用户名: 密码: 验证码:
基于模糊聚类及水平集方法的图像分割技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像分割是图像处理过程中非常重要的部分,决定着最终的图像分析和图像理解的质量。虽然人们在图像分割方面做了许多的研究工作,但是目前尚无通用的分割理论。现已提出的分割算法大多是针对具体问题的,因此图像分割的评介方法和评价标准也就不同。但是针对每一类的图像分割,我们要根据应用要求选择最优的方法,同时为了满足图像分割提出的新要求,仍然要不断探索新的算法。本文主要针对图像分割领域中模糊聚类算法和距离保持水平集模型中存在的关键问题进行研究。首先,针对传统的模糊C均值算法具有易陷入局部极值、对初值敏感以及需事先指定分类数目等缺点,从目标函数中距离度量的改进、隶属度的修正等方面对其进行改进,提高该算法的抗噪性能;其次,引入粒子群算法对传统FCM算法进行优化,提出一种基于改进粒子群优化和模糊C均值聚类的图像分割算法,将PSO全局优化聚类结果作为后续FCM算法的初始聚类中心,同时在算法中引入粒子间的排斥作用以控制群体的多样性。再次,几何主动轮廓模型中的无需重新初始化的距离保持水平集模型虽然在很多方面优于基于边界和基于区域的主动轮廓模型,但其仍存在演化曲线对初始位置的依赖和弱边界导致的边界泄露问题。本文对距离保持模型进行改进,引入了基于区域的符号压力函数,一定程度上摆脱了对初始位置的依赖,初始曲线位于图像的任何地方,均能够较好的自动检测出图像的边界。最后,虽然距离保持水平集模型中加入基于区域的符号压力函数可以在一定程度上摆脱对初始位置的依赖,但是当演化到边界时,对于边缘较模糊的图像仍然会出现边界泄漏问题,因此在此基础上又引入了新的与图像信息相关的可变权系数,能够根据图像信息自适应的改变运动方向,同时提高了检测多层轮廓和弱边界的能力,也加快了演化速度。
     论文就模糊聚类和基于水平集方法的图像分割算法进行了研究和探讨,并对原有算法进行改进,对不同图像的实验结果表明了论文提出算法的有效性。
Image segmentation is a very important part of the Image processing. in the process of the analysis and processing for image, the segmentation is its essence, determines the final image quality analysis and image understanding. While people have done a lot of segmentation research, but there is no general theory of the division. Proposed segmentation algorithm has been mostly issue-specific, so review of image segmentation methods and evaluation criteria is different, but for each type of image segmentation, we choose the best according to the method of application requirements, while still keep explore new segmentation and segmentation image segmentation theory to meet the new demands made by, and this is where the purpose of this thesis topic.
     Fuzzy C-means algorithm is the most perfect and the most widely used algorithm which is based on the objective function of the clustering algorithm theory, The algorithm introduced the concept of fuzzy membership degree to the image pixels, to retain more of the original image information. Fuzzy C-Means clustering method also has the problem of setting the threshold to avoid the merits of improving the scope of the algorithm. Fuzzy C-Means clustering algorithm has good convergence, while more than one branch can be used to solve division problems. FCM algorithm is based on fuzzy set theory proposed, therefore, of randomness and fuzzy image of the division has a good effect. However, during the image segmentation algorithm is needed to determine in advance the number of categories, sensitive to noise, easy to fall into local minimum.
     Level set method, greatly promoted the development of active contour models, level set method combined with the curve evolution model to overcome the many inherent shortcomings of traditional models, which greatly expanded the scope of application of active contour models. But the geometric active contour model evolution curve and lack of self-adaptive boundary leakage problem will remain, especially for soft-edge medical imaging, segmentation results are poor.
     In view of these considerations, the paper introduced by the traditional spatial context information fuzzy C-means algorithm, to improve anti-noise performance of the algorithm; using particle swarm algorithm to the traditional fuzzy C-means algorithm to improve; with geometric active contour model to maintain the level set in the distance inadequacy of their model to improve it. Main tasks are:
     Proposed kernel-based and space domain information neighboring fuzzy C-means image segmentation algorithm. Between adjacent pixels in the image there is a strong correlation, but the traditional FCM algorithm during the image segmentation considered only grayscale or color images color characteristics, while ignoring the wealth inherent in the image spatial information, making it more sensitive to noise, but also making the final out of the area often do not split a row, through the introduction of the membership function to solve; with the kernel-induced distance instead of the traditional FCM algorithm in the Euclidean distance to a given linear space from high-dimensional space into linear distance. Thus, in the original low-dimensional space of complex linear nonlinear problems can be treated. Therefore, this article will be the neighborhood kernel function and spatial information into fuzzy C-means algorithm. By fuzzy C-means algorithm on the original objective function of the membership function of the distance metric correction and improved algorithms to improve the existing anti-noise performance. Algorithm by modifying the value of membership, to improve the convergence speed.
