用户名: 密码: 验证码:
体外压应力下髁突软骨细胞早期应答机制的蛋白质组学初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
髁突软骨是口腔颞下颌关节的重要结构,其所具有的生物学特性是口腔正畸功能矫形治疗的基础。作为髁突软骨主要的细胞成分,髁突软骨细胞在维持细胞外基质的完整、适应外周环境刺激以及功能性改建等方面都具有相当重要的作用。
     在口腔功能矫形治疗中,压应力是导致髁突软骨改建的关键而敏感的力量之一。压应力作用下,髁突软骨细胞是如何识别应力信号并发生生物应答反应?这一力学信号转导的具体机制仍尚不清楚。因此,压应力作用下髁突软骨细胞早期应答机制的研究已成为口腔科学乃至力学信号转导研究的热点。
     力学信号的识别和传递本质上是一系列蛋白质的变化。比较两种不同力学状态下髁突软骨细胞的蛋白质,有助于阐明压应力作用下髁突软骨细胞早期生物学应答反应,发现关键的应力信号转导蛋白分子。蛋白质组学(Proteomics)作为高效率,高通量的蛋白筛选技术,为力学信号转导机制的研究提供了新的思路。蛋白质组学的出现改变了以前只能研究单个蛋白质的状况,建立了以整体观点来解析生命现象的理念,以蛋白质组为基础的生物信息学和实验科学相结合为研究压应力下髁突软骨细胞的早期应答机制提供了一种新的尝试。
     本课题体外培养大鼠髁突软骨细胞,利用四点弯曲细胞力学加载装置(Four-Point Bending System)对髁突软骨细胞进行压应力加载,从蛋白质组学的角度对所发生的早期应答反应进行了初步的探讨。运用体外培养技术获得具有稳定生物学表型的髁突软骨细胞;运用流式细
The condylar cartilage plays an important role in Temporomandibular joint (TMJ). The successful orthopedic treatment is on the base of the physiological feature of the condylar cartilage. Condylar chondrocytes, the mainly cell type normally resident within condylar cartilage, which are responsible for the synthesis and maintenance of a viable extracellular matrix, adapted to cope with the physical pressures of its environment, functional remodeling under the outside stimulation.In oral orthopedic treatment, the compressive stress is one of the key and sensitive strength which results in the functional remodeling of the condylar cartilage.Under the compressive stress, how the condylar chondrocytes recognize the signal of the compressive stress? How the condylar chondrocytes take place the biological response? The mechanism of the stress -signal transduction is not clear until now. Therefore, the study of the early-responsing mechanism of the condylar chondrocyte under the compressive stress has become the focus in the area of the orthodontic science and stress-signal transduction science."Proteomics", which proposed in 1994 by Wilkins, provide a new direction of the study of the stress-signal transduction. However, the processes which recognize the stress-signal are the change of a series of proteins indeed. Compare the proteins of the condylar chondrocytes in different conditions: stressed and unstressed group, which is helpful to find the key signal transduction protein and describe the early-responsing mechanism of the condylar chondrocyte under the compressive stress. The development of the "Proteomics" allows people to change the condition which focus on the single protein, give people the idea which analysis the
    life in the view of "the whole body". Therefore, the method of the combination of bioinformatics and experimental science which on the base of the "Proteomics", will give us a new idea to study the early-responsing mechanism of the condylar chondrocyte under the compressive stress.Methods: The fetal rat condylar chondrocytes were cultured in vitro, then subjected to mechanical compressive stress by self-made four-point bending system at a 0.5Hz frequency for Omin, 15min, 30min, 60min, 120min, 240min, respectively. In each time-phase, the cells were loaded with compressive stress at 2000|j.strain and 4000nstrain respectively. The cell proliferation of the chondrocyte was analyzed by flow cytometry and MTT method.As the certain time point at 2000ustrain and 4000ustrain for 60min, two dimentional electrophoresis (2D-PAGE) and matrix-assisted laser-desorption ionization time of flight massspectrometry (MALDI-TOF-MS) were used to separated and identified proteins in the whole cell lysate.According to the results of MALDI-TOF-MS, Laser Scanning Confocal Microscope (LSCM) was used to oberserve the change of cytokeletonal protein in different times. Actin, vimentin, stress-70 protein/GRP75 protein were observed by Western Blotting. Raf kinase inhibitor protein (RKIP) was measured by Real- time PCR and Western Blotting.Results:1. The shape of the rat condylar chondrocytes is polygon or astero-shape. The cell body spread out which is full of energy. The stainning of the
