用户名: 密码: 验证码:
酿酒酵母中木酮糖激酶基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酿酒酵母可以利用木酮糖发酵,但由于木酮糖代谢途径不畅和氧化还原不平衡等原因,含有毕赤树干酵母木糖还原酶和木糖醇脱氢酶编译基因的重组酿酒酵母在木糖培养基上出现木糖醇积累,从而导致木糖生产乙醇的产率较低。本研究将毕赤树干酵母的木糖还原酶基因、木糖醇脱氢酶基因和木酮糖激酶基因同时引入酿酒酵母并表达,从而达到疏通酿酒酵母木糖代谢途径,提高木糖利用率和乙醇产率的目的。
     采用Oligo和Primer PREMIER软件设计得到毕赤树干酵母木酮糖激酶基因xy13(gig100399,2942bp)的PCR上游引物5'-CCAACCAGCAGCGTGTG-3'和下游引物5'-TCTATCGTGATATTCGCACAT-3',经过PCR反应由毕赤树干酵母基因组成功扩增出长度为2704bp木酮糖激酶基因X3片段,X3序列与xy13基因相似性达到98%,含有酿酒酵母基因转录所必需的区域。由起始密码子ATG开始转译合成的多肽链含有623个氨基酸残基,相对分子量为69324Da。X3序列与酿酒酵母木酮糖激酶基因xksl的相似性达到35.46%。蛋白序列相似性达到34.2%,蛋白序列存在高度保守区域。
     以酵母附加型质粒YEp24成功构建得到了重组质粒YEp24-X3,又以重组质粒YEp24-X3和含有木糖还原酶基因(X1)、木糖醇脱氢酶基因(X2)的质粒YEp24-X1X2构建了同时含有X1、X2和X3基因的重组质粒YEp24-X1X2X3。采用乙酸锂转化法转化营养缺陷型酿酒酵母菌株Saccharomyces cerevisiae 1949得到了重组酿酒酵母菌株S.c R5。重组酵母S.cR5能够利用木糖,利用分子生物学手段检测重组菌含有酵母表达质粒YEp24-X1X2X3,即成功得到了同时含有毕赤树干酵母木糖还原酶基因、木糖醇脱氢酶基因和木酮糖激酶基因的重组酿酒酵母菌株,为木糖代谢研究提供了种质资源。
     重组酵母菌株S.c R5在YCM培养基上利用木糖的能力较宿主菌有了较大幅度的提高。同时供氧水平可显著影响重组酵母菌株S.c R5的木糖代谢,在不同的供养条件下酵母代谢木糖的能力有明显差异。在好氧条件下重组酵母菌株S.c R5可以代谢发酵液中99.5%的木糖,乙醇浓度达到0.46g/l,在厌氧条件下S.c R5能够发酵木糖生成乙醇,得率达到理论得率的19%。这表明,转入的毕赤树干酵母木糖还原酶基因、木糖醇脱氢酶基因和木酮糖激酶基因可以对酿酒酵母木糖发酵乙醇起到促进作用。本研究已成功获得了能够发酵木糖生成乙醇的重组酿酒酵母菌株,达到了预期目的。
Saccharymyces cerevisiae can ferment D-xylulose,however,because of the block of xylulose metabolic stream and infection of redox imbalance,recombinant Saccharymyces cerevisiae containing Pichia stipitis xylose reductase and xylitol dehydrogenase show xylitol accumulation phenomena which leads to the reduction of ethanol productivity.In this research, we clone Pichia stipitis xylose reductase gene,xylitol dehydrogenase gene and xylulokinase gene,express them in Saccharymyces cerevisiae to dredge xylose metabolic stream and rise ethanol productivity.
     Using Oligo and Primer PREMIER to design Pichia stipitis xylulokinase gene xy13 (gi8100399,2942bp)PCR primer.Upper primer is 5'-CCAACCAGCAGCGTGTG-3',lower primer is 5'-TCTATCGTGATATTCGCACAT-3'.Gene xy13 coding xylulokinase was cloned from the genome DNA of Pichia stipitis with the length of 2704bp,namely X3.The similarity value between X3 and the gene sequence of xy13 in GeneBank was 98%.Analysis of this gene showed that there were promoters and terminators but no intron in xy13 which is essential to the expression in Saccharomyces cerevisiae.The gene X3 was coded and a 623AAR polypeptide (69324Daltons)was produced.The DNA similarity between X3 and Saccharymyces cerevisiae xylulokinase gene xksl is 35.46%,protein similarity is 34.2%,and they have highly conserved regions.
