用户名: 密码: 验证码:
贝类全基因组选择技术建立及其在扇贝育种中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贝类海水养殖是中国的海水养殖的主导产业之一。为了提高贝类生产产量,多性状最佳线性无偏预测(Best Linear Unbiased Prediction, BLUP)选择育种已经被引入到贝类养殖工作中。随着越来越多的遗传和表型信息的积累,如何迅速和有效地将这些信息应用在贝类养殖和育种工作中巳经显得日益重要。基因组选择(Genomic Selection, GS)通过高密度的单核苷酸多态性(Single NucleotidePolymorphism, SNP)的标记计算出基因组育种值,现己被广泛应用于家畜动物和植物物种的育种工作中。最近的研究成果表明,在育种中的应用全基因组选择St遗传改良工作具有革命性的推动作用。本论文分为四个部分:基因组亲缘关系矩阵的构建与真实亲缘关系的计算,全基因组选择软件MixP与gsbay,贝类全基因组选择遗传育种评估与分析平台的构建以及全基因组选择在扇贝育种中的应用。
     第一部分,提出了一种基于SNP分子标记基因型构建的、适用于衡量水产动物全同胞家系个体之间真实亲缘关系的T矩阵,并通过模拟的数据考察了其与G矩阵、传统的A矩阵在计算个体之间的亲缘相关系数时的差异。虽然T矩阵并不完全适用于估计遗传力与育种值的算法,使用T矩阵在基因组最佳线性无偏预测(Genomic BLUP, GBLUP)中估计育种值的准确性不如G矩阵,但其所估计的两个有亲缘相关关系个体之间的相关系数是由基因组范围分子标记的基因型推算出的精确值,其取值范围在(0.41,1.0)左右,能比A矩阵和G矩阵更好的描述相关关系。
     第二部分,使用模拟数据比较了两种通过高密度的SNP标记计算出基因组估计育种值(Genomic Estimated Breeding Values, GEBV)的全基因组选择算法,即MixP和gsbay,与GBLUP法在计算基因组估计育种值上的准确性。结果表明,MixP和gsbay都能通过分析运算较准确的估计出基因组估计育种值,并且它们估计准确度的期望均高于GBLUP方法。gsbay比MixP的准确度稍高,而MixP的运算速度比gsbay快,且更适用于影响性状的数量性状基因座(Quantitative Trait Loci, QTL)个数较少时的情况。
     第三部分,论述了加入GBLUP运算模块到自丨:丌发贝类遗传育种分析评估系统的方案,完成了调用DMU软件进行GBLUP分析功能的嵌入,并整合了扇贝种质资源数据库管理系统,记录和管理贝类的生长性状、繁殖性状、抗逆性状的测量数据以及群体特征、养殖环境和遗传信息;并利用这些信息通过上述模块进行贝类选择育种、遗传性状解析,并能计算遗传力、表型相关、近交系数和育种值,制定选种配种方案以指导选种。
     第四部分,使用了98个具有基因型信息与表型记录的栉孔扇贝(CWawp
     全同胞家系真实数据对平台进行了可行性检测,结果表明MixP与gsbay两者均可应用于全基因组选择的实际工作中,在贝类育种工作中展开全基因组选择分析已现实可行。
Scallop mariculture is one of the leading industries of sea-farming in China.Aiming at improvement of scallop production, multi-trait selection using best linerunbiased prediction (BLUP) has been introduced to scallop breeding. Withaccumulation of more and more genetic and phenotypic information, there is a needfor rapid and eiffcient utilization of this information to assist in scallop breeding.Genomic selection (GS)? in which selection decisions are made on genomic breedingvalues predicted from high-density single nucleotide polymorphic (SNP) markers,iswidely used in livestock animals and plants species. Recent researches demonstratedthat applying GS in breeding is revolutionizing the genetic improvement.
     Firstly, this paper proposed a method to construct the T matrix using thegenotypes of SNP molecular markers to assess the real kinship between full-sibindividuals of aquatic animals, and compared it with the C-matrix and the traditionalA-matrix in calculating the correlation coefifcient between individuals withsimulation data. Currently T matrix is not fully applicable to the algorithms thatestimate the heritability and breeding values, and the accuracy of genomic estimatedbreeding value (GEBV) calculated using T-matrix in genomic BLUP (GBLUP) waslower than the G-matrix one, but it could estimate the real correlation coefifcientbetween related individuals with genome-wide molecular markers in the range of(0.41,1.0), which could be a better description than the A-matrix one and theG-matrix one.
     Subsequently, this study considered two methods, MixP and gsbay,to carry outgenomic selection (GS) analysis using simulated data. The analysis resultsdemonstrated excellent performance and showed that both methods are able toobtain more accurate predictions of GEBV and marker effects in comparison withtraditional genomic selection methods based on GBLUP. The main advantage ofMixP and gsbay is to assume the prior distribution of single nucleotidepolymorphism (SNP) marker effects to be a mixture of two normal distributions inorder to improve accuracy and accelerate the analysis for the high-dimensional data.
     The study then upgraded the Analysis and Evaluation System for ShellfishGenetic Breeding by equipping it with GBLUP computing modules. And a new system, the Genomic Analysis and Evaluation System tor Shelltish Genetic Breeding, was build to apply genomic selection by calling MixP and gsbay.
     Afterwards, this study utilized the real data of a full-sib family with98Zhikong scallop (Chlamys farreri) individuals, with both genotype and phenotype records, to test the feasibility of the GS platform. The results indicated that gsbay is more robust, while MixP computes much faster, and both MixP and gsbay can be applied to the actual work of genomic selection:it is feasible to carry out GS in scallop breeding.
引文
[1]王如才.我国海产贝类养殖进展及发展前景.中国海洋大学学报(自然科学版),2004,34(5):775-780.
    [2]刘小林.重要经济贝类选择育种及遗传力研究进展.海洋科学,2003,27(6):15-20.
