用户名: 密码: 验证码:
剩余产量模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的不断发展,全球人口数量的迅速增长,人们对于水产品的需求量日益增加,渔业在国民经济和社会发展中的地位愈来愈重要。然而海洋和内陆水域中的渔业资源并不是“取之不尽,用之不竭”的。过度的渔业捕捞和渔业生态环境的恶化使渔业资源日益衰竭,渔获产量持续下降。因此,为了合理利用渔业资源,实现我国渔业资源的可持续发展,就必须摸清渔业资源的具体状况,准确判断对资源的利用是开发不足、已充分利用或是利用过度。这些工作都有赖于渔业资源评估工作者对渔业资源做出评估,对渔业资源的数量动态进行预报,从而为渔业决策和渔业管理提供科学依据。
     剩余产量模型作为渔业资源评估领域中重要的资源评估模型之一,由于其简单易懂,所需数据量较少,一直为许多资源评估研究者所使用,因此得到了长足的发展。它是许多渔业主要的资源评估工具,特别是在一些金枪鱼研究机构中使用较多(例如国际大西洋金枪鱼保护组织(ICCAT),以及一些长须鲸的研究部门,例如东南太平洋渔业国际委员会(ICSEAF)。在渔业资源评估研究工作中,一个准确而又有效的评估模型的建立通常需要两个步骤:一是选择出一个适合的模型表达形式;二是尽可能准确地估算出模型中的各个参数。本论文主要以剩余产量模型为主要研究目标,研究了关于剩余产量模型的选择、参数的估计方法以及贝叶斯决策分析等问题。解答了关于剩余产量模型研究领域的若干问题,拓宽了剩余产量模型的研究视野,丰富了该类模型的理论基础,为剩余产量模型的更广泛应用提供了有益的贡献。
     本文首先采用AIC(Akaike Information Criterion)与BIC(Bayesian InformationCriterion)作为模型选择标准,以两类不同的剩余产量模型为操作模型,在四种白色噪音水平下模拟了三种典型渔业的数据。然后利用模拟的24种渔业类型的观测数据,分别用八种剩余产量模型对其进行评估,讨论了AIC和BIC在剩余产量模型选择中的应用。研究结果显示,对于所有模拟数据,AIC与BIC都准确地选择了最初产生它的“正确”的模型。所以AIC与BIC在剩余产量模型选择中是稳健有效。但是随着噪音水平的升高,这种效力将会减弱。以东海带鱼(Trichiurus japonicus)渔业为例,选择结果表明观测误差法的Schaefer剩余产量模型可以作为东海带鱼渔业资源评估最合适的模型。
     本文第三章研究了MA(Moving Average)在剩余产量模型中的应用,为剩余产量模型的有效利用提供了一种简洁的方法。研究结果表明MA可以有效缓解白色噪音对数据的影响从而显著地提高剩余产量模型的评估效果。
     随着现今计算机科技的快速发展,编入非平衡剩余产量模型的计算机软件得到了系统的应用。本文第四章以CEDA(Catch and Effort DataAnalysis)和ASPIC(A Surplus-Production Model Incorporate Covariates)两种计算机软件在东海带鱼渔业中的应用为主要内容,论述了两种软件的特点和对东海带鱼的评估。从而为这两种软件的进一步发展提供了实验范例。同时,也实现了应用计算机软件对东海带鱼渔业的资源评估。
     以上三章无论是通过计算机编程还是应用相关软件进行直接估算,都是应用传统的参数估计方法对数据进行分析,即平衡估计方法、过程误差法和观测误差法等方法。然而在目前的渔业资源评估中,当已有的渔业数据不能够提供足够的信息来对剩余产量模型的参数进行估算时,贝叶斯数理统计方法为这一问题提供了一个有效的解决方法。于是本文第五章同样以东海带鱼渔业为例,采用贝叶斯统计方法对Schaefer剩余产量模型的参数进行估计,并预测了在几种不同的捕捞方案下东海带鱼资源量和累计渔获量在未来十二年的变化情况。并对几种管理策略的实施情况进行了风险分析,从而提出了东海带鱼渔业预防性的管理措施,以期为科学管理东海带鱼资源提供理论依据。
     到目前为止,国内并没有关于AIC、BIC和MA在剩余产量模型中应用的文章,国内学者对剩余产量模型的研究一般都是基于对MSY最大可持续产量的估计以及对一些加入环境因子的剩余产量模型的验证。亦未见通过CEDA、ASPIC以及贝叶斯数理统计方法对东海带鱼渔业进行评估的记载。所以笔者拟通过本论文的研究,希望能为剩余产量模型的进一步发展提供理论基础,同时也为我国渔业资源的评估和管理提供一个有益的贡献。
With the continuous development of human society and the rapid growth of globalpopulation, there is a growing demand for aquatic products to feed the people. Fisheryplays an important role in the national economy and social development. However,the fishery resources in marine and inland waters are not infinite. Excessive fishingand deterioration of ecological environment have had negative impacts on the fisheryresources with declined yields. Therefore, in order to make a rational utilization offishery resources in China, we must get a clear understanding of our fishery resourcesand judge the utilization of the resource if they are under-exploited, or fully-exploitedor over-exploited. All of the work depends on the researchers on fishery resourcesassessment to evaluate the fishery biomass, and to forecast the fish populationdynamics, thus to provide a scientific basis for decision-making of fisherymanagement.
