2002, 163(2):375-379
    [182] Brooks J R, Flanagan L B, Buchman N, et al.. Carbon isotope composition of boreal plants: functional grouping of life forms[J]. Oecologia, 1997, 110(3):301-311
    [183] Brugnoli E, Hubick K T, Caemmerer S, et al.. Correlation between the carbon isotope discrimination in leaf starch and intercellular and atmospheric partial pressures of sugars of C3 plants and the ratio of carbon dioxide[J].Plant Physiology, 1988, 88(4):1418-1424
    [184] Chartzoulakis K, Patskas A, Kofidis G, et al.. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivers. Scientia Horticulturae, 2002, 95(1):39-50
    [185] Chen S P, Bai Y F, Han X G.Variations in composition and water use efficiency of plant Functional Groups based on their water ecological groups in the Xilin river basin[J]. Acta Botanica Sinica, 2003, 45(10):1251-1260
    [186] Claudia R S, Jo?o P, Maroco et al. .Impact of deficit irrigation on water use efficiency and carbon isotope composition (δ13C) of field-grown grapevines under Mediterranean climate. Journal of Experimental Botany, 2005, 56(12):2163-2172
    [187] Condon AG, Richards R A, Farquhar G D. The effect of variation in soil water availability, vapour pressure deficit and nitrogen nutrition on carbon isotope discrimination in wheat[J]. Australian Journal Agricultural Research, 1992, 43:935-947
    [188] Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis[J].Trends in Plant Science, 2000, 5(5):187-188
    [189] Cregg B M, Olivas-Garcia, Hennessey-Can T C. Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great Plains [J]. CanadianJournal of Forestry Research, 2000, 30(3):428-439
    [190] Damesin C, Rambal S, Joffre R. Between-tree variations in leaf δ13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability[J].Oecologia, 1997, 111(1):26-35
    [191] Dawson T E & Ehleringer J R. Gender-specific physiology carbon isotope discrimination and habitat distribution in boxelder Acer negundo [J]. Ecology, 1993, 74(3):798-815
    [192] Dominique C, Bergmann, Fred D.Sack.Stomtal development[J].The Annual Review of Plant Biology, 2007, 58:163-181
    [193] Duursma R A & Marshall J D. Verical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest [J]. Trees, 2006, 20(4):496-506
    [194] Ebdon J S, Petrovic A M, Dawson T E. Relationship between carbon isotope discrimination, water use efficiency and evapotranspiration in Kentucky blue grass[J]. Crop Science, 1998, 38(1):157-162
    [195] Ehleringer J R, Ceding T E. Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants[J]. Tree Physiology, 1995, 15(1):105-111
    [196] Ehleringer J R, Cooper T A. Correlations between carbon isotope ratio and microhabitat in desert plants[J]. Oecologia, 1988, 76(4):562-566
    [197] Ehleringer J R, Klassen S, Clayton C, et al.. Carbon isotope discrimination and transpiration efficiency in common bean[J]. Crop Science, 1991, 31(5):1611-1615
    [198] Ehleringer J R. Carbon and water relations in desert plants: an isotopic perspective. In: Ehleringer J R, A E Hall, G D Farquhar eds. Stable isotopes and plant carbon water relations[M]. San Diego: Academic Press, 1993, 155-172
    [199] Ernst Detlef Schulze, Neil C Turner, Dean Nicolle, et al.. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rain fall gradient in Australia[J]. Tree Physiology, 2006, 26(4):479-492
    [200] Fahn A. Plant anatony[M]. Oxford:Pergamon Press, 1982, 56-67
    [201] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review Plant Physiol Plant Molecule Biology, 1989, 40:503-537
    [202] Farquhar G D, OLeary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9(1):121-137
    [203] Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes[J]. Australian Journal of Plant Physiology, 1984, 11(5):539-552
    [204] Farquhar GD, Von CS. Modelingof photosynthetic response to environmental conditions. In:Lange OL, Nobel PS, Osmond C B, et al.. Ecolopedia of plant physiology new series. Berlin: Springer-Verlag, 1982, 549-587
    [205] Ferit Kocacinar, Rowan F Sage. Photosynthetic pathway alters hydraulic structure and function in woody plants[J]. Oecologia, 2004, 139(2):214-223