     FCM algorithm is essentially a gradient descent based local search algorithm, there is a greater dependence on the initial value, such as inappropriate choice of initial value, the algorithm will converge to a local minimum but not global optimal solution. In this regard, this paper particle swarm global optimization features will be applied to the traditional fuzzy C-means to determine the initial value, we propose a new and improved particle swarm optimization based on fuzzy C-means clustering algorithm for image segmentation , the algorithm first with a fast convergence of the hard clustering algorithm for image clustering has been hard clustering center, then as a reference value, initialize the PSO algorithm for global search, while the introduction of the PSO algorithm to repulsion between particles control the population diversity to avoid premature convergence problem. Finally, the global optimization results as a follow-up the initial cluster centers FCM algorithm, the image clustering segmentation. And image segmentation based on the traditional FCM algorithm, the algorithm less iterations, convergence speed, better image segmentation.
     Proposed to maintain the distance based on improved adaptive level set image segmentation model. First introduced the level set curve evolution theory and level set model for image-based edge strength and region-based image information of the geometric active contour model is discussed in detail in the two models leads to keep the distance on the basis of the level set image segmentation model, and the model improvements. First of all, keep the distance the level set model is superior in many respects, although the boundary-based and region-based active contour models, but there are still evolution curve of the initial position of the boundary lead to dependence and weak boundary leakage problem. In this paper, keep the distance to improve the model, the introduction of region-based symbolic pressure function, to some extent out of dependence on the initial position, the initial curve in the image of any place, can automatically detect the image boundaries. Second, to maintain the level set model from the introduction of region-based symbolic pressure function, although to a certain extent from the initial position of dependence, but when the evolution of the boundary, there will still be the boundary leakage problem, so on this basis, the introduction of a new image information associated with variable weights to the image information according to the direction of motion adaptive changes, while improving the detection of weak boundary layers and the ability to profile, but also accelerated the evolution speed.
     Papers on image segmentation and fuzzy clustering segmentation algorithm geometric active contour models have been studied and discussed, and through various means to improve the original algorithm, images of different paper presents experimental results show that the effectiveness of the algorithm.
引文
[1] Gath I., Geva A. B. Unsupervised Optimal Fuzzy Clustering[J]. International Journal of Pattern Analysis and Machine Intelligence, 1989, 2(7): 773-781.
    [2] Bezdek J. C., Hall L. O., Clarke L. P.. Review of MR image segmentation techniques using pattern recognition[J], Med Phys, 1993: 20(4): 1033-1048.
    [3]章毓晋.图像分割[M].北京:科学出版社, 2001.
    [4] Gonzalez R. C., Woods R. E.. Digital Image Processing[C]. 3rd . Edition. Mass., USA:Addison-Wesley, 1992.
    [5] Pal N., Pal S.. A Review on Image Segmentation Techniques[J]. Pattern Recognit., 1993, 26(9):1277-1294.
    [6] Fu S. K., Mui J. K.. A Survey of Image Segmentation[J]. Pattern Recognition, 1981, 13(l): 3-16.
    [7] Haralick R. M., Shapiro L. G.. Image segmentation techniques. Comput. Vision Graphics Image Process, 1985, 29:100-132.
    [8] Chen H. D., Jiang X. H., Sun Y., et al. Color image segmentation: advances and prospects. Pattern Recognition, 2001, 34:2259-2281.
    [9] Cheng H. D., Sun Y.. A Hierarchical Approach to Color Image Segmentation Using Homogeneity[J]. IEEE Transactions on Image Processing, 2000, 9(12): 2071-2082.
    [10] d'Ornellas M. C.. A Multi-scale Gradient Approach for Color-based Morphological Segmentation[C]. In:Proceedings 2000 of 15th International Conference on Pattern Recognition. Barcelona Spain. 2000, 3:363-366.
    [11] Pal N., Pal S.. A Review on Image Segmentation Techniques[J]. Pattern Recognition, 1993, 26:1277-1294.
    [12] Chang Y. L., Li X.. Adaptive image region-growing. IEEE Trans. [J] Image Processing, 1994,3:868-872.
    [13] Hijjatoleslami S. A., Kittler J.. Region growing: A new approach[J]. IEEE Trans. Image Process, 1998, 7:1079-1084.