    [3] Chanley P E. Inheritance of shell marking and growth in the hard clam,Mercenaria mercenaria. Proc Atl Shellfish Assoc,1961,50:163-169.
    [4] Gallivan T, Allen S. The clam breeding project: Building a better clam. TheVirginia Institute of Marine Science: the first annual Northeast AquacultureConference and Exposition,1998,76.
    [5] Hershberger W K, Perdue J A, Beattie J H. Genetic selection and systematicbreeding in pacific oyster culture. Aquaculture,1984,39:237-245.
    [6] Crenshaw J W Jr, Heffeman P B, Walker R L. Heritability of growth rate in thesouthern Bay scallop, Argopecten imadians concentricus. Journal of ShellfishResearch,1991,10(1):55-63.
    [7] Toro J E, Newkirk G F. Divergent selection for growth rate in the Europeanoyster Ostrea edulis: Response to selection and estimation of geneticparameters. Marine ecology progress series. MAR ECOL,1990,62(3):219-227.
    [8] Toro J E, Newkirk G F. Aquatic living resources/Resources vivantes aquatiques.Nantes,1991,4(2):101-108.
    [9] Toro J E, Aguila P, Vergara A M, et al. Realized heritability estimates for growthfor data on hagged Chilean native oyster (Ostrea chilensis). WorldAquaculture,1994,25(2):29-30.
    [10]Losee E. Influence of heredity on larval and spat growth in Proceeding of theninth annual meeting, World mariculture Society,1978,101-107.
    [11] Newkirk G F, Hahley L E, Wuagh D L, et al. Genetics of larvae and spat growthrate in the oyster, Crassostrea virginica. Mar Biol,1977,41:49-52.
    [12]Newkirk G F. Review of the genetics and the potential for selective breeding ofcommercially important bivalves. Aquaculture,1980,19:209-228.
    [13]Allen S K Jr, Gaffney P M. Cooperative oyster breeding project. Journal ofShellfish Research,1998,17(4):230-235.
    [14]Wada K T. Genetic selection for shell traits in Japanese pear oyster, Pinctadafucata martensii. Aquaculture,1986,57(1-4):171-176.
    [15]Yang H, Zhang T, Wang J, et al. Growth characteristics of Chlamys farreri andits relation with environmental factors in intensive raft-culture areas ofSishiliwan Bay, Yantai. Journal of Shellfish Research,1999,18(1):71-76.
    [16]Fang J, Sun H, Yah J, et al. Polyeulture of scallop Chlamys farreri and kelpLaminaria japonica in Sungo Bay. Chinese Journal of Oceanology andLimnology.1996,14(4):322-329.
    [17]程支中,李龙秀.基于生物杂交育种理论构建企业核心竞争力.商场现代化,2008(8):66-68.
    [18]Guo X, DeBrosse G A, Allen S K Jr. All-triploid Pacific oysters (Crassostreagigas Thunberg) produced by mating tetraploids and diploids. Aquaculture,1996.142(3-4):149-161.
    [19]Hedgecock D, Davis J. Improving pacific oyster brood stock throughcrossbreeding. J Shellfish Res,2000,19:614-615.
    [20]汪德耀,刘汉英.牡蛎人工杂交的初步研究.动物学报,1959,11(3):283-295.
    [21]周茂德,高允田,吴融.太平洋牡蛎与近江牡蛎、褶牡蛎人工杂交的初步研究.水产学报,1982,6(3):235-241.
    [22]Leighton D L, Lewis C A. Experimental hybridization in abalones. InternationalJournal of Invertebrate Reproduction,1982(5),273-282.
    [23]燕敬平,孙慧玲,方建光.日本盘鲍与皱纹盘鲍杂交育种技术研究.海洋水产研究,1999(1):35-39.
    [24]柯才焕,田越,周时强,等.杂色鲍与皱纹盘鲍、盘鲍杂交的初步研究.海洋科学,2000,24(11):39-41.
    [25]张起信,牛明宽,刘光穆,等.鲍的杂交育种高产技术研究.海洋科学,2000,24(3):11-13.
    [26]孙振兴,宋志乐,郑志芳,等.日本大鲍与皱纹盘鲍杂交的研究.齐鲁渔业,2001,18(3):25-27.
    [27]欧俊新.福建沿海杂交鲍育苗技术研究.海洋水产研究,2002,23(3):5-9.
    [28]Heath W A. Developments in shellfish culture in British Columbia. Journal ofshellfish Research,1995,14(1):228.
    [29]Cruz P, Ramirez J L, Garcia G A, et al. Genetic differences between twopopulations of catarina scallop (Argopecten ventricosus) for adaptations forgrowth and survival in a stressful environment. Aquaculture,1998.166(3-4):321-335.
    [30]Stanley J G, Allen S K Jr, Hidu H. Polyploidy induced in the American oysterCrassost rea vi rginica with cytochalasin B. Aquaculture,1981(23):1-10.
    [31]张红云,严正凛.多倍体经济贝类的育种研究现状.生物技术通报,2008(增刊):48-52.
    [32]Guo X, Allen S K Jr. Viable tetraploids in the Pacific oyster (Crassostrea gigasThunberg) produced by inhibiting polar body I in eggs from triploids. Mol.Mar. Biol. Biotechnol,1994(3):42-50.
    [33]杨爱国,王清印,张岩,等.栉孔扇贝三倍体与二倍体的生长比较.海洋科学,2000,24(8):21-23.
    [34]Tabarini C L. Induced triploidy in the bay scallop, Argopecten irradians, and itseffects on growth and gametogenesis. Aquaculture,1984,42(2):151-160.
    [35]常亚青,相建海,张国范,等.虾夷扇贝三倍体诱导与培育技术的研究.中国水产科学,2001,8(1):18-22.
    [36]孙振兴,李诺,宋志乐,等.皱纹盘三倍体诱导条件及其室内饲育试验.水产学报,1993,17(3):243-248.