    type of II collagen by IHC shows positive.2. With 2000|4.strain compressive stress loading, the cell proliferation did not change obviously within 60 mins, but it increased with loading times. With 4000ustrain compressive stress loading, the percentage of the S-stage in the cell cycle was inhibited in 60min.3. With 2000ustrain compressive stress loading for 60min, the expressional level of the protein spot of the whole cell lysate did not change obviously. With 4000(istrain compressive stress loading for 60min, the protein of the whole cell lysate changed significantly, which the expressional level of some proteins down regulate.4. Under 4000ustrain compressive stress, the difference protein spots were indetified by MALDI-TOF-MS. It included the protein related to signal transduction which named RKIP/PEBP, the protein related to cytoskeleton which named actin, vimentin, vimentin-Rho-GTPase; the protein related to glycometabolism which named Alpha enolase, Stress-70 protein/75 kDa glucose regulated protein, and others as 10- formyltetra-hydrofolate dehydrogenase, and Zinc finger protein 265.5. With 4000ustrain compressive stress loading for Omin, 15min, 30min, 60min, 120min, and 240min, the cytoskeletonal protein such as actin, vimentin expression downregulate in the early times, then upregulated. The changes of Stress-70 protein/GRP75 expressional level are the same.6. With 4000ustrain compressive stress loading for Omin, 15min, 30min, 60min, 120min, and 240min, RKIP/PEBP mRNA and protein expressional level were not coincidence with each other. Its protein expression downregulate in the beginning of loading times, which regulate RKIP mRNA expression by "feed-back", upregulate the RKIP mRNA expression. On the contrary, The RKIP/PEBP protein expressional level recovered in 240min which affected by the
    increased of RKIP/PEBP mRNA expression.Conclusions:1. There are stable biological features in the fetal rat condylar chondrocytes which is original from the reliable tissue source. It can satisfy our subsequent research.2. The level of 2000|istrain compressive—stress is probably eaqual to the hydrostatic pressure in the physiological level.It indicates that hydrostatic pressure in the physiological level is the foundation of the condylar chondrocyte's normal function. The level of 4000ustrain compressive — stress is a suitable outside-mechanical-stimulation, It indicates that the stress-signal was recognized and responsed by the condylar chondrocyte.3. With 4000ustrain compressive — stress loading, the early-responsing mechanism of the condylar chondrocyte mainly showed the inhibitory reaction. With the loading time increased, the "self-protection /regulation"plays an important role in the arly-responsing mechanism of the condylar chondrocyte, which regulate the proteins expression and make the chondrocyte defense the outside stimulation.4. With 4000|j.strain compressive — stress loading, the early-responsing mechanism of the condylar chondrocyte is very complicated which involved in different proteins. The cytoskeletonal protein, the energy metabolism protein, and the protein related to signal-path plays an important role.5. The cytoskeletonal protein, which names Actin and vimentin, are chiefly responsible for the compressive stress. The cytoskeleton recognize the stress stimulate at first, and then transmit the stress-signal and provocate the corresponed signal transduction protein molecule.