     As an important model in fish stock assessment, surplus production model has beenwidely used by many researchers for its simple form and less data requirement whichhas substantial development over the years. It has been used especially in some tunaresearch institutions (i.e. International Commission for the Conservation of AtlanticTunas (ICCAT)), and in some whales research institutions, such as the SoutheastPacific Fisheries International Committee (ICSEAF). There are usually two steps inbuilding an accurate and effective stock assessment model: first, selecting a suitableassessment model; second, estimating the parameters as accurate as possible in themodel. This thesis has focused on the surplus production model which includes theselection of surplus production models, parameter estimation methods and Bayesiandecision analysis. This work has answered some important questions in the field, haswidened the vision of research, and has enriched the theoretical basis of this type ofmodel, therefore has made useful contributions to the wider utilization of the model.
     Firstly, we used AIC (Akaike Information Criterion) and BIC (BayesianInformation Criterion) as a criterion of model selection. The simulated data are from three typical fisheries at four white noise levels with two operation models. In order toinvestigate the application of AIC and BIC in the selection of surplus productionmodels, eight surplus production models are used to evaluate the24fisheriessimulated data. Results show that for all of simulated data, AIC and BIC always selectthe correct model which simulates the data. Therefore, we may conclude that AIC andBIC are robust and effective in the selection of production models. However with theincreased white noise levels, the selection has became less effective. A case study ofHairtail (Trichiurus japonicus) fishery in the East China Sea showed that theobservation error Schaefer surplus production model may be the most appropriatemodel for this fishery.
     The third chapter studied the application of MA (Moving Average) in the surplusproduction models and provided a concise and effective method for the surplusproduction models. Results showed that MA can reduce the impact of the white noisein the data effectively and thus improve the accuracy of surplus production modelssignificantly.
     With the rapid development of computer technology, computer software packageswith non-equilibrium surplus production model are used widely today. The fourthchapter studied the application of software of CEDA (Catch and Effort Data Analysis)and ASPIC (A Surplus–Production Model Incorporate Covariates) on the Hairtail (Tjaponicus) fishery in the East China Sea, and discussed the characteristics of thesetwo softwares and conducted the assessment to the fishery. This work providedexamples of experiments for further development of these softwares. At the same time,we also have realized the application of computer software to the fishery in the EastChina Sea.
     Either by computer programming or applying software, the above three chapters allanalyzed the data with traditional parameter estimation methods, i.e. equilibriumestimation method, process error method and observation error method. However,when the existing fisheries data do not provide enough information for the parametersestimation of the production model, Bayesian statistics provides an effective solutionfor this problem. Therefore, chapter five took the Hairtail (T. japonicus) fishery in the East China Sea as an example and used Bayesian statistical method to estimate theparameters of Schaefer production model, and predicted the biomass and cumulatedcatch in several different schemes in the coming12years. Finally, risk analysis hasbeen made for the implementation of several management strategies, thus we proposeprecautious management measures for the fishery, so as to help for its scientificmanagement.
     So far, there is no publication on the application of AIC、BIC and MA in thesurplus production models in China, the study of surplus production models in Chinausually involved the estimation of the MSY and the validation of surplus productionwith environmental factors. There is also no record about using CEDA、ASPIC andBayesian statistics method to evaluate the Hairtail (T. japonicus) fishery in the EastChina Sea. Therefore with the work in this thesis, the author hopes to help the furtherdevelopment of surplus production models and to provide a useful contribution for thefishery assessment and management in our country.
引文
曹少鹏,刘群.把不确定性引入生物学参考点F0.1和Fmax的估计以评估东海带鱼渔业资源.南方水产,2007,3(2):42~48.
    陈卫忠,李长松,俞连福.用剩余产量模型专家系统(CLIMPROD)评估东海鲐鯵鱼类最大持续产量.水产学报,1997,21(4):404~408.
    程家骅,张秋华,李圣法,等.东黄海渔业资源利用.上海:上海科学技术出版社,2006.
    费鸿年.研究水产资源数理模式的发展和应用,国外海洋水产,1974,1:1~15.
    冯波,陈新军,许柳雄.印度洋黄鳍金枪鱼渔业资源开发策略评价农业系统科学与综合研究.农业系统科学与综合研究,2009,25(4):506~510.
    李纲,陈新军,官文江.基于贝叶斯方法的东、黄海鲐资源评估及管理策略风险分析.水产学报,2010,34(5):740~750.
    李纲,郑晓琼,朱国平,陈新军.基于水温因子的东、黄海鲐鱼剩余产量模型建立.上海海洋大学学报,2011,20(1):108~113.
    凌建忠,严利平,等.东海带鱼繁殖力及其资源的合理利用.中国水产科学,2005,12(6):726~730.
    刘群,任一平,王艳君,尤凯.青岛海洋大学学报,2003,33(2):206~210.
    倪建峰,刘群.剩余产量模型在不同渔业中的应用.海洋湖沼通报,2004,1:60~67.
    王继隆,李继龙,杨文波,李思亮.利用气候因子对Fox模型计算东海总经济鱼类CPUE的优化.中国水产科学,2011,18(1):136~142.
    王艳君.渔业种群亲体与补充量关系研究:[博士学位论文].山东青岛:中国海洋大学,2006.
    徐汉祥,刘子藩,等.伏季休渔条件下东海带鱼的亲体和补充量关系.渔业现代化,2011,38(1):64~68.
    严利平,胡芬,等.东海区带鱼伏击休渔效果及资源的合理利用.自然资源学报,2007,22(4):606~612.
    詹秉义.渔业资源评估.北京:农业出版社,1995.