    [206] Flexas J.& Medrano H. Drought-inhibition of photosynthesis in C3 plants:stomatal and non-stomatal limitations revisited[J]. Annals of Botany, 2002, 89(2):183-189
    [207] Franks P J,Farquhar G D. The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control [J]. Plant Physiology, 2007, 143(1):78-87
    [208] Guehl J M, Fort C, Ferhi A. Differential response of leaf conductance, carbon isotope water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants[J]. New Phytologist, 1995, 131(1):149-157
    [209] Gulias J, Flexas J, Maurici MUS,et al.. Relationship between maximum leaf photosynthesis, nitrogen content and specific leaf Area in Balearic endemic and non-endemic Mediterranean species.Annals of batany, 2003, 92(2):215-222
    [210] Henry A., Doucette W., Norton J., et al.. Changes in crested wheatgrass root exudation caused by flood, droughtand nutrient stress[J]. Journal of Environmental Quality, 2007, 36(3):904-912
    [211] Herppich W B, Willert D J. Dynamic changes in leaf bulk water relations during stomatal oscillations in mangrove species: continuous analysis using a dewpoint hygrometer[J]. Physiologia Plantarum, 1995, 94(3):479-485
    [212] Herrick J D & Thomas R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade of canopy sweetgum trees (Liguidambar styraciflua) in a forest ecosystem[J].Tree Physiology, 1999, 19(12):779-786
    [213] Heschel M S, Donohue K, Hausmann N, et al.. Population differentiation and natural selection for water-use efficiency in impatiens capensis (Balsaminaceae) [J]. International Journal of Plant Science, 2002, 163(6):907-912
    [214] H?gberg P, Johannisson C, Hallgern J E. Studies of δ13C in the foliage reveal interactions between nutrients and water in forest fertilization experiments[J]. Plant and Soil, 1993, 152(2):207-214
    [215] Hubock K T, Farquhar G D. Carbon isotope discrimination selecting for water use efficiency[J]. Australian Cotton Grower, 1987, 8(1):66-68
    [216] Hubock K T, Farquhar G D. Genetic variation of transpiration efficiency among barley genotypes is negatively correlated with carbon isotope discrimination[J]. Plant Cell and Environment, 1989, 24(1):92-99
    [217] Hubock K T, Shorter R, Farquhar G D. Heritability and genotype environmental interaction of carbon isotope discrimination and transpiration efficiency in peanut (Arachis hypogaea)[J].Australian Journal of Plant Physiology, 1988, 15(6):799-813
    [218] Hugo A P, FáBIO M D, Agnaldo R M C, et al.. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of coffea canephora[J]. Annals of Botany, 2005, 96(1):101-108
    [219] Impa S M, Nadaradjan S, Oominathan P B,et al.. Carbon isotope discrimination arrurately reflects variability in WUE measureed at a whole plant level in rice [J]. Crop science, 2005, 45(6):2517-2522
    [220] John S.Roden, James R.Ehleringer. Summer precipitation influences the stable oxygen and carbon isotopic composition of tree-ring cellulose in Pinus ponderosa[J].Tree Physiology, 2007, 27(4):491-501
    [221] Johnsen K H, J R Seiler, J E Major. Growth, shoot phenology and physiology of diverse seed sources of black spruce :11~23-year-old field trees[J]. Tree Physiology , 1996, 16(3):375-380
    [222] Johnson D A, Asay K H, Tieszen L L, et al.. Carbon-isotope discrimination:potential in screening cool-season grasses for water limited environments. Crop Science, 1990, 30, 338–343
    [223] K R Hultine, J D Marshall. Altitude trends in conifer leaf morphology and stable carbon isotope composition[J]. Oecologia, 2000, 123(1):32-40
    [224] Kadiglu A & Terzi R. A dehydration avoidance mechanism:leaf rolling[J]. The botanical Review,2007, 73(4):279-289
    [225] Kaiser H & Kappen L. Stomatal oscillations at small apertures: indications or a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism[J]. Journal of Experimental Botany, 2001, 52(6):1303-1313
    [226] Korol R L, Kirschbaum MUF, Farquhar G D, et al.. Effects of water status and soil fertility on the C-isotope signature in Pinus radiate[J]. Tree Physiology, 1999, 19(9):551-562
    [227] Kramer P J & Kozlowski T T.Physiology of trees(second edition)[M] . New York: McGraw-Hill, 1979
    [228] Larcher W. Physiological plant ecology (fourth edition)[M]. New York:Heidelberg Springer-Verlag, 2003, 231-245