    6. The changes of Stress-70 protein/GRP75 give us hints that the mitochondrium of the condylar chondrocyte is subject to temple injure. Therfore, the energy supply is insufficient, the level of metabolism and the protein expression down-regulate.7. As the endogenous inhibitor in the signal transduction path, RKIP was the key target of the compression-signal transduction path. There is bi-directional signalling between MAPK cascades and cytoskeleton, which plays an important role in the early-responsing mechanism of the condylar chondrocyte
引文
1.徐芸,白玉兴等主译.口腔正畸功能矫形治疗学.人民卫生出版社.2004.1
    2.李煌,徐芸,李松等.颌间Ⅲ类矫形力作用下转化生长因子β1在髁突软骨中的基因表达.华西口腔医学杂志.2004,22(1):73-76
    3.李煌,徐芸,李松等.颌间Ⅲ类矫形力对青春期恒河猴颞下颌关节改建作用的影像学研究.华西口腔医学杂志.2003,21(6):463-466
    4.尹康,徐芸,李松等.颌间Ⅲ类矫形力对恒河猴髁突软骨改建影响的组织学研究.昆明医学院学报.2003,(2):10-14 J Orthop Res,
    5. LiKW, Falcovitz YH, Nagrampa JP et al. 2000, 18(3): 374-382
    6. Liu J, Sekiya I, Asai K et al. Res Exp Med(Berl). 2001, 200(3): 183-193
    7. Elder SH, Kimura JH, Soslowsky LJ et al. J Orthop Res. 2000, 18(1): 78-86
    8. Smith RL, Lin J, Trinade MC et al. Rehabil Res Dve. 2000, 37(2): 153—161
    9.杨红梅,罗颂椒.机械压力对大鼠下颌髁突软骨细胞增殖活性影响的体外研究.华西口腔医学杂志,1999;17(4):331-333
    10. Malaviya P, Nerem RM. Fluid-induced shear stress stimulates chondrocyte proliferation partially mediated via TGF-betal. Tissue Eng, 2002; 8(4): 581-590
    11.宋锦嶙,罗颂椒,樊瑜波,等.静张应力与TGF-β1对大鼠髁突软骨细胞增殖效应调节初步研究.华西口腔医学杂志,2003:21(1):61-63
    12.罗颂椒,周征.功能矫形前伸大鼠下颌后髁突软骨胰岛素样生长因子Ⅰ表达变化的研究.华西口腔医学杂志,1998,16(2):161-163
    13.黄宁,罗颂椒等.生长激素、张应力对兔下颌髁突软骨细胞增殖活性及功能的影响.口腔正畸学杂志.2004,S(1):12
    14.赵旭东.蛋白质组学研究.国外医学分子生物学分册.2002;24(2):90-92
    15. Hieter P, Boguski M. Functional genomics: is all how you read it[J]. Science, 1997, 278(5338): 601-602
    16. Fields S. Proteomics in genomeland[J]. Science, 2001, 291 (15507): 1221-1224
    17. Blackstock WP. Proteomics: quantitative and physical mapping of cellular proteins[J]. Trends Biotechnol, 1999, 17(3): 121-127
    18.李伯良.功能蛋白质组学[J].生命化学,1998,18(6):1-4
    19. O Farrell, PH. High resolution two-dimensional electrophoresis of proteins. Jbiol Chem. 1975, 250: 4007-21
    20. Celis JE, Gromov P. 2D protein electrophoresis: can it be perfected? Curr Opin. Biotechnol. 1999, 10: 16-21
    21. Moller A, Soldan M., Volker U, Maser E. Two-dimensional gel electrophoresis: a powerful method to elucidate cellular responses to toxic compounds. Toxicology. 2001, 160: 129-38
    22. Griffin TJ, Aebersold R. Advances in proteome analysis by mass spectrometry. JBiol Chem. 2001, 276: 45497-500
    23. Bakhtiar R, Nelson RW. Electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry: Emerging technologies in biomedical sciences. Biochem Pharmacol. 2000, 59: 891-905
    24. Chalmers MJ, Gaskell SJ. Advances in mass spectrometry for proteome analysis. Curr Opin Biotechnol. 2000, 11: 384-90
    25. Nyman TA. The role of mass spectrometry in proteome studies. Biomol Eng. 2001, 18: 221-7
    26. Gromov PS, Ostergaard M, Gromova I, Celis JE. Human proteomic databases: a powerful resource for functional genomics in health and disease. Prog Biophys Moi Biol. 2002, 80: 3-22
    27. Fenyo D. Identifying the proteome: software tools. Cum Opin Biotechnol. 2000, 11: 391-5
    28. Mann M, Pandey A. Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends Biochem Sci. 2001, 26: 54-61
    29. Vihinen M. Bioinformatics in proteomics. Biomol Eng. 2001, 18: 241-8
    30. Thierry Rabiiloud. Two-dimensional gel electrophoresis in Proteomics: Old, Old fashioned, but it still climbs up the mountains. Proteomics. 2002, 2: 3-10
    31. Gorg A, Walter W, Michael J. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004, 4: 3665-3685