    张月霞,苗振清.渔业资源的评估方法和模型研究进展.浙江海洋学院学报(自然科学版),2006,25(3):305~311.
    赵宪勇.黄海鳀鱼种群动力学特征及其资源可持续利用:[博士学位论文].山东青岛:黄海水产研究所,2006.
    郑芳,刘群,王艳君.环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究.南方水产,2008,4(2):15~20.
    Baranov, F.I. On the question of the biological basis of fisheries. Nauchn. Issled. IkhtologicheskiiInstitute Izvestia,1918,1:81~128(in Russian).
    Berger, J.O. An overview of robust Bayesian analysis. Published by Sociedad Espanola deEstodistica e Investgacion Operativa, Madrid, Spain.1994,3:5~124.
    Botsford, L.W., Castilla, J.C. and Peterson, C.H. The management of fisheries and marineecosystems. Science,1997,277:509~515.
    Butterworth, D.S. and P.A. Andrew. Dynamic catch-effort models for the hake stocks in ICSEAFDivisions1.3to2.2. Coll. Scient. Pap. Int. Comm. S.E. Atl. Fish.1984,11:29~58.
    Carbonell, A., and M. Azevedo. Application of non-equilibrium production models to the redshrimp (Aristeus antennatus, Risso,1816) fishery in the northwestern Mediterranean.Fisheries research,2003,65:323~334.
    Chen, Y. and D. Fournier. Impacts of atypical data on Bayesian inference and robust Bayesianapproach in fisheries. Canadian Journal of Fisheries and Aquatic sciences,1999,56:1525~1533.
    Chen, Y., P.A. Breen, and N.L. Andrew. Impacts of ourtliers and mis-specification of priors onBayesian fisheries stock assessment. Canadian Journal of Fisheries and Aquatic Sciences,2000,51:2673~2687.
    Chen, Y. Jiao, Y. and Chen, L. Q. Developing robust frequentist and Bayesian fish stockassessment methods. Fish and Fisheries,2003,4:105~120.
    Edwards, A.W.F.1972. Likelihood: An Account of the Statistical Concept of Likelihood and itsApplications to Scientific Inference. Cambridge University Press, Cambridge.
    Fletcher, R.I. On the restructuring of the Pella-Tomlinson system. Fishery Bulletin,1978,76:515~521.
    Fox, W.W. An exponential surplus-yield model for optimizing exploited fish populations.Transactions of the American Fish Society,1970,99:80~88.
    Fox, W.W. Fitting the generalized stock production model by least-squares and equilibriumapproximation. Fishery Bulletin,1975,73:23~37.
    Garrod, D.J. and J.W. Horwood. Whale management: strategy and risk-a comment. Pep. Int. Whal.Comm.1979,29:215~218.
    Gelman, A. et al.1995. Bayesian Data Analysis. London: John Wiley.
    Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis.2004.2nded.London: Chapman&Hall.
    Graham, M. Modern theory of exploiting a fishery and application to North Sea trawing. J. Cons.Int. Explor. Mer.1935,10:264~274.
    Gulland, J.A.1961. Fishing and the stocks of fish at Iceland. U.K. Minist. Agric. Fish. Food Fish.Invest. Ser.2, Vol.23(4).
    Hilborn, R. and C.J. Walters. Quantitative fisheryies stock assessment: Choice, dynamics anduncertainty. New York: Chapman Hall,1992.
    Hiborn, R. and M. Mangel. The ecological detective: confronting models with data. New Jersey,Princeton University Press,1997.
    Hoggarth, D.D. et al.2006. Stock assessment for fishery management. FAO fisheries technicalpaper487Rome.
    Kingsland, S. The refractory model: the logistic curve and the history of population ecology.Quarterly Review of Biology,1982,57:29~52.
    Lotka, A. J.1924. Elements of physical biology. Reprinted1956as “Elements of mathematiclbiology” by Dover Press. N.Y.465pp.
    Ludwig, D., C.J. Watlters, and J. Cooke. Comparison of two models and two estimation metodsfor catch and effort data. Natural Resource Modeling,1988,2:457~498.
    Ludwig, D. and C.J. Walters. A robust method for parameter estimation from catchand effort data.Canadian Journal of Fisheries and Aquatic Science,1989,46:137~144.
    Mace, P. M. A new role for MSY in single-species and ecosystem approaches to fisheries stockassessment and management. Fish and Fisheries,2001,2:2~32.
    McAllister, M.K, E.K. Pikitch, A.E. Punt and R. Hilborn. A Bayesian approach to stockassessment and harvest decisions using the sampling/importance resampling algorithm.Canadian Journal of Fisheries and Aquatic Sciences,1994,51:2673~2687.
    McAllister, M.K. and J.N. Ianelli. Bayesian stock assessment using catch-age data and thesampling-Importance resampling algorithm. Canadian Journal of Fisheries and AquaticSciences,1997,54:284~300.
    McAllister, M.K., Babcock, E.A. Pikitch, E.K. and Prager, M.H. Application of a non-equilibriumgeneralized production model to South and North Atlantic swordfish: combining Bayesianand demographic methods for parameter estimation. Coll. Vol. Sci. Pap. ICCAT,2000,51:1523~1551.
    Mendoza, J.J. and Larez, A. A biomass dynamics assessment of the south-eastern Caribeansnapper-grouper fishery. Fisheries Research,2004,66:129~114.
    Mohn, R.K. Bias and error propagation in logistic models. Canadian Journal of Fisheries andAquatic Science,1980,37:1276-1283.