    [14]尹平,王润生.基于边缘信息的分裂合并图像分割方法[J].中国图像图形学报, 1998, 3(6):450-454.
    [15] Yang F. G., Jiang T. Z.. Pixon-based image segmentation with Markov random fields[J]. IEEE Trans. On Image Processing, 2003, 12(12): 1552-1559.
    [16] Canny J.. A computational approach to edge detection[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.
    [17] Deng W., Iyengar S. S.. A new probabilistic relaxation scheme and its application to edge detection [J]. IEEE Trans. On Pattern Analysis and machine Intelligence, 1996, 18(4):432-437.
    [18] Qian R. J., Huang T. S.. Optimal edge detection in two-dimensional images[J]. IEEE Trans. On Image Processing, 1996,5(7):1215-1220.
    [19] Lee C. K., Wong S. P.. A Mathematical Morphological Approach for Segmenting Heavily Noise-corrupted Images[J]. Pattern Recognition, 1996, 29(8):1347-1357.
    [20]黄风岗,杨国,宋克欧.柔性形态学在图像边缘检测中的应用[J].中国图象图形学报, 2000, 5A(4):284-287.
    [21] GU Lingjia, GUO Shuxu, REN Ruizhi, YANG Yue. Target Detection Method Based on Wavelet Transform and Improved Watershed Algorithm. ISTM-2007, 7th International Symposium on Test and Measurement, 2007: 1150-1154.
    [22] Vincent, Luc, Soille, Pierre. Watersheds in digital spaces: An efficient algorithm based on immersion simulations.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6): 583-598.
    [23] Gauch J. M.. Image Segmentation and Analysis via Multiscale Gradient Watershed Hierarchies[J]. IEEE Trans on Image Processing, 1999, 8(1):69-79.
    [24] Haris K., Efstratiadis S. N., Maglaveras N., et al. Hybrid Image Segmentation Using Watersheds and Fast Region Merging[J]. IEEE Trans on Image Processing, 1998, 7(12):1684-1699.
    [25] Cheng K. S., Lin J. S., Mao C. W.. The application of Competitive Hopfield Neural Network to Medical Image Segmentation[J]. IEEE-MI, 1996, 15:560-567.
    [26]陈燕新,戚飞虎.基于竞争Hopfield网络的自动聚类分割方法[J].模式识别与人工智能, 1998, 11(2):215-221.
    [27]章国宝,叶桦,陈维南.基于正交小波变换的多尺度边缘提取[J].中国图象图形学报, 1998, 3(8):651-654.
    [28] Evans L. C.. Partial Differential Equations[M]. Providence:American Mathematical Society,1988.
    [29] Mumford D., Shah J.. Boundary detection by minimizing functions[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco. CA, USA, 1985:22-26.
    [30] Sasikala M., Kumaravel N., Ravikumar S.. Segmentation of Brain Images Using Genetically Guided Clustering[C]. Proeeeding of the 28th Annual International Conference of IEEE EMBS, 2006:3620-3623.
    [31]郑宏,潘励.基于遗传算法的图像阈值自动选取[J].中国图象图形学报, 1999, 4(4):327-330.
    [32]薛景浩,章毓晋,林行刚.二维遗传算法用于图像动态分割[J].自动化学报, 2000, 26(5):327-330.
    [33] Dunn J. C.. A Fuzzy Relative of The ISODATA Process and Its Use in Detecting Compact Well Separated Cluster[J]. J Cybernet, 1974, 3:32-57.
    [34] Bezdek J. C.. Pattern recognition with fuzzy objective function algorithms[J]. New York: Plenum Press, 1981: 43-93.
    [35] Bezdek J. C.. A Convergence Theorem for The Fuzzy ISODATA Clustering Algorithm[J]. IEEE PAMI, 1980, 1(2):1-8.
    [36] Coleman G. B., Andrews H. C.. Image Segmentation by Clustering[J]. Proc. IEEE, 1979, 5(67):773-785.
    [37] Pappas T. N.. An Adaptive Clustering Algorithm for Image Segmentation[J]. IEEE Trans. on Signal Processing, 1992, 40(4):901-914.
    [38] Tolias Y. A., Panas S M. Image Segmentation by A Fuzzy Clustering Algorithm Using Adaptive Spatially Constrained Membership Functions[J]. IEEE Trans. on System, Man and Cybernetics, 1998, 28(3):359-369.
    [39] ZhaoY. Q., Li M. L.. A modified fuzzy C-Means algorithm for segmentation of MRI[C]. Proceedings of the 5th ICCIMA’03,2003.