     From yeast episome plasmid YEp24,successfully construct YEp24-X3.With plasmid YEp24-X1X2 and YEP24-X3,expression vector YEp24-X1X2X3 contained genes X1,X2 and X3,was recombined.Recombinant of Saccharomyces cerevisiae,namely R5(with YEp24-X1X2X3)was constructed by transferring mutant Saccharomyces cerevisaie 1949 with LiAc reagent.Saccharomyces cerevisaie R5 could grow well in xylose medium,molecule test indicate that xylose reductase gene,xylitol dehydrogenase gene and xylulokinase gene were contained.
     Apparently different has shown in xylose fermentation by Saccharomyces cerevisaie R5 on YCM medium.Saccharomyces cerevisaie R5 could grow well in xylose medium under aerobic and anaerobic conditions,under aerobic condition R5 can consume 99.5%xylose in the medium and ethanol concentration is 0.46g/l.Under anaerobic condition,ethanol yield was 19%of theoretical yield.This shows that expression of Pichia stipitis xylose reductase gene, xylitol dehydrogenase gene and xylulokinase gene is helpful to xylose ferment ethanol. Recombinant xylose-fermenting yeast strains were constructed,which expands and substantiates the strains' source and the theory for xylosc-metabolic engineering of microorganisms and the bioconversion of lignocellulosics to ethanol.
引文
[1]Nancy H,Zhengdao C,Adam P B.Genetically engineered Saccharomyces cerevisiae yeast capable of efective cofermentation of glucose and xylose.Appl Environ Micrebiol,1998,64(5):1852
    [2]WalIridsson M,Anderlund M,Bao X,et al.Expression of diferent levels of enzyrnes from the Pichia stipitis XYL 1 and XYL2 genes in Saccharomyces cerevisiae and its elects o 13 product formation during xylose ntilisation.Appl Microbiol Biotechnol,1997,48(2):218-224
    [3]Walfridsson M,Bao X,Anderlund M,et al.Ethanolic ferm entation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xyIA gene which expresses an active xylose (glucose)isomerase.Appl Environ Microbiol,1996,62(12):4648-4651
    [4]Walfridssion M,Hallbom J,Penttil M,et al.Xylose metabolizing Saccharomyces cerevisiae overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes tran sketolase and transaldolase.Appl Environ Microbiol,1995,61(2):4186-4190
    [5]Zaldivar J,Nielsen J,Olsson L.Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration[J].Appl Mivrobiol.Biotechnol,2001,56:17-34
    [6]Jeppsson H.Pentose utilization in yeasts:Physiology and biochemistry.Doctoral Dissertation 1994
    [7]Arthur J.Ragauskas,Charlotte K.Williams,Brian H.Davison etc.The Path Forward for Biofuels and Biomaterials[J].Science,2006,311:484-489
    [8]Lee Jeewon.Biological conversion of lignocellulosic biomass to ethanol[J].J Biotechnol,1997,56(1):1-24
    [9]Saddler J N(edn).Bioconversion of forest and agricultural plant residues[M].Wallingford,UK:C.A.B.Inter.1993
    [10]Brigham JS,Adney WS,Himmel ME.(1996)Hemicellulose:diversity and applications.In Wyman CE(eds)Handbook on bioethanol:producton and utilization.Taylor and Francis,Washington,DC,pp199-142
    [11]Wiselogel.(1996)Biomass feedstock resources and complication In:Wyman CE(eds)Handbook on bioethanol:production and utilization.Taylor and Francis,Washington,DC,pp105-118
    [12]Harris EE Two-stage,Dilute sulfuric acid hydrolysis of wood,United States Department of Agriculture,Foorest Products Laboratory General technical Report PFL-45,1985,pp73
    [13]Saddler JN(edn)Bioconversion of forest and agricultural plant residues,Wallingford,UK:CAB Inter,1993
    [14]Jeffries T W and Kurtman CP.Strian selection,taxonomy,and genetics of xylose-fermentation yeasts[J].Enzyme Microb Technol,1994,16:922-32
    [15]G.Berndes,C.Azar,T.Kaberger,D.Abrahamson,Biomass Bioenergy 20,371(2001)
    [16]Schneider H P,Wang Y,Chen K,et al,Conversion of D-xylose into ethanol by the Pachysolen tannphilus [J].Biotechnol Lett,1981,3:89-92
    [17]Jeffries TW.A comparison of Candida tropicalis and Pannophilus for conversion of xylose to ethanol[J]Biotechnol Bioeng Symp,1982,12:103-110
    [18]Du Preez JC andvan der Walt.Fermentation of D-xylose to ethanol by a strain of C.shehatae[J]. Biotechnol Lett,1983,5:357-362
    [19]Du Preez JC and Prior BA.A quantitative screening of some xylose-fermentation yeast isolates[J].Biotechnol Lett,1985,7:241-246