    Munro, J.L.1980. Stock assessment models: applicability and utility in tropical small-scalefisheries. In: S.B. Saila and P.M. Roedel (eds.) Stock Assessment for Tropical Small-scaleFisheries. International Center Marine Resource Development, University of Rhode Island,Kingston.
    Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman.1996. Applied linear statisticalmodels. Chicago: Richard D. Irwin.
    Panhwar, S.K., Liu, Q. Khan, F. and Siddiqui, P. J. A. Maximum sustainable yield estimates ofLadypees, Sillago sihama (Forssk), Fishery in Pakistan, Using the ASPIC and CEDA Packages.Journal of Ocean University of China,2012,11(1):93~98.
    Pauly, D., Christensen, V. Guenette, S. Pitcher, T.J. Sumaila, R. Walters, C. J. Waston, R. andZeller, D. Towards sustainability in world fisheries. Nature,2002,418:689~695.
    Pearl, R. and L.J. Reed. A further note on the mathematical theory of population growth.Proceedings of the National Academy of Sciences of the U.S.A.1922,8:365~368.
    Pella, J.J. and Tomlinson, P. K. A generalized stock production model. Inter-American TropicalTuna Commission Bulletin,1969,13:419~496.
    Polacheck, T., Hilborn, R. and Punt, A. E. Fitting surplus production models: comparing methodsand measuring uncertainty. Canadian Journal of Fisheries and Aquatic Science,1993,50:2597~2607.
    Prager, M.H. A suite of extensions to a non-equilibrium surplus-production model. FisheryBulletin,1994,92:374~389.
    Prager, M.H.2005. A stock-Production model incorporating covariates (version.5) and auxiliaryprograms, CCFHR (NOAA) Miami laboratory document MIA-92/93-55, Beaufort LaboratoryDocument BL-2004-01.
    Press, W. H. et al.1989. Numerical recipes in Pascal: the art of scientific computing. London:Cambridge University Press.
    Punt, A.E. and R. Hilborn. Fisheries stock assessment and decision analysis: the Bayesianapproach. Reviews in Fish Biology and Fisheries.1997,7:35~63.
    Punt, A.E. and R. Hilborn. Fisheries stock assessment methods in fisheries User’s manual. FAOComputerized Information Series (Fisheries). No.12. Rome, FAO.2001.56pp.
    Roff, D. A. and D. J. Fairbairn. An evaluation of Gulland’s method for fitting the Schaefer model.Canadian Journal of Fisheries and Aquatic Science,1980,37:1229~1235.
    Russell, E.S. Some theoretical considerations on the overfishing problem. Journal du ConseilInternational pour l’Exploration de la Mer,1931,6:3~20.
    Schaefer, M.B. Some aspects of the dynamics of populations important to the management of thecommercial marine fisheries. Bulletin of the Inter-American Tropical Tuna Commission,1954,1:27~56.
    Schaefer, M.B. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropicalPacific Ocean. Bulletin of the Inter-American Tropical Tuna Commission,1957,2:247~285.
    Schnute, J. Improved estimates from the Schaefer production model: theoretical considerations.Journal of the Fisheries Research Board of Canada,1977,34:583-603.
    Su, Z.M. and Liu, Q. An integral Fox-form of observation-error model (IFOXOEM). FisheryResearch,1998,34:59~76.
    Uhler, R. Least squares regression estimates of the Schaefer production model:some Monte Carlosimulaton results. Canadian Journal of Fisheries and Aquatic Science,1979,37:1284~1294.
    Verhulst, P. E. Recherches mathematicques sur la loi d accroissement de la population. Mem. Acad.Roy. Belg.1845,18:1~38.
    Walters, C.J. Optimal harvest strategies for salmon in relation to environmental variability anduncertain production parameters. Canadian Journal of Fisheries and Aquatic Science,1975,32:1777~1784.
    Walters, C. J. and Hilborn, R. Adaptive control of fishing systems. Journal of the FisheriesResearch Board of Canada,1976,33:145-159.
    WANG, Y.J., L IU, Q. and YE, Z.J. A bayesian analysis on the anchovy stock (Engraulisjaponicus) in the Yellow Sea. Fisheries Research,2006,82(1-3):87~94.
    Yoshimoto, S. S., and Clarke, R. P. Comparing dynamic versions of the Schaefer and Foxproduction models and their application to lobster fisheries. Canadian Journal of Fisheriesand Aquatic Science,1993,50:181~189.
    曹少鹏,刘群.把不确定性引入生物学参考点F0.1和Fmax的估计以评估东海带鱼渔业资源.南方水产,2007,3(2):42~48.
    陈永利,王凡,等.东海带鱼(Trichiurus haumela)渔获量与邻近海域水文环境变化的关系.海洋与湖沼,2004,35(5):404~411.
    崔鹤.连续形Fox产量模型在模拟和实际渔业评估中的应用:[硕士学位论文].山东青岛:水产学院渔业资源,2008.
    凌建忠,严利平,等.东海带鱼繁殖力及其资源的合理利用.中国水产科学,2005,12(6):726~730.
    马永钧.东海群系带鱼亲体育补充量的关系.浙江水产学院学报,1989,8(2):79~85.
    宓崇道.东海带鱼资源状况、群体结构及繁殖特性变化的研究.中国水产科学,1997,4(1):7~14.
    王垚,徐汉祥.伏季休渔条件下东海带鱼资源评估:[硕士学位论文].浙江:海洋学院捕捞学,2010.
    王跃中,邱永松.东海带鱼渔获量变动原因分析.南方水产,2006,2(3):16~24.