    [37]王爱民,阎冰,叶力,等.6-DMAP诱导马氏珠母贝三倍体.广西科学,1999,6(2):148-151.
    [38]吕振明,柴雪良,刘保忠等.文蛤二倍体和三倍体染色体核型分析.中国水产科学,2003,10(6):519-522.
    [39]王昭萍,李慷均,于瑞海,等.贝类四倍体育种研究进展.中国海洋大学学报(自然科学版),2004,34(2):195-202.
    [40]Stiles S. Conventional and experimental approaches to hybridization andinbreeding research in the oyster. In: Proceedings of the annual meeting-World Mariculture Society.1978,9(1-4),577-586.
    [41]Stiles S, Cromanski J, Longwell A. Cytological appraisal of prospects forsuccessful gynogenesis parthenogenesis, and androgenesis in the oyster. In:International Council for the Exploration of the Sea,1983.
    [42]Ma A P H. Cytogenesis induction in the Pacific oyster (Crassostrea gigasThunberg) using ultraviolet light and cytochalasin B:[D]. Seattle, USA:University of Washington,1987.
    [43]Guo X, Hershberger W K, Cooper K, et al. Artificial gynogenesis withultraviolet light-irradiated sperm in the Pacific oyster Crassostrea gigas I. In:Induction and survival. Aqua,1993(113):201-214.
    [44]Goswami U. Induction of gynogenetic haploid in oyster Crassostrea gigas usingultraviolet irradiated sperm. Indian J Mar Sci,1993(22):146-148.
    [45]Li Q. Osada M. Kashihara M Induction of gynogenetic diploids and cytologicalstudies in the Pacific oyster Crassostrea gigas. Suisanzoshoku,2000,48(2):185-191.
    [46]Arai K, Naito F, Sasaki H, et al. Gynogenesis with ultraviolet ray irradiatedsperm in Pacific abalone. Bull Jap Soc Sci Fish,1984,52(3):417-422.
    [47]Fujino K, Arai K, Iwadare K, et al. Induction of gynogenetic diploid byinhibiting2nd meiosis in the Pacific abalone. Bull Jap Soc Sci Fish,1990,56:1755-1763.
    [48]Kijima A. Effect of UV irradiation on genetic inactivation of sperm usingmarketing tissue culture petri dish in the Pacific abalone Haliotis discushannai. Agric Res,1992,42:73-81.
    [49]Li Q, Osada M, Kashihara M, et al. Effects of ultraviolet irradiation on geneticalinactivation and morphological structure of sperm of the Pacific abaloneHaliotis discus hannai. Agricul Res,1999,50(1-2):1-10.
    [50]Fairbrother J E. Viable gynogenetic diploid Mytilus edulis (L.) larvae producedby ultraviolet light irradiation and cytochalasin B shock. Aquac,1994,126:25-34.
    [51]Scarpa J, Komaru A, Wada K T. Gynogenetic induction in the mussel, Mytilusgalloprovincialis. Bull Natl Res Inst Aquac,1994,23:33-41.
    [52]潘英,李琪.海洋贝类雌核发育研究进展和展望.水产学报,2002,26(5):465-471.
    [53]Crenshaw J W Jr, Heffernan P B, Walker R L. Heritability of growth rate in thesouthern Bay scallop, Argopecten irradians concentricus Say,1822. Journal ofShellfish Research,1991,10(1):55-63.
    [54]Newkirk G F, Haley L E. Selection for growth rate in the European oyster,Ostrea edulis: Response of second generation groups. Aquaculture,1983,33(1-4):149-155.
    [55]Innes D J, Hadley L E. Genetic aspects of larval growth under reduced salinityin Mytilus edulis. Biol Bull,1977,153(2):312-321.
    [56]Wada K T. Genetic selection for shell traits in Japanese pear oyster, Pinctadafucata martensii. Aquaculture,1986,57(1-4),171-176.
    [57]Ruzzante D E, Newkirk G F. Selection for growth rate in the European oyster,Ostrea edulis: A multivariate approach. Aquaculture,1990,13(2-3):47-58.
    [58]Ibarra A M, Ramirez J L, Ruiz C A, et al. Realized heritabilities and geneticcorrelation after dual selection for total weight and shell width in catarinascallop (Argopecten ventricosus). Aquaculture,1999,175(3-4):227-241
    [59]Losee E. Influence of heredity on larval and spat growth in Crassostreavirginica. In: Proceedings of the annual meeting-World Mariculture Society.1978,9(1-4):101-107.
    [60]孔杰,金武,栾生.水产动物选择育种的近交分析.自然科学进展,2009,19(9):917-923.
    [61]Bondari K, Dunham R A. Effects of inbreeding on economic traits of channelcatfish. Theoretical and Applied Genetics,1987,74(1):1-9.
    [62]Gallardo J A, Garc X, Lhorente J P, et al. Inbreeding and inbreeding depressionof female reproductive traits in two populations of Coho salmon selected usingBLUP predictors of breeding values. Aquaculture,2004,234(1-4):111-122.
    [63]Pante M J R, Gjerde B, McMillan I. Effect of inbreeding on body weight atharvest in rainbow trout, Oncorhynchus mykiss. Aquaculture,2001,192(2-4):201-211.
    [64]Rye M, Mao I L. Nonadditive genetic effects and inbreeding depression forbody weight in Atlantic salmon (Salmo salar L.). Livestock ProductionScience,1998,57(1):15-22.
    [65]Langdon C, Evans F, Jacobson D, et al. Yields of cultured Pacific oystersCrassostrea gigas Thunberg improved after one generation of selection.Aquaculture,2003,220(1-4):227-244.
    [66]Naciri-Graven Y, Launey S, Lebayon N. Influence of parentage upon growth inOstrea edulis: Evidence for inbreeding depression. Genet Res, Camb (2000),76:159-168.