    [229] Lauteri M, Brugnoli E, Spaccino L. Carbon isotope discrimination in leaf soluble sugars and in whole-plant dry matter in Helianrhus annuus L. grown under different water conditions. In: Ehleringer J R, Hall A E, Farquhar GD (eds.). Stable Isotopes and Plant Carbon-Water Relations. San Diego: Academic Press, 1993, 93-108
    [230] Levitt J.Responses of plants to environmental stresses.Ⅱ.Water, radiation, salt and other stresses (second edition) [M]. New York :Academic Press, 1980
    [231] Loewenstein N J & Pallardy S G. Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a coMParison of young palnts of four temperate deciduous angiosperms,Tree Physiology, 1998, 18(4),421-430
    [232] Ma Ruiping, Calos henquire B A Prado,Zhang Weihui. Analysis on the daily courses of water potential of nine woody species from Cerrado vegetation during wet season [J]. Journal of Forestry Research, 2000, 11(1):7-12
    [233] Madhavan D, Treichel I, O'Leary M H. Effects of relative humidity on carbon isotope fractionation in plants[J]. Botanica Acta, 1991, 104(2):292-294
    [234] Malse J, Farquhar G D. Effects of soil strengthon the relation of water use efficiency and growth to carbon isotope discrimination in wheat seedlings[J]. Plant Physiology, 1988, 86(1):32-38
    [235] Marshall J D, Zhang J W. Carbon isotope discrimination and water use efficiency in native plants of the north-central Rockies[J]. Ecology, 1994, 75(7):1887-1895
    [236] Maruyama Y, Matsumoto Y, Morikawa Y, et al.. Leaf water relations of some dipterocarps [J]. Journal of Tropical Forest Science, 1997, 10(2):249-255
    [237] Masle J, Gilmore S R, Farquhar G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis[J].Nature, 2005, 436(5):866-870
    [238] Medrano H.,Escalona J M, Bota J, et al.. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter [J]. Annals of Botany, 2002, 89(7):895-905
    [239] Meinzer F C. Stomatal control of transpiration [J]. Trends in Ecology and Evolution, 1993, 8: 289-294
    [240] Monti A, Brugnoli E, Scartazza A, et al..The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.)[J]. Journal of Experimental Botany, 2006, 57(6):1253-1262
    [241] Morecroft M D, Woodward F I. Experimental investigations on the environmental determination of D13C at different altitude [J]. Journal of Experimental Botany, 1990, 41(231):1303-1308
    [242] Muchow R C, Sinclair T R. Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor L.Moench [J]. Plant Cell and Environment, 1989,12(4):425-431
    [243] Nadeau J A, Sack F D. Control of stomatal distribution on the Arabidopsis leaf surface [J]. Science, 2002, 296(8):1697-1700
    [244] Osorio J, Pereira J S. Genotypic differences in water use efficiency and 13C discrimination in Eucalyptus globules [J]. Tree Physiology, 1994, 14(7-9):871-882
    [245] Panek J A, Blaring R H. Stable carbon isotopes as indicators of limitations to forest growth imposed by climate stress [J]. Ecological Applications, 1997, 7(4):854-863
    [246] Petersen M M. A natural approach to watershed planning, restoration and management [J]. WaterSciences and Technology, 1999, 39(12):347-352
    [247] Poorter H & de Jong J R. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity [J]. New Phytologist. 1999, 143(1):163-176
    [248] Proctor M C F, Ligrone R, Duckett J G. Desiccation tolerance in the moss polytrichum formosum: physiological and fine-structural changes during desiccation and recovery [J]. Annals of Botany, 2007, 99(1):75-93
    [249] Prytz G, Futsaether C M, Johnsson A. Self-sustained oscillations in plant water regulation: induction of bifurcations and anomalous rhythmicity [J]. New Phytologist, 2003, 158(2):259-267
    [250] Singh R. Urban ecological analysis of Stephen Urban Park: A predesign and postdesign assessment[D]. ProQuest 学位论文全文检索系统
    [251] Roden J S and Ehleringer J R. Summer precipitation influences the stable oxygen and carbon isotopic composition of tree-ring cellulose in Pinus ponderosa. Tree Physiology, 2007, 27(4):491-501
    [252] Saglam A, Kadioglu R T & Saruhan N. Leaf rolling and biochemical changes in them in post-stress emerging Ctenanthe Setosa plants under drought conditions[J]. Russian Journal Plant. Physiology, 2008, 55(1):48-53