    徐汉祥,刘子藩等.东海带鱼资源现状及管理对策.浙江水产学院学报,1994,13(1):5~11.
    徐汉祥,刘子藩,周永东.东海区带鱼限额捕捞的初步研究.浙江海洋学院学报,2003,22(1):1~6.
    薛频,罗秉征.东海带鱼种群动态管理与最优化开发策略.海洋与湖沼,1993,24(1):72~77.
    严利平,胡芬,等.东海区带鱼伏击休渔效果及资源的合理利用.自然资源学报,2007,22(4):606~612..
    郑芳,刘群,王艳君.环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究.南方水产,2008,4(2):15~20.
    Akaike, H.1973. Information theory and an extension of the maximum Likelihood principle.Budapest: International Symposium on Information Theory,2nd ed. Acadeemiai Kiadi,Budapest, Hugary. P.267~281.
    Akaike, H. Factor analysis and AIC. Psychometrika,1987,52:317~332.
    Burnham, K.P. and Anderson, D. R.2002. Model selection and multimodel inference: A practicalinformation-theoretic approach. NewYork: Springer-Verlag.
    Forster, M. R. Key Concepts in Model Selection: Performance and Generalizability. Journal ofMathematical Psychology,2000,44(1):205~231.
    Fournier, D.A. and Warburton, A.R. Evaluating fisheries management models by simulatedadaptive control-introducing the composite model. Canadian Journal of Fisheries andAquatic Science,1989,46:1002~1012.
    Fox, W. W. An exponential surplus-yield model for optimizing exploited fish populations.Transactions of the American Fish Society,1970,99:80~88.
    Gordon, G.N.G., Andrew, N.L. and Montgomery, S.S. Deterministic compartmental model for theeastern king prawn fishery in New South Wales. Marine and Freshwater Research,1995,46:793~807.
    Haddon, M., C. Mundy, and D. Tarbath. Using an inverse-logistic model to describe growthincrements of blacklip abalone (Haliotis rubra) in Tasmania. Fishery Bulletin,2008,106:58~71.
    Harvey, A.C. Forecasting Structural Time Series Models and the Kalmen Filter. CambridgeUniversity Press,1989.
    Hastie, T., Tibshirani, R. and Friedman, J.2001. The elements of statistical learning: Data mining,inference, and prediction. NewYork: Springer-Verlag.
    Kass, R. E., and Raftery, A. E. Bayes factors. Journal of the American Statistical Association,1995,90:773~795.
    Kimura, K.D. Stock-recruitment cures as used in the stock-reduction analysis model. J. Cons. Int.Explor. Mer.1988,44:253~258.
    Kinas, P.G. Bayesian fishery stock assessment and decision making using adaptive importancesampling. Canadian Journal of Fisheries and Aquatic Science,1996,53:414~423.
    Linhart, H., and Zucchini, W. Model selection. New York: Wiley.1986.
    Ludwig, D., Walters, C.J. and Cooke, J. Comparison of two models and two estimation methodsfor catch and effort data. Natural Resource Modeling,1988,2,457~498.
    Ludwig, D., and C.J. Walters. A robust method for Parameter estimation from catch and effort data.Canadian Journal of Fisheries and Aquatic Science,1989,46:137~144.
    McQuarrie, A.D.R., and Tsai, C.L.1998. Regression and time series model selection. Singapore:World Scientific.
    Myung, I. J. and Pitt, M. A. Applying Occam’s razor in modeling cognition: A Bayesian approach.Psychonomic Bulletin&Review,1997,4:79~95.
    Parzen, E., Tanabe, K. and Kitagawa, G.(Eds.)1998. Selected papers of Hirotugu Akaike. NewYork: Springer-Verlag.
    Pella, J. J. and Tomlinson, P. K. A generalized stock production model. Inter-American TropicalTuna Commission Bulletin,1969,13:419~496.
    Prager, M.H. A suite of extensions to a non-equilibrium surplus-production model. FisheryBulletin,1994,92:374~389.
    Prager, M.H. Comparison of logistic and generalized surplus-production models applied toswordfish, Xiphias glodius, in the North Atlantic Ocean. Fisheries Research,2002,58(1):41~47.
    Royall, R. M.1997. Statistical evidence: A likelihood paradigm.London: Chapman&Hall.
    Sakamoto, Y., M. Ishiguro. and G. Kitagawa.1986. Akaike Information Statistics. KTK ScientificPublishers, Tokyo and D. Reidel Publishing, Dordrecht.
    Schnute, J. Improved estimates from the Schaefer production model: theoretical considerations.Journal of the Fisheries Research Board of Canada,1977,34:583~603.
    Valpine, P.V. and Hastings, A. Fitting population models incorporating process noise andobservation error. Ecological Monographs,2002,72(1):57~76.
    Walters, C. J. and Hilborn, R. Adaptive control of fishing systems. Journal of the FisheriesResearch Board of Canada,1976,33:145~159.
    WANG, Y.J., L IU, Q. and YE, Z.J. A bayesian analysis on the anchovy stock (Engraulisjaponicus) in the Yellow Sea. Fisheries Research,2006,82(1-3):87~94.
    Wasserman, L. Bayesian model selection and model averaging. Journal of MathematicalPsychology,2000,44:92~107.
    Williams, E. H. and M. H. Prager. Comparison of equilibrium and nonequilibrium estimators forthe generalized production model, Canadian Journal of Fisheries and Aquatic Science,2002,59:1533~1552.