    [20]勇强.植物纤维资源生物转化制取酒精的研究[J].南京林业大学博士学位论文,1998
    [21]Wahibom CF,va Zyl WH,Jonsson LJ,et al.Generation of the improves recombinant xyiose-utilizing S.C TMB3400 by radom mutagenesis and physiological comparison with P.s CBS6054[J]FEMS Yeast Res,2003,3(3);319-326
    [22]Eliassson A,Hofmeyr JS,Pedler S,et al the xylose reductase/xylotol dehydrogenase/xylulokinase ratio affects product formatting in recombinant xylose-utilising S.c[J]Enzyme Mcrobiol Technol,2001,29:288-297
    [23]Yong SJ,Haiying N,Jose MJ,et al,Optimal growth and ethanol production from xylose by recombinant S.c require moderate D-xylulokinase activity[J].Appl Environ Microbiol,2003,69(1):495-503
    [24]Marie J,Bjorn J,Hahn-Hagerdal B,et al.Reduces oxidative pentose phosphate pathway flux in recombinant xylose-utilizing S.c strain improves the ethanol yield from xylose[J].Appl Environ Microbiol,2002,68(4):1604-9
    [25]Ligthelm ME,Prior BA,du Preeze JC.The oxygen requirement of yeasts for the fermentation of D-xylose and D-glulose to ethanol[J].Appl Microbiol Biotechnol,1988,28:63-68
    [26]Debus D,Methner H,Schulze D.et al,Fermentation of xylose with the yewst P.tannophilus[J],Euro J Appl Microbiol Biotechnol,1988,28:63-68
    [27]Alexander D,Methner H,Schulze D.et al,Fermentation of xylose with the yeast P.tannophilus[J].Euro J Appl Microbiol Biotechnol,1983,17:287-291
    [28]Ligthelm M.E,Prior B A,du Preez J.C,et al,The effects of hydrogen acceptors on D-xylose fermentation by anaerobic culture of immobilized P.t cells[J].Biotechnol Bioeng,1989,32:839-844
    [29]Boles,E.,W.Lehnert,and F.K.Zimmermann.1993.The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.Eur.J.Biochem.217:469-477
    [30]Gancedo JM.And Lagunas R.Contribution of the pentose-phosphate pathway to glucose metabolism in S.c:a critical analysis on the use of labeled glucose[J].Plant Sci Lett,1973,1:193-200
    [31]Strathem JN,Jones EW,Broach JR.(edn)The molecular biology of yeast S.c[J].Metabol Gene Exp,Cold Spring Harbor Lab,1982.
    [32]Jeffries T.W.Mutants of P.t showing enhances rates of growth and ethanol formation from D-xylose[J].Enzyme Microbiol Technol,1984,6:254-258
    [33]Lacis L.S,Jeffries T.W.Levels of enzyme of the pentose phosphate pathway in P.s Y-2460 and selected mutants[J].Enzyme Microbiol Technol,1986,353-359
    [34]Slininger PJ,Bolen PL,Kurtzman CP.P.t.properties and process considerations for ethanol production from D-xylose[J].Enzyme Microbiol Technol,1987 9:5-15
    [35]Olsson L.Hahn-Hagerdahl B.Fermentation of lignocellulose hydrolysates foe ethanol production[J].Enzyme Microbiol Technol,1996,18:312-331
    [36]Ingram L.O,et al.Metabolic engineering of bacteria for ethanol production[J].Biotechnol Bioeng,1998,58:204-214
    [37]Avigad JA.Stimulation of yeast phosphofructokinase activity by fructose 2,6-biphosphate[J].Biochem Biophys Res Com,1981,102:985-991
    [38]Bartron R,van Schaftingen E,Vissers S,et al,The stimulation of yeast phospbofructokinase by fructose 2,6-biphosphate[J].FEBS Lett,1982,143:137-140
    [39]Barwell CJ,Woodhard B,Brunt RV.Regulation of pyruvate kinase by fructosem 1,6 biphosphate in S.c [J].Euro J Biochem,1971,18:59-64
    [40]Bruinenberg PM,et al,Utilization of formate as an additional energy source by glucose-limited chemostat culture of C.utilis CBS621 and S.c[J],Archiives Microbiol,1985,142:302-306
    [41]Verduyn C,van kleef R,Frank Jzn J,et al,Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermentation yeast P.s[J].Archives Microbiol,1985,226:669-677
    [42]Grotkjaer T,Christakopoulos P,Nielsen J,Olsson L:Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains.Metab Eng 2005,7:437-444.
    [43]Bro C,Regenberg B,Forster J,Nielsen J:In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.Metab Eng 2005,8:102-111.Reports an excellent use of metabolic modeling to guide subsequent pathway engineering.
    [44]Jeppsson M,Bengtsson O,Franke K,Lee H,Hahn-Ha" gerdal B,Gorwa-Grauslund MF:The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.Biotechnol Bioeng 2005.Reports a novel and potentially useful way to navigate around the redox imbalance that is generated during growth on xylose.