    [253] Sam O, Jerez E, Dell’Amiico J, Guiz-Snchez M C. Water stress induced changes in anatomy of tomato leaf epidermis[J]. Biologia Plantum, 2000, 43(2):275-277
    [254] Schuster W S F, Sandquist D R, Phillips S L, et al.. Comparisons of carbon isotope discrimination in populations of arid land plant species differing in life span [J]. Oecological, 1992, 91(3):332-337
    [255] Shabala S., Lisa J, Schimanski et al.. Heterogeneity in Bean leaf mesophyll tissue and ion flux profiles: leaf electrophysiologyical Characteristics correlate with the anatomical structure [J]. Annals of botany, 2002, 89(2):221-226
    [256] Sheshesheayee M S, H Bindumadhava, A G Shankar, et al.. Breeding strategies to exploit water use efficiency for crop improvement [J]. Plant Biology, 2003, 30(2):253-268
    [257] Souza C R.de, Maroco J P, Santos T P.dos, et al.. Impact of deficit irrigation on water use efficiency and carbon isotope composition (δ13C) of field-grown grapevines under Mediterranean climate[J]. Journal of Experimental Botany, 2005, 56(6):2163-2172
    [258] Steppe K, Sebinasi Dzikiti, Raoul Lemeur, et al.. Stomatal oscillations in Orange trees under natural climatic conditions [J]. Annals of Botany, 2006, 97(5):831–835
    [259] Sun Z J, Livingston N J, Guy R D, et al.. Stable carbon isotopes as indicators of increased water use efficiency an productivity in white spruce(Picea glauca(Moench)Voss seedlings[J].Plant Cell and Environment, 1996, 19(7):887-894
    [260] Tardieu F.& Simonneau T. Variability among species of stomatal control under fluctuationg soil water status and evaporative demand:modeling isohydric and anisohydric behaciors[J]. Journal of Experimental botany, 1998,49(3):419-432
    [261] Thomas D S, Turner D W. Banana (Musasp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding[J]. Scientia Horticulture, 2001, 90(1):93-108
    [262] Todd E Dawson, Stefania Mamblli, Agneta H Plamboeck, et al.. Stable isotopes in plant ecology [J]. Annual review of ecology and systematics, 2002, 33:507-559
    [263] Turner N C .Drought resistance and adaptation to water deficits in crop plants [M].In:Mussell H,Staples R C (eds). Stress physiology in cfrop plants. New York:John Wiley, 1979, 175-190
    [264] Turner N C. Adaptation to water deficits: a changing perspective [J]. Australian Journal Plant Physiology, 1986,13(2):175-190
    [265] Vanderklein D W, Wilkens R T, Anna Cartier, et al.. Plant Architecture and Leaf Damage in Bear Oak I: Physiological Responses [J]. Northeastern Naturalist, 2004, 11(3):343-356
    [266] Walker D A. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density [J]. Biological Sciences, 1989, 323(1216):313-325
    [267] Warrem C R. Why does photosynthesis decrease with needle age in Pinus pinaster? [J]. Trees, 2006, 20(2):157-164
    [268] Warren C R, Dreyer E, Adams M A. Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores [J]. Trees, 2003, 17(3):359-366
    [269] Warren C R, McGrath J F, Adam M A. Water availability and carbon isotope discrimination in conifers[J]. Oecologia, 2001, 127(4):426-486
    [270] Welker J M, Wookey P A, Parsons A N, et al.. Leaf carbon isotope discrimination and vegetative responses of Dryas octopetala to temperature and water manipulations in a High Arctic polar semi-desert,Svalbard [J]. Oecologia, 1993, 95(4):463-469
    [271] West J D, Peak D, Peterson J Q, et al.. Dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images [J]. Plant Cell and Environment, 2005, 28(5):633-641
    [272] Williams D G, Gempko V, Fravolini A, et al.. Carbon isotope discrimination by Sorghum biocolor under CO2 enrichment and drought [J]. New Phytologist, 2001, 150(2):285-293.
    [273] Wilson P J, Thompson K, Hodgson J. Specific leaf area and leaf drymatter content as alternative predictors of plant strategies [J]. New Phytologist, 1999, 143(1):155-162
    [274] Zhu L H, Peppel A V D, Li X Y,et al. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with orwithout paclobutrazol under drought conditions[J].Scientia Horticulturae, 2004, 99(2):133-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700