    Yoshimoto, S. S., and Clarke, R. P. Comparing dynamic versions of the Schaefer and Foxproduction models and their application to lobster fisheries. Canadian Journal of Fisheriesand Aquatic Science,1993,50:181~189.
    崔鹤,刘群,王艳君.连续型Fox剩余产量模型在渔业资源评估中的应用.南方水产,2008,4(2):34~42.
    谢丛波,范猛.种群服从Gompertz增长的数学生物经济模型的定性分析.东北师范大学报,2003,35(1):10~17.
    张广文,陈新军,李纲.东黄海鲐鱼生物经济模型及管理策略探讨.上海海洋大学学报,2009,18(4):447~452.
    朱玉贵,慕永通.渔业补贴、捕捞努力量与渔业总成本.中国渔业经济,2005,(3):9~11.
    Box, G.E.P. and G.M. Jenkins.1976. Time Series Analysis: Forecasting and Control. Holden Day,San Francisco.
    Fox, W. W. An exponential surplus-yield model for optimizing exploited fish populations.Transactions of the American Fish Society,1970,99:80~88.
    Francis, R.I.C.C. Use of risk analysis to assess fishery management strategies: A case studyusing orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand.Canadian Journal of Fisheries and Aquatic Science,1992,49:922-930.
    Gulland, J. A.1983. Fish stock assessment: A manual of basic methods. New York: John Wiley&Sons.
    Haddon, M.2011. Modelling and quantitative methods in fisheries.2ndedn. Chapman&Hall/CRC, New York, London,285~300.
    Hilborn, R. and Walters, C. J.1992. Quantitative fisheries stock assessment: Choice, dynamics,and uncertainty, London: Chapman&Hall.
    Holt, C. C. Forecasting seasonal and trends by exponentially weighted moving averages.International Journal of Forecasting,2004,20:5~10.
    Kinas, P. G. Bayesian fishery stock assessment and decision making using adaptive importancesampling. Canadian Journal of Fisheries and Aquatic Science,1996,53:414~423.
    Polacheck, T., Hilborn, R. and Punt, A. E. Fitting surplus production models: comparing methodsand measuring uncertainty. Canadian Journal of Fisheries and Aquatic Science,1993,50:2597-2607.
    Prager, M. H. A suit of extensions to a nonequilibrium surplus-production model. FisheryBulletin,1994,92:374~389.
    Prager, M.H. Comparison of logistic and generalized surplus-production models applied toswordfish, Xiphias glodius, in the North Atlantic Ocean. Fisheries Research,2002,58(1):41~47.
    Press, W. H.1989. Numerical recipes in Pascal: the art of scientific computing. London:Cambridge University Press.
    Schaefer, M. B. Some aspects of the dynamics of populations important to the management ofthe commercial marine fisheries. Bulletin of the Inter-American Tropical Tuna Commission,1954,1:27~56.
    Schnute, J. Improved estimates from the Schaefer production model: theoretical considerations.Journal of the Fisheries Research Board of Canada,1977,34:583~603.
    Walters, C. J. and Hilborn, R. Adaptive control of fishing systems. Journal of the FisheriesResearch Board of Canada,1976,33:145~159.
    Yoshimoto, S. S., and Clarke, R. P. Comparing dynamic versions of the Schaefer and Foxproduction models and their application to lobster fisheries. Canadian Journal of Fisheriesand Aquatic Science,1993,50:181~189.
    王垚,徐汉祥.伏季休渔条件下东海区带鱼资源动态分析.浙江海洋学院学报,2009,28(4):384~388.
    詹秉义.渔业资源评估.北京:农业出版社,1995.
    Haddon, M.2001. Modeling and quantitative methods in fisheries. Chapman&Hall, Boca Raton,Florida.406p.
    Hoggarth, D.D., Abeyasekera, S. Arthur, R. I. et al.2006. Stock assessment for fisherymanagement. FAO fisheries technical paper487Rome.
    Larkin, P. A. An epitaph for the concept of maximum sustainable yield. Transactions of theAmerican Fish Society,1977,106:1~11.
    Panhwar, S.K., Liu, Q. Khan, F. and Siddiqui, P. J. A. Maximum sustainable yield estimates ofLadypees, Sillago sihama (Forssk), Fishery in Pakistan, Using the ASPIC and CEDAPackages. Journal of Ocean University of China,2012,11(1):93~98.
    Pella, J. J.1967. A study of methods to estimate the Schaefer model parameters with specialreference to the yellow fin tuna fishery in the eastern tropical Pacific Ocean. Dissertation,University of Washington, Seattle.
    Prager, M. H.1992a. ASPIC: A Surplus-Production Model Incorporating Covariates. CollectedVolume of Scientific Papers, International Commission for the Conservation of AtlanticTunas (ICCAT).28:218~229.
    Prager, M. H.1992b. Recent developments in extending the ASPIC production model. ICCATWorking Document SCRS/92/127.10p.
    Prager, M. H., C. P. Goodyear, and G. P. Scott. Application of a surplus production model to aswordfish-like simulated stock with timechanging gear selectivity. Transactions of theAmerican Fisheries Society,1996,125:729~740.
    Prager, M. H., and C. P. Goodyear. Effects of mixed-metric data on production model estimation:simulation study of a blue-marlin-like stock. Transactions of the American Fisheries Society,2001,130:927~939.
    Prager, M. H. Comparison of logistic and generalized surplus-production models applied toswordfish, Xiphias gladius, in the North Atlantic Ocean. Fisheries Research,2002,58:41~57.