    [67]Keys S J, Crocos P J, Burridge C Y, et al. Comparative growth and survival ofinbred and outbred Penaeus (marsupenaeus) japonicus, reared undercontrolled environment conditions: indications of inbreeding depression.Aquaculture,2004,241(1-4):151-168.
    [68]张沅.家畜育种学.北京:中国农业出版社,2001:30-31.
    [69]Fisher R A. Statistical Methods for Research Workers. Edinburgh: Oliver andBoyd,1925.
    [70]Henderson C R. Estimation of variance and covariance components. Biometrics.1953(9):226.
    [71]Henderson C R. Selection index and expected genetic advance. StatisticalGenetics and Plant Breeding. Natl. Acad. Sci.-Natl. Res. Council Publ.1963(982):141-163.
    [72]Henderson C R. Sire evaluation and genetic trends. In: Proc. Of Anim. Breedingand Genet. Symp. In Honor of Dr. Jay L. Lush.1973. ASAS and ADSA,Champaign, IL.10-41.
    [73]Henderson C R. Best linear unbiased estimation and prediction under a selectionmodel. Biometrics,1975,31(2):423-447.
    [74]Hartley H O, Rao J N K. Maximum-likelihood estimation for the mixed analysisof variance model. Biometrika.1967.54(1-2):93-108.
    [75]Patterson H D, Thompson R. Recovery of inter-block information when blocksizes are unequal. Biometrika.1971.58(3):545-554.
    [76]Rao C R. Estimation of variance and covariance components-MINQUE theory.Journal of Multivariate Analysis.1971.1(3):257-275.
    [77]LaMotte L. Quadratic estimation of variance components. Biometrics,1973.29(2):311-330.
    [78]Gianola D, Fernando R. Bayesian methods in animal breeding theory. Journal ofAnimal Science,1986.63(1):217.
    [79]Reverter A. Method R: A Procedure for the Estimation of Variance andCovariance Components:[PhD. Dissertation]. Fort Collins: Colorado StateUniversity,1994
    [80]Van Tassell C P, Van Vleck L D, Gregory K E. Bayesian analysis of twinningand ovulation rates using a multiple-trait threshold model and Gibbs sampling.Journal of Animal Science,1998,76(8):2048-2061.
    [81]董沾健,赵耐青,林燧恒. REML法和Bayesian法对小样本不平衡单因素随机效应模型方差成分估计的模拟比较分析.中国卫生统计,2009,26(1):35-40.
    [82]Johnson D L, Thompson R. Restricted Maximum Likelihood Estimation ofVariance Components for Univariate Animal Models Using Sparse MatrixTechniques and Average Information. Journal of Animal Science,1995,78(2):449-456
    [83]黄冬维,张元跃,谭伟明. BLUP法在畜禽育种中的应用.中国畜禽种业,2008,4(8):66-68.
    [84]俞渭江,洪振中.种公牛选择方法研究—应用最优线性无偏估计乳用公牛育种值的方法.中国农业科学,1984(5):77-83.
    [85]刘松元,柳楠,李冀钊,等.利用重复记录预测公牛产奶量育种值.吉林农业科学,1986(4):63-67.
    [86]周欢敏,李金泉,刘少卿等.动物模型BLUP法评定内蒙古白绒山羊的遗传趋势.遗传,2000,22(5):298-300.
    [87]夏宣炎,熊远著.应用动物模型BLUP方法估计猪个体育种值研究.华中农业大学学报,2000,19(2):142-146.
    [88]Gjoen H M, Gjerde B. Comparing breeding schemes using individualphenotypic values and BLUP breeding values as selection criteria. In:Proceedings of the6th World Congress on Genetics Applied to LivestockProduction, University of New England, Armidale, New South Wales,Australia,1998(27):111-114.
    [89]Gall G, Bakar Y. Application of mixed-model techniques to fish breedimprovement: analysis of breeding-value selection to increase98-day bodyweight in tilapia. Aquaculture,2002,212(1-4):93-113.
    [90]Gall G, Bakar Y, Famula T. Estimating genetic change from selection.Aquaculture,1993,111(1-4):75-88.
    [91]栾生,孔杰,王清印,等.水产动物育种分析与管理系统的开发和应用.海洋水产研究,2008,29(3):92-100.
    [92]杜美荣,方建光,毛玉泽,等.栉孔扇贝春季升温育苗与保苗技术研究.南方水产,2009,5(2):40-44.
    [93]Boldman K G, Kriese L A, VanVleck L D. A manual for use of MTDFREML: Aset of programs to obtain estimates of variances and covariances. U. S. Dept.of Agriculture, Agricultural Research Service,1995.
    [94]Madsen P, Jensen J. DMU: A package for analyzing multivariate mixed models.Denmark: University of Aarhus,2006.
    [95]Gilmour A R, Cullis B R, Welham S J, et al. ASREML User Guide. UK: VSNInternational Ltd,2002.
    [96]冯春刚,胡晓湘,赵要风,等.全基因组选择及其在动物育种中的应用.中国家禽,2008,30(22):5–8.
    [97]黄冬维,张元跃,谭伟明. BLUP法在畜禽育种中的应用.中国畜禽种业,2008,4(8):66–68.
    [98]刘松元,盛志廉.在BLUP中亲属多次记录利用研究.遗传学报,1986,13(4):302-309.
    [99]钱惠荣,郑康乐. DNA标记与分子育种.生物工程进展,1998,18(3):12-18.
    [100]俞渭江,杜建昌,李建中.应用线性混合模式估计秦川牛育种值的统计方法.中国牛业科学,1984(01):14-21.
    [101]俞渭江,洪振中.种公牛选择方法研究:应用最优线性无偏估计乳用种公牛育种值的方法.中国农业科学杂志,1984,17(05):77-83.
    [102]张勤.动物遗传育种中的计算方法.北京:科学出版社,2007:83-88.
    [103]张勤,张沅,刘增廷,等.方差组分估计方法MIVQUE和REML的模拟比较.遗传学报,1995,22(6):424-430.