    32. Andersen JS, Mann M. Functional genomics by mass spectrometry[J]. FEBS Lett, 2000, 480(1): 25-31
    33. Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J]. Natl Biotechnoj, 1999, 17(10): 994-999
    34. Markus F. Dieter S, Jochen M, et al. Protein microarrays: Promising tools for proteomic Research. Proteomics 2003, (3): 2155-2166
    35.刘秉文主编.医学分子生物学.中国协和医科大学出版社.2000,157
    36.司徒镇强,吴军正主编.细胞培养.世界图书出版社.2004
    37. Oegema TR, Thompson RC. Characterization of a hyaluronic acid-dermatan sulfate proteoglycan complex from dedifferentiatiated human chondrocyte cultures. J Bio Chem. 1981, 256: 1015
    38. Blackwood HJJ. Growth of the mandibular condyle of the rat studied with tritiated thymidine. Arch Oral Biol. 1966, 11: 493
    39. Osborn JW, Baragar FA. Predicted and observed shapes of human mandibular condyles. J Biomech. 1992, 25: 96
    40.张震康,傅民魁主编.颞下颌关节病.北京:人民卫生出版社,1987:48-53
    41. Schaffer JL, Rizen M, Italien GJL, et al. Device for the application of dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. J Orthop Res, 1994, 26 (12): 709-71
    42.郑翼,罗颂椒等.机械力作用下成骨细胞的早期应答反应及力学信号转导机制的初步研究.四川大学博士学位论文.2004,47-48
    43. Owan I, Burr DB, Turner CH, et al. Mechanotransduction in bone: Osteoblasts are more responsive to fluid forces than mechanical strain. Am Physioi Soc, 1997, 232 (4): c810-815
    44. Burton N, Vernie M, Farquhar T. Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J Orthop Res. 1993, 11: 717-29
    45. Guilak F, Meyer C, Ratcliffe A. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartilage. 1994, 2: 91-101
    46. Horikawa Regular contributions-morphological changes in osteo2 blastic cells (MC3T3-E1) due to fluid shear stress: Cellular damage by prolonged application of fluid shear stress. Tohoku J Exper Med, 2000, 191 (3): 127-138
    47. Ichiro O, Davia B, Charles HT, et al. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am Physiol Soc, 1997, c810-c815
    48. Fermor B, Gundle R, Evans M, et al. Primary human osteoblast proli- feration and prostaglandin E2 release in response to mechanical strain in vitro. Bone, 1998; 22: 637-643
    49. Burr DB, Milgrom C. In vivo measurement of human tibial strains dur-ing vigorous activity. Bone, 1996; 18: 401-410
    50.陈开云,罗颂椒.机械压力对青春期大鼠咀嚼肌细胞增殖活性影响的体外研究.华两口腔医学杂志.2003,21(5):403-405
    51.李志华,陈扬熙等.周期性牵张应力作用下大鼠成肌细胞改变力学响应机制的研究.四川大学博士学位论文.2004
    52. Hodge WG, Ducols AJ, Kocha G, et al. DNA index and S phase fraction in oveal malignant melanomas. Br J Ophthalmol, 1995, 79(6): 521-6
    53. Yamamoto TT, N akagawa K, Kawakam iM, et al. Comparison of the effect of hydrostatic compressive force on glycosam inoglycan synthesis and proliferation in rabbit chondrocytes from mandibular condylar cartilage, nasal sep turn, and spheno2occip ital synchondrosis in vitro. Am J O rthod Dentofac O rthop, 1991, 99 (5): 448-455
    54.杨红梅,罗颂椒.机械压力对大鼠下颌髁突软骨细胞增殖活性影响的体外研究.华西口腔医学杂志.1999,17(4):331-334
    55. Bushmann MD, Gluzband YA, Grodzinsky AJ, et al. Mechanical compression modulates matrix biosynthesis in chondrocyteoagarose culture. J Cell Sci, 1995, 108 (4): 1497-1508
    56. Kim YJ, Sah R IY, Grodzinsky AJ , et al. M echanicai regulation of cartilage biosynthetic behavior: physical stimuli. Arch Biochem Biophys, 1994, 311 (1): 1-12
    57. Loening AM, James IE, Levenston ME et al. Arch Biochem Biophy, 2000; 381 (2): 205-212
    58.高国杰,李松等.压力对髁突软骨细胞增殖及TGF-β1mRNA表达影响的体外研究.昆明医学院硕士论文.2003
    59. Veldhuijzen JP, Bourret LA, Rodan GA, et al. In vitro studies of the effect of intermittent compressive force on cartilage cell proliferation. J Cell Physiol, 1979, 98 (2): 299-306