    Quinn II, T.J., and Deriso, R.B.1999. Quantitative Fish Dynamics. Oxford University Press, NewYork. U.S.A.
    Schaefer, M. B. Some aspects of the dynamics of populations important to the management of thecommercial marine fisheries. Bulletin of the Inter-American Tropical Tuna Commission,1954,1(2):27~56.
    Schaefer, M. B. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropicalPacific Ocean. Bulletin of the Inter-American Tropical Tuna Commission,1957,2:247~268.
    Shertzer, K. W., and M. H. Prager. Least median of squares: a suitable objective function for stockassessment models? Canadian Journal of Fisheries and Aquatic Science,2002,59:1474~1481.
    Williams, E. H., and M. H. Prager. Comparison of two estimators for the generalized productionmodel. Canadian Journal of Fisheries and Aquatic Science,2002,59:1533~1552.
    Younga, I.A.G. et al. Application of depletion methods to estimate stock size in the squid Loligoforbesi in Scottish waters (UK). Fisheries Research,2004,69:211–227.
    曹少鹏,刘群.把不确定性引入生物学参考点F0.1和Fmax的估计以评估东海带鱼渔业资源.南方水产,2007,3(2):42~48.
    李纲,陈新军,官文江.基于贝叶斯方法的东、黄海鲐资源评估及管理策略风险分析.水产学报,2010,34(5):740~750.
    汤银才. R语言与统计分析.北京:高等教育出版,2008.
    童玉和,陈新军,田思泉,等.渔业管理中生物学参考点的理论及其应用.水产学报,34(7):1040~1050.
    陶长琪.计量经济学.辽宁:东北财经大学出版社,2011.
    王垚,徐汉祥.伏季休渔条件下东海带鱼资源评估:[硕士学位论文].浙江:海洋学院捕捞学,2010.
    Annala, J.H.1993. Fishery assessment approaches in New Zealand’s ITQ system. In Kruse, G.,Eggers, D.M., Marasco, R.J., Pautzke, C. and Quinn, T.J. II, eds., Proc. Int. Symp.Management Strategies for Exploited Fish Populations. Fairbanks: University of Alaska SeaGrant College Program Rep. No.93-02, pp.791-805.
    Berger, M.O., and Butterworth, D.S. Towards rational harvesting of the South African anchovyconsidering survey imprecision and recruitment variability. In: A.I.L. Payne, J.A. Gullandand K.H. Brink (editors), The Benguela and Comparable Ecosystems. South Africa Journalof Marine Science,1987,5:937-951.
    Chen, Y., P.A. Breen and N.L. Andrew. Impacts of outliers and mis-specification of priors onBayesian fisheries stock assessment. Canadian Journal of Fisheries and Aquatic Sciences,2000,51:2673~2687.
    Edwards, A. W. F. Likelihood: An account of the statistical concept of likelihood and itsapplication to scientific inference. London: Cambridge University Press.1972.
    Ennis, G.P. and Fogarty, M.J. Recruitment overfishing reference point for the American lobster,Homarus americanus. Marine and Freshwater Research,1997,48:1029~1034.
    Francis, R.I.C.C. and R. Shotton.“Risk” in fisheries management: a review. Canadian Journal ofFisheries and Aquatic Science,1997,54:1699~1715.
    Gelman, A., J. B. Carlin. H. S. Stern. and D. B. Rubin. Bayesian data analysis.2004.2nded.London: Chapman&Hall.
    Graham, M. Modern theory of exploiting a fishery and application to North Sea trawling. J. Cons.Int. Explor. Mer.1935,10:264~274.
    Haddon M. Modelling and quantitative methods in fisheries.2ndedn. Chapman&Hall/CRC,2011,285~300.
    Hilborn, R. and C.J. Walters. Quantitative fisheries stock assessment: Choice, dynamics anduncertainty. New York: Chapman&Hall,1992.
    Hilborn, R., K.E. Pikitch and McAllister K.M. A Bayesian estimation and decision analysis foran age-structured model using biomass survey data. Fisheries Research,1994,19:17~30.
    Hoening, J.M., W.G. Warren, and M. Stocker. Bayesian and related approaches to fitting surplusproduction models. Canadian Journal of Fisheries and Aquatic Sciences,1994,51:1823~1831.
    Ludwig, D., and C.J. Walters. Are age-structured models appropriate for catch-effort data?Canadian Journal of Fisheries and Aquatic Sciences,1985,42:1066~1072.
    Ludwig, D., and C.J. Walters. A robust method for Parameter estimation from catch and effortdata. Canadian Journal of Fisheries and Aquatic Sciences,1989,46:137~144.
    McAllister, M. K., Kirkwood, G. P.,1998. Bayesian stock assessment: a review and exampleapplication using the logistic model. ICES J, Journal of Marine Science,55,1031-1060.
    McAllister, M.K., Babcock, E.A., Pikitch, E.K., Prager, M.H.,2000. Application of anon-equilibrium generalized production model to South and North Atlantic swordfish:combining Bayesian and demographic methods for parameter estimation. Coll, Vol. Sci. Pap.ICCAT51,1523~1551.
    Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied linear statistical models.Chicago: Richard D. Irwin.1996.
    Sainsbury, K.1998. Living marine resource assessment for the21stCentury: what will be neededand how will it be provided? In: Funk, F., Quinn II, T. J., Heifetz, J., Ianelli, J. N., Powers, J.E.,
    Schaefer M B. Some aspects of the dynamics of populations important to the management of thecommercial marine fisheries. Bull Int Am Trop Tuna Commun,1954,1:27~56.