    [45]Eliasson A,Christensson C,Wahlbom C F,et al.An aerobic xylose fermentation by recombinant S.c carryingXYL1,XYL2 and XKS1 in mineral medium chemostat cultures[J].Appl Environ Microbiol,2000,66:3381-3386
    [46]Yong-Su Jin,Sharon Jones,Nian-Qing Shi,and Thomas W.Jeffries Molecular Cloning of XYL3(D-Xylulokinase)from Pichia stipitis and Characterization of Its Physiological Function.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Mar.2002,p.1232-1239
    [47]徐勇.木糖代谢关键酶基因克隆及重组酵母菌株构建[J].南京林业大学博士学位论文,2005
    [48]Sambrook J,Russell D W(3~(nd)edn),黄培堂,等.译.Molecular cloning:A Laboratory Manual.分子克隆实验指南2002科学出版社,[M],北京,第三版
    [49]Dujon B.Trends Cene.1996,12:263-270
    [50]Fickett J.W.(1996)Finding genes by computer:the state of the art.Trends Genet.12,316-20
    [51]Altschul S.F.,Boguski M.s.,Gish W.& Woolton J.C.(1994)Issues in searching molecular databases.Nature Ghent.6,119-29
    [52]Kuyper M,Harhangi H R,Stave A K.High-level functional expression of a fungal xylose isomerase:The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res,2003,1574:1-10
    [53]Verduyn C.Phsysiology of yeasts in relation to biomass yields.In Antonie van Leeuwenhock 60[M]. Kluwer Academic Publishers,Netherlands,1991,pp325-353
    [54]Fiaux J,Cakar ZP,Sonderegger M,et al.Metabolic-flux profiling of the yeasts S.cerevisiae and P.stitlotis[J].Eukaryotic Cell,2003,2(1):170-180
    [55]Gregory S.Metabolic engineering:perspective of a chemical engineering[J].AIChE J,2002,48(5):920-926
    [56]Saddler J N(eds)Bioconversion of forest and agricultural plant residues[M].Wallingford,UK:CAB Inter,1993,pp258-290
    [57]Yong S J,Harying N,Jose M L,et al,Optimal growth and ethanol production from xylose by recombinant S.cerevisiae equlre moderate D-xylulokinase activity[J].Appl Environ Microbiol,2003,69(1):495-503
    [58]Jeppsson M,Johansson B,Hanhn-Hagerdal B,et al.Reduced oxidative pentose phosphate pathway flux in recombineant xylose-utilizing S.cerervisiae strains improves the ethanol yield from xylose[J].Appl Environ Microbiol,2002,68(4):1-14
    [59]Gardonyi M,Jeppsson M,Liden G,et al.Control of xylose consumption by xylose transport in recombinant S.cerervisiae[J].Biotechnol Bioeng,2003,82(7):818-824
    [60]Kotter P,Amore R,Hollenberg C P,et al.Isolation and characterization of the Pichia stiptis xylitol dehydrognase gene XYL2 and construction of a xyloso-utilizing Saccharomyces cerevisiae transformant[J].Curr Cenet.1990,18:493-500
    [61]Meinander N Q,Boels I,HahaOHagerdal B,et al.Fementation xylose/glucose mixtures by metabolically engineered S.c strains espressing XYL1 and XYL2 from P.s with and without overexpression of TAL[J].Biores Technol,1999,68(1):79-87
    [62]Gancedo J M.Yeast carbon catabolite repression[J].Microbiol Mol Biol Rev,1998,62:334-361
    [63]诸葛健.1999工业微生物实验技术手册 中国轻工业出版社,[M].北京,
    [64]Miller G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Anal Chem,1959,31(3):426-428
    [65]吴乃虎 2002基因工程原理 科学出版社[M],北京,第二版
    [66]Gancedo J M.Yeast carbon catabolite repression[J].Microbiol Mol Biol Rev,1998,62:334-361
    [67]Toivari M H and Aristidou L R,Penttils M.Conversion of xylose ethanol by recombinant S.c:importance of xylulokinase(XKS1)and oxygen availability[J].Metab Eng,2001,3:236-249
    [68]Teusink B,Walsh M C,van Dam K,et al.The danger of metabolic pathways with turbo design.Trends Biochem Sci,1998,23:162-169
    [69]Gregory N.Stephanopoulos,Aristos A.Aristidou,Jens Nielsen代谢工程-原理与方法[M]化学工业出版社,北京,2001
    [70]Richard P,Touvari M H,Penttila M.the role of xylulokinase in S.c xylulose catabolism[J].FEMS Microbiol Left,2000,190:39-43
    [71]Meinander N Q,Boels I,HahaOHagerdal B,et al.Fementation xylose/glucose mixtures by metabolically engineered S.c strains espressing XYL1 and XYL2 from P.s with and without overexpression of TAL[J].Biores Technol,1999,68(1):79-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700