    60. Giovanni C, Maurizio B, Luca M et al. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25: 1327-1333
    61. Bradford MM. A rapid and senstive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
    62. Lowary OH et al. protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275
    63.钱小红,贺福初译.蛋白质组学:从序列到功能.科学出版社.2002.38-51
    64. Santoni V, Molloy M, Rabillound T. Membrane proteins and proteomics: Un amour impossible? Electrophoresis, 2000, 21: 1054-1070
    65. Gorg A, Boguth G, et al. Two-dimensional polyasrylamide gel electrophoresis with immobilized PH gradients in the first dimension (IPG-DALT): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis, 1997, 18: 328-337
    66. Wirth P, Romano A. Staining methods in gel electrophoresis, including the use of multiple detection methods. J chromatogr, 1995, A698: 123-143
    67. Wiim M, Schevchenko A, Houthaeve T et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature, 1996, 379: 466-469
    68. Fenn JB, Mann M, Meng CK et al. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246: 64-71
    69. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal Chem, 1988, 60: 2299-2301
    70. Fenyo D, Qin J, Chait BT. Protein identification using mass spectrometric information. Electrophoresis, 1998, 19: 998-1005
    71. Herbert B, Molloy MP, Gooley AA et al. Improved protein solubility in Two-dimensional electrophoresis using tributyl phosphine as a reducing agent. Electrophoresis, 1998, 19: 845-851
    72. Massimo S, Philippe P, Frederic D. Cartilage and Osteoarthritis. Humana Press. 2004, Volume (1), 165-182
    73. Mikko J, Lammi A, Elo K. Hydrostatic pressure-induced changes in cellular protein synthesis. Biorheology, 2004, 41: 309-313
    74.林雪松主编.医用生物化学.人民卫生出版社.
    75.李华,杨增杰,夏蓓莉等.葡萄糖调节蛋白75的表达特性.复旦学报(医学科学版),2001,28(5):382-384
    76.刘炎,蒋茂荣等.缺糖损伤对PC12细胞的效应及对葡萄糖调节蛋白75的表达影响.中国交通医学杂志.2004,18(6):625-
    77. Gerald Karp. Cell and Molecular biology: concepts and experiments 3rd. Wiley and Sons, 2002, 4-10
    78. Van Aelst L, D'Souza2Schorey C. Rho GTPases and signaling networks [J]. Genes Dev, 1997, 11(18): 2295-2322.
    79. Aspenstrm P. The Rho GTPases have multiple effects on the actin cytoskeleton [J]. Exp Cell Res, 1999, 246 (1): 20-25.
    80. Carpenter CL. Actin cytoskeleton and cell signaling [J]. Crit Care Med, 2000, 28 (suppl 4): 94-99.
    81. Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999, 401: 173-7
    82. Nicholas TRAKUL, Marsha R. ROSNER. Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein. Cell Research, 2005, 15(1): 19-23
    83. Jozef S, Miroslav O, Andrej H et al. Involvement of MAP kinase SIMK and actin cytoskeleton in the regulation of root hair tip growth. Cell Biology International. 2003, 27: 257-259
    84. Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via Ras/Extracellular signal-regulated kinase (ERK) signaling pathway. Journal of Biological Chemistry. 1997. 272: 1904-1909.
    85. Gachet Y, Tournier S, Millar JBA, Hyams JS. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature. 2001. 412: 352-355.
    86. Jozef S, Frantisek B, Heribert H. From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. Journal of Experimental Botany. 2004, 395 (55): 189-198
    87. J. Samaj, F. Baluska, B. Voigt, M. Schlicht, D. Volkmann, and D. Menzel Endocytosis, Actin Cytoskeleton, and Signaling. Plant Physiology, July 1, 2004; 135(3): 1150-1161.
    88. Mathur J, Hulskamp M. Microtubules and microfilaments in cell morphogenesis in higher plants. Current Biology. 2002. 12: R669-R676
    89. Wasteneys GO, Galway ME. Remodeling the cytoskeleton for growth and form: an overview with some new views. Annual Review of Plant Biology. 2003, 54: 691-722.