    Schweder, T. Fisherian or Bayesian methods of integrating diverse statistical information?Fisheries. Fisheries Research (Amst.),1998,37:61~75.
    Smith, A.F.M. Bayesian computational methods. Trans. R. Soc. Lond A.1991,337:369~386.
    Press, W. H. et al. Numerical recipes in Pascal: the art of scientific computing. London:Cambridge University Press.1989.
    Punt, A. E., and R. Hiborn. Fisheries stock assessment and decision analysis: The Bayesianapproach. Reviews in Fish Biology and Fisheries,1997,7:35~63.
    Punt, A.E. and R. Hilborn. Bayesian stock assessment methods in fisheries User’s manual. FAOComputerized Information Series (Fisheries). No.12. Rome, FAO.2001.56p.
    Walters C J, Hilborn R. Adaptive control of fishing systems. Journal of the Fisheries ResearchBoard of Canada,1976,33:145~159.
    Walters,C.J.and Ludwig,D.Calculation of Bayes posterior probability distribution for keypopulation parameters:a simplified approach.Canadian Journal of Fisheries and AquaticSciences,1994,51:713~722.
    WANG, Y.J., L IU, Q. and YE, Z.J. A bayesian analysis on the anchovy stock (Engraulisjaponicus) in the Yellow Sea. Fishery Bulletin,2006,82(1-3):87~94.
    曹少鹏,刘群.把不确定性引入生物学参考点F0.1和Fmax的估计以评估东海带鱼渔业资源.南方水产,2007,3(2):42~48.
    李刚,陈新军.夏季东海渔场鲐鱼产量与海洋环境因子的关系.海洋学研究,2009,27(1):1~8.
    李刚,郑晓琼,朱国平,陈新军.基于水温因子的东、黄海鲐鱼剩余产量模型建立.上海海洋大学学报,2011,20(1):108~113.
    汤银才. R语言与统计分析.北京:高等教育出版,2008.
    张广文,陈新军,李纲.东黄海鲐鱼生物经济模型及管理策略探讨.上海海洋大学学报,2009,18(4):447~452.
    朱立新,李丽芳,梁振林.不确定性对北部湾二长棘鲷渔业资源评估影响的模拟研究.广东海洋大学学报,2009,29(1):36~43.
    Abuanza, P., Celso Farina, A. and Murta, A. Applying biomass dynamic models to the southernmackerel stock (Atlantic waters of Iberian Peninsula): a comparison with VPA-basedmethods. Scientia Marina,2003,67(Suppl.1):291~300.
    Aitchison, J. Goodness of prediction fit. Biometrika,1975,62:547~554.
    Dennis, B. Discussion: Should ecologists become Bayesians? Ecological Applications,1996,6:1095~1103.
    Eric-Jan, W. and Simon, F. Model selection using Akaike weights. Psychonomic Bulletin&Review,2004,11(1):192~196.
    Fairbairn, D. J. and D. A. Roff. Testing Genetic Models of Isozyme Variability WithoutBreeding Data: Can we Depend on the χ2? Canadian Journal of Fisheries and AquaticSciences,1980,37(7):1149~1159.
    Franz, J.M. and Bernard, A.M. Using multi-species surplus production models to estimateecosystem-level maximum sustainable yields. Fisheries Research,2006,81(2-3):189~201.
    Haddon M. Modelling and quantitative methods in fisheries.2ndedn. Chapman&Hall/CRC,2011,285~300.
    Hilborn, R. and M. Mangel.1997. The ecological detective: confronting models with data. NewJersey, Princeton: Princeton University Press.
    Kass, R.E. and Raftery, A. E. Bayes factors. Journal of the American Statistical Association,1995,90:773~795.
    Larkin, P. A. An epitaph for the concept of maximum sustainable yield. Transactions of theAmerican Fish Society,1977,106:1~11.
    Ludwig, D. and C.J. Walters. Are age-structured models appropriate for catch-effort data?Canadian Journal of Fisheries and Aquatic Sciences,1985,42:1066~1072.
    Ludwig, D. and C.J. Walters. A robust method for Parameter estimation from catch and effortdata. Canadian Journal of Fisheries and Aquatic Sciences,1989,46:137~144.
    Panhwar, S.K., Liu, Q. Khan, F. and Siddiqui, P.J.A. Maximum sustainable yield estimates ofLadypees, Sillago sihama (Forssk), Fishery in Pakistan, Using the ASPIC and CEDAPackages. Journal of Ocean University of China,2012,11(1):93~98
    Punt, A.E. The performance of a production-model management procedure. Fisheies Research,1995,21:349~374.
    Roff, D. A. and D. J. Fairbairn. An evaluation of Gulland’s method for fitting the Schaefer model.Canadian Journal of Fisheries and Aquatic Sciences,1983,37:1229~1235.
    Sissenwine, M.P. and J.G. Shepherd. An alternative perspective on recruitment overfishing andbiological reference points. Canadian Journal of Fisheries and Aquatic Sciences,1987,44:913~918.
    Valpine, P.D. and A. Hastings. Fitting population models incorporating process noise andobservation error. Ecological Monographs,2002,72:57~76.
    Wang, Y.J. and Q. Liu. Comparison of Akaike information criterion (AIC) and Bayesianinformation criterion (BIC) in selection of stock–recruitment relationships. FisheriesResearch,2006,77:220~225.
    Wei, Pan. Akaike’s Information Criterion in Generalized Estimating Equations. March2001.BIOMETRIC5S7,120~125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700