    [104]张沅,张勤.畜禽育种中的线性模型.北京:北京农业大学出版社,1993:45-49,56.
    [105]郑康乐,黄宁.标记辅助选择在水稻改良中的应用前景.遗传,1997,19(2):40-44.
    [106] Aberg K, Sun G, Smelser D, et al. Applying novel genome-wide linkagestrategies to search for loci influencing type2diabetes and adult height inAmerican Samoa. Hum Biol,2008,80(2):99-123.
    [107] Bennewitz J, Solberg T, Meuwissen T H. Genomic breeding value estimationusing nonparametric additive regression models. Genet Sel Evol,2009,41:20.
    [108] Berg F, Stern S, Andersson K, et al. Refined localization of the FAT1quantitative trait locus on pig chromosome4by marker-assisted backcrossing.BMC Genetics,2006,7(17):17.
    [109] Bice P J, Foroud T, Carr LG, et al. Identification of QTLs Influencing AlcoholPreference in the High Alcohol Preferring (HAP) and Low Alcohol Preferring(LAP) Mouse Lines. Behavior Genetics,2006(36):248-260.
    [110] Bost B, de Vienne D, Hospital F, et al. Genetics and nongenetic bases for theL-shaped distribution of quantitative trait loci effects. Genetics,2001(157):1773-1787.
    [111] Bouzigon E, Ulgen A, Dizier M H, et al. Evidence for a pleiotropic QTL onchromosome5q13influencing both time to asthma onset and asthma score inFrench EGEA families. Hum Genet,2007(121):711-719.
    [112] Broman K W, Speed T P. A model selection approach for the identification ofquantitative trait loci in experimental crosses. J. R. Stat. Soc. B,2002(64):641-656.
    [113] Calus M P L, Meuwissen T H E, de Roos A P W, et al. Accuracy of genomicselection using different methods to define haplotypes. Genetics,2008,178(1):553-561.
    [114] Calus M P L, Meuwissen T H E, Windig J J, et al. Effects of the number ofmarkers per haplotype and clustering of haplotypes on the accuracy of QTLmapping and prediction of genomic breeding values. Genet Sel Evol,2009,41:11.
    [115] Cicila G T, Garrett M R, Lee S J, et al. Highresolution mapping of the bloodpressure QTL on chromosome7using dahl rat congenic strains. Genomics,2001(72):51-60.
    [116] Coaker G L, Francis D M. Mapping, genetic effects, and epistatic interactionof two bacterial canker resistance QTLs from Lycopersicon hirsutum. TheorAppl Genet,2004(108):1047-1055.
    [117] Christians J K, Keightley P D. Fine mapping of a murine growth locus to a1.4-cM region and resolution of linked QTL. Mamm Genome,2004(15):482-491.
    [118] Churchill G A, Doerge R W. Empirical threshold values for quantitative traitmapping. Genetics,1994(138):963-971.
    [119] Crow J F. Haldane, Bailey, Taylor and Recombinant-Inbred Lines. Genetics,2007(176):729-732.
    [120] Dansky H M, Shu P, Donavan M, et al. A phenotype-sensitizingApoe-deficient genetic background reveals novel atherosclerosispredisposition loci in the mouse. Genetics,2002(160):1599-1608.
    [121] Dekkers J C. Prediction of response to marker-assisted and genomic selectionusing selection index theory. J Anim Breed Genet,2007,124(6):331-341.
    [122] Falconer D S, Mackay T F C. Introduction to Quantitative Genetics,4thEdition. England: Pearson Education Limited,1995.
    [123] Garcia A A F, Wang S, Melchinger A E, et al. Quantitative trait loci mappingand the genetic Basis of heterosis in maize and rice. Genetics,2008(180):1707-1724.
    [124] Ghosh D, Chinnaiyan A M. Classification and selection of biomarkers ingenomic data using LASSO. J Biomed Biotechnol,2005(2):147-154.
    [125] Gibson G, Mackay T F C. Enabling population and quantitative genomics.Genet. Res.2002(80):1-6.
    [126] Haley C S, Knott S A. A simple regression method for mapping quantitativetrait loci in line crosses using flanking markers. Heredity,1992(69):315-324.
    [127] Goddard M E. Genomic selection: prediction of accuracy and maximisation oflong term response. Genetica,2009,136(2):245-57.
    [128] Goddard M E, Hayes B J. Genomic selection. J Anim Breed Genet,2007,124(6):323-30.
    [129] Habier D, Fernando R L, Dekkers J C M. Genomic selection using low-densitymarker panels. Genetics,2009,182(1):343-353.
    [130] Hayes B J, Goddard M E. The distribution of the effects of genes affectingquantitative traits in livestock. Genet. Sel. Evol,2001(33):209-229.
    [131] Hu X H, Wang M H, Tan T, et al. Genetic dissection of ethanol tolerance inbudding yeast Saccharomyces cerevisiae. Genetics,2007(175):1479-1487.
    [132] Ibanez-Escriche N, Fernando R L, Toosi A, et al. Genomic selection ofpurebreds for crossbred performance. Genet Sel Evol,2009,41:12.
    [133] Schaeffer L R. Strategy for applying genome-wide selection in dairy cattle. JAnim Breed Genet,2006,123:218-223.
    [134] Legarra A, Fernando R L. Linear models for joint association and linkage QTLmapping. Genet Sel Evol,2009,41:43.
    [135] Lillehammer M, Arnyasi M, Lien S, et al. A genome scans for quantitative traitlocus by environment interactions for production traits. J Dairy Sci,2007,90(7):3482-3489.
    [136]张哲,张勤,丁向东.畜禽基因组选择研究进展.科学通报,2011,56(26):2212-2222.
    [137] Liu S, Kowalski S P, Lan T H, et al. Genome-wide high-resolution mapping byrecurrent intermating using Arabidopsis thaliana as a model. Genetics,1996(142):247-258.