    90. Ingber DE. Tensegrity 1. Cell structure and hierarachical systems biology. J Celt Sci, 2003, 116: 1157-1173
    91. Ingber DE. Tensegrity Ⅱ. How structural networks influence cellular information processing networks. J Cell Sci, 2003, 116: 1379-1408
    92. Ingber DE. Cellular Tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci, 1993, 104: 613-627
    93. White TG, Amos WB. Confocal microscope comes of age. Nature, 1987, 328: 183
    94.李楠,尹玲,苏振轮.激光扫描共聚焦显微术[M].北京:人民军医出版社,1997,85
    95.周涛,杨怡,张德添等.激光共聚焦显微镜及其在生物医学中的应用.军事医学科学院院刊.2002,26(1):69-73
    96. Fuller B. Tensegrity. Portfolio Artnews Annual, 1961, 4: 112-127
    97. Connelly R, Back A. Mathematics and tensegrity. Am Scientist, 1998, 86: 142-151
    98. Ingber DE. Tensegrity I. Cell structure and hierarachical systems biology. J Cell Sci, 2003, 116: 1157-1173
    99. Ingber DE. Cellular Tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci, 1993, 104: 613-627
    100. Ingber DE, Heidemann SR, Lamoureux P, et al. Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol, 2000, 89: 1663-1678
    101. Pourati J, Maniotis A, Spiegel D, et al. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Physiol, 1998, 274. C1283-1289
    102. Bailly E, Celati C, Bornens M. The cortical actomyosin system of cytochalasin D treated lymphoblasts. Exp Cell Res, 1991, 196: 287-293
    103. Stamenovic D, Fredberg J, Wang N, et al. A microstructural approach to cytoskeletal mechanics based on tensegrity, d Theor Biol, 1996, 181: 125-136
    104. Mooney D, Hansen L, Langer R, et al. Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover. Mol Biol Cell, 1994, 5: 1281-1288
    105. Gachet Y, Tournier S, Millar JBA, Hyams JS. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature. 2001, 412: 352-355.
    106. Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via Ras/Extracellular signal-regulated kinase (ERK) signaling pathway. Journal of Biological Chemistry. 1997, 272: 1904-1909.
    107. Kaltschmidt JA, Lawrence N, Morel V, Balayo T, Garcia Fernandez B, Pelissier A, Jacinto A, Martinez Arias A. Planar polarity and actin dynamics in the epidermis of Drosophila. Nature Cell Biology. 2002., 4: 937-944
    108. Tsakiridis T, Bergman A, Somwar R, Taha C, Aktories K, Cruz TF, Klip A, Downey GP. Actin filaments facilitate insulin activation of the src and collagen homologous/mitogen-activated protein kinase pathway leading to DNA synthesis and c-fos expression. Journal of Biological Chemist. 1998, 273: 28322-2831
    109. Leinweber BD, Leavis PC, Grabarek Z, Wang A, Morgan KG. Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins. Biochemical Journal. 1999. 344: 117-123.
    110. Khalil RA, Menice CB, Wang CLA, Morgan KG. Phosphotyrosine-dependent targeting of mitogen-activated protein kinase in differentiated contractile vascular cells. Circulation Research. 1995, 76: 1101-1108
    111. Parker CA, Takahashi K, Tang JX, Tao T, Morgan KG. Cytoskele.tal targeting of calponin in differentiated, contractile smooth muscle cells of the ferret. Journal of Physiology. 1998, 508: 187-198.
    112. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. Journal of CellScience. 1997, 110: 357-368
    113. Kayyali US, Pennella CM, Trujillo C, Villa O, Gaestel M, Hassoun PM. Cytoskeletal changes in hypoxic pulmonary endothelial cells are dependent on MAPK-activated protein kinase MK2. Journal of Biological Chemistry. 2002, 277: 42596-42602.
    114. Pawlak G, Helfman DM. Post-transcriptional down-regulation of ROCKI/Rho-kinase through and MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Molecular Biology of the Cell. 2002, 13: 336-347.