    [138] Luan T, Woolliams J A, Lien S, et al. The accuracy of Genomic Selection inNorwegian red cattle assessed by cross-validation. Genetics,2009,183(3):1119-1126.
    [139] Luo Z, Thompson R, Woolliams J A. A population genetics model ofmarker-assisted selection. Genetics,1997,146(3):1173-1183.
    [140] Manichaikul A, Moon J Y, Sen S, et al. A Model Selection Approach for theIdentification of Quantitative Trait Loci in Experimental Crosses, AllowingEpistasis. Genetics,2009(181):1077-1086.
    [141] Meuwissen T H E. Genomic selection: marker assisted selection on a genomewide scale. J Anim Breed Genet,2007,124(6):321-322.
    [142] Meuwissen T H E. Accuracy of breeding values of 'unrelated' individualspredicted by dense SNP genotyping. Genet Sel Evol,2009,41:35.
    [143] Besag J. On the statistical analysis of dirty pictures. J R Stat Soc [Ser B].1986,48:259-302.
    [144] Park T, Casella G. The bayesian lasso. J Amer Statistical Assoc2008,103:681-686.
    [145] Meuwissen T H E, Goddard M E. Mapping multiple QTL using linkagedisequilibrium and linkage analysis information and multitrait data. Genet SelEvol,2004,36(3):261-279.
    [146] Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic valueusing genome-wide dense marker maps. Genetics,2001,157(4):1819-1829.
    [147] Meuwissen T H E, Solberg T R, Shepherd R, et al. A fast algorithm forBayesB type of prediction of genome-wide estimates of genetic value. GenetSel Evol,2009,41:2.
    [148] Calus M P L. Genomic breeding value prediction: Methods and procedures.Animal,2010,4:157–164.
    [149] George E I, McCulloch R E. Variable selection via Gibbs sampling. J AmerStatistical Assoc1993(88):881-889.
    [150] Visscher P M, Medland S E, Ferreira M A, et al. Assumption-free estimationof heritability from genome-wide identity-by-descent sharing between fullsiblings. PLoS Genet,2006(2):316–325.
    [151] Ishwaran H, Rao J. Spike and slab variable selection: frequentist and Bayesianstrategies. Ann Statist,2005,730-773.
    [152] Moreau L, Charcosset A, Hospital F, et al. Marker-assisted selection efficiencyin populations of finite size. Genetics,1998,148(3):1353-1365.
    [153] Muir W M. Comparison of genomic and traditional BLUP-estimated breedingvalue accuracy and selection response under alternative trait and genomicparameters. J Anim Breed Genet,2007,124(6):342-355.
    [154] Nakamichi R, Ukai Y, Kishino H. Detection of closely linked multiplequantitative trait loci using a genetic algorithm. Genetics,2001(158):463-475.
    [155] Nash M W, Huezo-Diaz P, Williamson R J, et al. Genome-wide linkageanalysis of a composite index of neuroticism and mood-related scales inextreme selected sibships. Hum Mol Genet,2004(13):2173-2182.
    [156] Nuzhdin S V, Keightley P D, Pasyukova E G, et al. Mapping quantitative traitloci affecting sternopleural bristle number in Drosophila melanogaster usingchanges of marker allele frequencies in divergently selected lines. Genet. Res.,Camb.1998(72):79-91.
    [157] Ollivier L. The accuracy of marker-assisted selection for quantitative traitswithin populations in linkage equilibrium. Genetics,1998,148(3):1367-1372.
    [158] Olsen H G, Lien S, Svendsen M, et al. Fine mapping of milk production QTLon BTA6by combined linkage and linkage disequilibrium analysis. J DairySci,2004,87(3):690-698.
    [159] Piyasatian N, Fernando R L, Dekkers J C M. Genomic selection formarker-assisted improvement in line crosses. Theor Appl Genet,2007,115(5):665-674.
    [160] Ruane J, Colleau J J. Marker assisted selection for genetic improvement ofanimal populations when a single QTL is marked. Genet Res,1995,66(1):71-83.
    [161] Sancho-Shimizu V, Khan R, Mostowy S, et al. Molecular genetic analysis oftwo loci (Ity2and Ity3) involved in the host response to infection withSalmonella Typhimurium using congenic mice and expression profiling.Genetics,2007(177):1125-1139.
    [162] Satagopan J M, Yandell B S, Newton M A, et al. A Bayesian approach todetect quantitative trait loci using Markov chain Monte Carlo. Genetics,1996(144):805-816.
    [163] Sillanpaa M J, Arjas E. Bayesian mapping of multiple quantitative trait locifrom incomplete inbred line cross data. Genetics,1998(148):1373-1388.
    [164] Smaragdov M G. SNP assisted total genomic selection as a possibleaccelerator of traditional selection. Genetika,2009,45(6):725-728.
    [165] Solberg T R, Sonesson A K, Woolliams J A, et al. Genomic selection usingdifferent marker types and densities. J Anim Sci,2008,86(10):2447-2454.
    [166] Solberg T R, Sonesson A K, Woolliams J A, et al. Reducing dimensionality forprediction of genome-wide breeding values. Genet Sel Evol,2009,41:29.
    [167] Solberg T R, Sonesson A K, Woolliams J A, et al. Persistence of accuracy ofgenome-wide breeding values over generations when including a polygeniceffect. Genet Sel Evol,2009,41:53.
    [168] Sonesson A K, Meuwissen T H E. Testing strategies for genomic selection inaquaculture breeding programs. Genet Sel Evol,2009,41:37.
    [169] Spelman R J, Garrick D J. Genetic and economic responses for within-familymarker assisted selection in dairy cattle breeding schemes. J Dairy Sci,1998,81(11):2942-2950.
    [170] Sullivan L. The unseen design. Psychoanal Rev,1994,81(1):175-198.
    [171] Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method forthe simultaneous discovery and transfer of valuable QTLs from unadaptedgermplasm into elite breeding lines. Theor. Appl. Genet.1996(92):191-203.
    [172] Uleberg E, Meuwissen T H E. Fine mapping of multiple QTL using combinedlinkage and linkage disequilibrium mapping--a comparison of single QTL andmulti QTL methods. Genet Sel Evol,2007,39(3):285-299.
    [173] Uleberg E, Wider e I S, Grindflek E, et al. Fine mapping of a QTL forintramuscular fat on porcine chromosome6using combined linkage andlinkage disequilibrium mapping. J Anim Breed Genet,2005,122(1):1-6.
    [174] Usai M G, Goddard M E, Hayes B J. LASSO with cross-validation forgenomic selection. Genet Res,2009,91(6):427-436.
    [175] Verbyla K L, Hayes B J, Bowman P J, et al. Accuracy of genomic selectionusing stochastic search variable selection in Australian Holstein Friesian dairycattle. Genet Res,2009,91(5):307-311.
    [176] Villumsen T M, Janss L, Lund M S. The importance of haplotype length andheritability using genomic selection in dairy cattle. J Anim Breed Genet,2009,126(1):3-13.
    [177] Visscher P M. Principles of QTL mapping. University of Edinburgh,2003.
    [178] Visscher P M, Thompson R, Haley C S. Confidence intervals in QTL mappingby bootstrapping. Genetics,1996(143):1013-1020.
    [179] Visscher P M. Whole genome approaches to quantitative genetics. Genetica,2009,136(2):351-358.
    [180] Whittaker J C, Curnow R N, Haley C S, et al. Using marker-maps inmarker-assisted selection. Genet Res,1995,66(3):255-265.
    [181] Xie C, Xu S. Efficiency of multistage marker-assisted selection in theimprovement of multiple quantitative traits. Heredity,1998,80(4):489-498.
    [182] Xu C, Wang X, Li Z, et al. Mapping QTL for multiple traits using Bayesianstatistics. Genet Res,2009,91(1):23-37.
    [183] Xu S. Estimating polygenic effects using markers of the entire genome.Genetics,2003(163):789-801.
    [184] Zeng Z. Theoretical basis for separation of multiple linked gene effects inmapping quantitative trait loci. Proc Natl Acad Sci USA,1993(90):10972-10976.
    [185] Zeng Z. Precision mapping of quantitative trait loci. Genetics,1994(136):1457-1468.
    [186] Zeng Z, Kao C, Basten C J. Estimating the genetic architecture of quantitativetraits. Genet. Res.,1999(74):279-289.
    [187] Zeng Z. QTL mapping and the genetic basis of adaptation: recentdevelopments. Genetica,2005(123):25-37
    [188] Zhong S, Dekkers J C M, Fernando R L, et al. Factors affecting accuracy fromgenomic selection in populations derived from multiple inbred lines: a Barleycase study. Genetics,2009,182(1):355-64.
    [189] Zou F. QTL mapping in intercross and backcross populations. Methods MolBiol,2009,573:157-573.
    [190] Zou F, Nie L, Wright F A, et al. A Robust QTL Mapping Procedure. J Stat PlanInference,2009,139(3):978-989.
    [191] Zou W, Zeng Z. Multiple interval mapping for gene expression QTL analysis.Genetica,2009,137(2):125-134.
    [192] Juran J M. The non-Pareto principle. Mea culpa Quality Progress,1975,89.
    [193] Henderson C R. Applications of linear models in animal breeding. Universityof Guelph,1984.
    [194] Yu X and Meuwissen T H E. Using the Pareto principle in genome-widebreeding value estimation. Genetics Selection Evolution,2011,43:35
    [195] Dodds K G, Tate M L, Sise J A. Genetic evaluation using parentage infor-mation from genetic markers. J. Anim. Sci.,2005(83),2271-2279.
    [196] Caballero A, Toro M A. Analysis of genetic diversity for the management ofconserved subdivided populations. Conservation Genetics,2002(3):289-299.
    [197] Wang J. An estimator for pairwise relatedness using molecular markers.Genetics,2002(160),1203-1215.
    [198] Wright S. Coefficients of inbreeding and relationship. Amer. Nat.,1922(56),330-338.
    [199] Malécot G, Les mathématiques de l’hérédité, Masson et Cie, Paris (FreemanW H, San Francisco) The mathematics of heredity (1968English translationby D. M. Yermanos.
    [200]李恒德. gsbay:基于bayes方法的基因组选择软件.使用说明,版本V1.0,2012.
    [201] Gengler N, Mayeres P, Szydlowski M. A simple method to approximate genecontent in large pedigree populations: application to the myostatin gene indualpurpose Belgian Blue cattle. Animal,2007,21-28.
    [202] VanRaden P M. Accounting for inbreeding and crossbreeding in geneticevaluation of large populations. J. Dairy Sci.1992(75):3136-3144.
    [203] VanRaden P M. Efficient methods to compute genomic predictions. J DairySci,2008,91(11):4414-4423.
    [204] Lee S, van der Werf J H J. An efficient variance component approachimplementing an average information REML suitable for combined LD andlinkage mapping with a general complex pedigree. Genet. Sel. Evol,2006,38:25-43.
    [205] Garrick D J. Equivalent mixed model equations for genomic selection. J. Anim.Sci.,2007.85(Suppl.1),376(Abstr.418).
    [206] Villanueva B, Pong-Wong R, Fernández J, et al. Benefits from markerassistedselection under an additive polygenic genetic model. J. Anim. Sci,2005.83,1747-1752.
    [207] Browning B L, Browning S R. A unified approach to genotype imputation andhaplotype phase inference for large data sets of trios and unrelated individuals.Anim J Hum Genet,2009.84:210-223.
    [208] Calus M P L, Veerkamp R F. Accuracy of breeding values when using andignoring the polygenic effect in genomic breeding value estimation with amarker density of one SNP per cM. J. Anim. Breed. Genet.2007.124:362-368.