    115. Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physio Rev, 2001, 81: 685-740
    116. Hamill OP, McBride DW. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natl Acad Sci U S A. 1992, 89: 7462-7466
    117. Alex J, Head DA, MacKintosh FC. The deformation field in semiflexible networks. J Phys: Condens. Matter. 2004, 16: S2079-S2088
    118. Alberts B, Bray D, Lewis J, Raff M, Roberts K et al. Molecular Biology of the Cell (New York: Garland). 1994
    119. G. Arcovito et al. Biophysical Chemistry. 1997, 67: 287
    120. Amos LA, Amos WB. Molecules of the cytoskeleton. Macmillan. 1991
    121. The Cytoskeleton: an intracellular system of protein filaments. MBoC4. November 2, 2004, 907-929
    122. Silliman CC, Sturgill TW. Phosphorylation of microtubule-associated protein 2 by MAP kinase primarily involves the projection domain. Biophys Res Commun, 1989, 160: 993-998
    123. Hoshi M, Ohta K, Gotoh Y, et al. Mitogen-activated-protein-kinase- catalyzed phosphorylation of microtubule-associated proteins, microtu- bule-associ-ated proteins 2 and microtubule-associated proteins 4, induces an alteration in their function. Eur J Biochem, 1992, 203: 43-52
    124. Ornatsky, OI., Connor MK. Hood DA. Expression of stress proteins and mitochondrial chaperonins in chronically stimulated skeletal muscle. Biochem. J. 1995, 311: 119-123
    125. Mattson JP, Ross CR, Kilgore JL, et al. Induction of mitochondrial stress proteins following treadmill running. Med. Sci. Sports Ex. 2000, 32: 365-369
    126. Merrick BA., Walker VR, He C, Patterson RM. Selkirk JK. Induction of novel Grp75 isoforms by 2-deoxyglucose in human and murine fibroblasts. Cancer Lett. 1997, 119: 185-190
    127.李晓鲁,彭毅志.热激蛋白70与热激反应.生命的化学,2002,22(2): 145-147.
    128. Plakidou-Dymock S, McGivan JD. Biochim Biophys Acta. 1994, 1224: 189-197
    129. Yan Liu, Wen Liu, Xiao-Dong Song et al. Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem, 2005, 268: 45-51
    130. Bernier I, Tresca JP, Jolles P. Ligand-binding studies with a 23kDa protein purified from bovine brain cytosol. B iochim Biophys Acta 1998, 871: 19-23
    131. Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 1999, 401: 173-7
    132. Yeung KC, Rose DW, Dhillon AS, et al. Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAKI and inhibits NF-kappaB activation. Mol Cell Biol 2001, 21: 7207-17
    133. Kroslak T, Koch T, Kahl E, Hollt V. Human phosphatidylethanolamine-binding protein facilitates heterotrimeric G proteindependent signaling. J Biol Chem 2001, 276: 39772-8
    134. Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 2003, 426: 574-9
    135. Wright M, Jobanputra P, Bavington C et al. Clin Sicence, 1996, 90(1): 61-71
    136.刘秉文主编.医学分子生物学.中国协和医科大学出版社.2000,154—220
    137. Hickox DM, Gibbs G, Morrison JR, et al. Identification of a novel testis-specific member of the phosphatidylethanolamine binding protein family, pebp-2. Biol Reprod 2002, 67: 917-27
    138. Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985; 230: 1350-1354.
    139. Montogomery RA, Dallman MJ. Semi-quantitative polymerase chain reaction analysis of cytokine and cytokine receptor gene expression during thymic ontogeny. Cytokine, 1997; 9(10): 717-726
    140. Gilliland G, Perrin S, Blanchard K, et al. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A, 1990; 87(7): 2725-2729
    141. Pearson G, Robinson F, Beers Gibson, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153-83
    142. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000, 351 Pt 2: 289-305
    143. Yip-Schneider MT, Miao W, Lin A, et al. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem J 2000, 351: 151-9
    144. Fu Z, Smith PC, Zhang L, et al. Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst 2003, 95: 878-89
    145. Nicholas TR, Marsha R R. Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein. Cell Research, Jan 2005, 15(1): 19-23
    146. Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 2003; 426: 574-9
    147. Corbit KC, Trakul N, Eves EM, et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem 2003, 278: 13061-8
    148. Corbit KC, Trakul N, Eves EM, et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem 2003, 278: 13061-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700