    [209] Habier D, Fernando R L, Dekkers J C M. The impact of genetic relationshipinformation on genome-assisted breeding values. Genetics,2007,177:2389-2397.
    [210] Kolbehdari D, Schaeffer L R, Robinson J A B. Estimation of genome-widehaplotype effects in half-sib designs. J. Anim. Breed. Genet.2007,124:356-361.
    [211] Lee S, van der Werf J H J, Hayes B J, et al. Predicting unobserved phenotypesfor complex traits from whole-genome SNP data. PLoS Genet.2008,4:e1000231.
    [212] Legarra A, Robert-Granie C, Manfredi E, et al. Performance of genomicselection in mice. Genetics,2008,180:611-618.
    [213] Gonzalez-Recio O, Gianola D, Rosa G J M, et al. Genome-assisted predictionof a quantitative trait measured in parents and progeny: application to foodconversion rate in chickens. Genet. Sel. Evol.2009,41:3.
    [214] Hayes B J, Bowman P J, Chamberlain A J, et al. Invited review: genomicselection in dairy cattle: progress and challenges. J. Dairy Sci.2009,92:433-443.
    [215] Zhong S, Dekkers J C M, Fernando R L, et al. Factors affecting accuracy fromgenomic selection in populations derived from multiple inbred lines: a barleycase study. Genetics,2009,182:355-364.
    [216] VanRaden P M, Van Tassell C P, Wiggans G R, et al. Invited review: reliabilityof genomic predictions for North American Holstein bulls. J. Dairy Sci.2009,92:16-24.
    [217] Harris B L, Johnson D L, Spelman R J. Genomic selection in New Zealandand the implications for national genetic evaluation. In: Proceedings of theInterbull Meeting, Niagara Falls, NY.2008.
    [218] Henderson C R. Rapid method for computing the inverse of a relationshipmatrix. J. Dairy Sci.1975(58):1727-1730.
    [219] Henderson C R. A simple method for computing the inverse of a numeratorrelationship matrix used in predicting of breeding values. Biometrics,1976(32):69-83.
    [220]李艳.贝类遗传评估体系的建立研究:[硕士学位论文].山东:中国海洋大学,2010.
    [221]公维嘉.中国奶牛遗传评估系统的建立研究:[硕士学位论文].北京:中国农业大学,2005.
    [222]李晓强.猪遗传育种及种猪场管理计算机软件系统的研究:[硕士学位论文].河南:郑州大学,2001.
    [223]李纪勤.栉孔扇贝(Chlamys farreri)EST-SNP的开发及其应用:[博士学位论文].山东:中国海洋大学,2012.
    [224] Wang S, Meyer E, McKay J K, et al.2b-RAD: a simple and flexible methodfor genome-wide genotyping. Nature Methods,2012,9(8):808-810.
    [225] Dou J, Zhao X, Fu X, et al. Reference-free SNP calling: improved accuracy bypreventing incorrect calls from repetitive genomic regions. Biology Direct,2012(7):17.
    [226] Boldman K G, Kriese L A, van Vleck L D, et al. A Manual for Use ofMTDFREML: A Set of Programs to Obtain Estimates of Variances andCovariances. United States Department of Agriculture, Agricultural ResearchService.1995.
    [227] Wang C, Wang S, Yang D. GVCBLUP: A computer package for genomicprediction and variance component estimation of additive and dominanceeffects using SNP markers. Version2.2. Department of Animal Science,University of Minnesota.2013.
    [228] Gilmour A R, Thompson R, Cullis B R. Average Information REML: anefficient algorithm for variance parameter estimation in linear mixed models.Biometrics,1995(51):1440-1450.
    [229]于洋,张晓军,李富花,相建海.全基因组选择育种策略及在水产动物育种中的应用前景.中国水产科学,2011,18(4):936-943.
    [230] Wikipedia. Cross validation.http://en.wikipedia.org/wiki/Cross-validation_(statistics)
    [231] The Apache Software Foundation. http://apache.org/
    [232] Apache Struts2. http://struts.apache.org/development/2.x/
    [233] Ubuntu Linux. http://www.ubuntu.com
    [234] Debian Linux. http://www.debian.org
    [235] Canonical Ltd. http://www.canonical.com
    [236] Free Software Foundation. http://www.fsf.org/
    [237] Wikipedia. Ubuntu Linux.http://en.wikipedia.org/wiki/Ubuntu_(operating_system)
    [238] Wikipedia. Java. http://en.wikipedia.org/wiki/Java_(programming_language)
    [239] Wikipedia. Java Server Pages. http://en.wikipedia.org/wiki/Java_server_pages
    [240] Wikipedia. Apache Tomcat. http://en.wikipedia.org/wiki/Apache_Tomcat
    [241] Wikipedia. Apache Struts2.0. http://en.wikipedia.org/wiki/Struts2
    [242] Wikipedia. MySQL. http://en.wikipedia.org/wiki/MySQL
    [243] Wikipedia. Eclipse. http://en.wikipedia.org/wiki/Eclipse_(software)
    [244] Wikipedia. GIMP. http://en.wikipedia.org/wiki/GIMP
    [245]苏海林.全基因组选择简化模拟方法研究和贝类育种网络评估分析系统的开发:[硕士学位论文].山东:山东农业大学,2010.
    [246] Daetwyler H D, Pong-Wong R, Villanueva B, et al. The impact of geneticarchitecture on genome-wide evaluation methods. Genetics,2010,185:1021-1031.
    [247] Daetwyler H D, Villanueva B, Woolliams J A. Accuracy of predicting thegenetic risk of disease using a genome-wide approach. PLoS One,2008,3:e3395.
    [248] Wikipedia. R. http://en.wikipedia.org/wiki/R_(programming_language)
    [249] Strandén I, Christensen O F. Allele coding in genomic evaluation. GeneticsSelection Evolution,2011(43):25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700