    [40] Ke J.. Fast Accurate Fuzzy Clustering through Reduced Precision[M]. Master’s Thesis, University of South Florida, 1999.
    [41] Eschrich S., Jingwei Ke, Hall L. O., et al. Fast Fuzzy Clustering of Infrared Images[C]. In: IFSA World Congress and 20th NAFIPS International Conference. Vancouver, BC Canada, 2001, 2:1145-1150.
    [42]丁震,胡钟山,扬静宇等.一种基于模糊聚类的快速二值化方法[J].计算机学报,增刊, 1998:331-334.
    [43] Yang C. K., Tsai W. H.. Reduction of Color Space Dimensionality by Moment-preserving Thresholding and Its Application for Edge Detection in Color Images[J]. Pattern Recognition Letter, 1996,17:481~490.
    [44] Rosenberger C., Chehdi K.. Unsupervised Clustering Method with Optimal Estimation of The Number of Clusters: Application to Image Segmentation[C]. In: Proceedings of 15th International Conference on Pattern Recognition. Barcelona Spain. 2000, 1: 656-659.
    [45]潘伟,付佳,王秀芬等.一种自动分类的加权模糊C均值图像分割算法[J].中国海洋大学学报, 2007, 37(3):485-488.
    [46] Frigui H, Krishnapuram R. Clustering by Competitive Agglomeration[J]. Pattern Recognition Letters, 1987, 30(7):1109-1119.
    [47] Boujemaa N.. Generalized Competitive Clustering for Image Segmentation[C]. In: Fuzzy Information Processing Society, 2000. NAFIPS. 19th International Conference of the North American. Atlanta, GA USA. 2000:133-137.
    [48] Kim D. W., Lee K. H., Lee D.. On cluster validity index for estimation of optimal number of fuzzy clusters[J]. Pattern Recognition, 2004, 37(10):2009-2024.
    [49]林开颜,徐立鸿,吴军辉.快速模糊C均值聚类彩色图像分割算法[J].中国图象图形学报, 2004, 9(2):159-163.
    [50] Cheng Y. M., Jiang M.Y., Yuan D.F.. Novel Clustering Algorithms Based on Improved Artificial Fish Swarm Algorithm[C]. 6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009, 2009, 3: 141-145.
    [51] Wang G. C., Yin X.J., Pang Y.J., Zhang M., Zhao W.D., Zhang Z.S.. Studies on Fuzzy C-Means Based on Ant Colony Algorithm[C]. 2010 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2010, 2010, 3: 515-518.
    [52] Wang L., Liu Y.H., Zhao X.X., Xu Y.Q.. Particle swarm optimization for fuzzy c-means clustering[C]. WCICA 2006: Sixth World Congress onIntelligent Control and Automation Conference Proceedings, 2006, 1(12): 6055-6058.
    [53] Li L.L., Liu X.Y., Xu M.M.. A novel fuzzy clustering based on particle swarm optimization[C]. Proceedings of the 2007 1st International Symposium on Information Technologies and Applications in Education(ISITAE 2007), 2007: 88-90.
    [54]刘晓龙,张佑生,谢颖.模拟退火与模糊C-均值聚类相结合的图像分割算法[J].工程图学学报, 2007, 1:89-93.
    [55] Hui Y., Khorram S., Dai X. .L. Applications of Simulated Annealing Minimization Technique to Unsupervised Classification of Remotely Sensed Data[C]. In:IGARSS'99 Proceedings of IEEE 1999 International Conference on Geoscience and Remote Sensing Symposium. Hamburg Germany, 1999, 1:134-136.
    [56] Selim S. Z., Alsultan K.. A Simulated Annealing Algorithm for the Clustering Problem[J]. Pattern Recognition, 1991, 24(10):1003-1008.
    [57] Sookpotharom SuPot, Chaichana Thanapong, Pintavirooj Chuchart, et al. Segmentation of Magnetic Resonance Images Using Discrete Curve Evolution and Fuzzy Clustering[C]. Proeeeding of the 2007 IEEE Intemational Conference on Integration Technology, 2007:697-700.
    [58] Huang G. R.,Wang X. F.,Cao X. B.. Ant colony optimization algorithm based on directional pheromone diffusion[J]. Chinese Journal of Electronics, 2006, 15(3):447-450.
    [59] Hall L. O., Kanade P. M.. Fuzzy ants and clustering[J]. IEEE Trans on Systems. Man and Cybernetics_PART A: Systems and humans, 2007, 37(5):758-769.
    [60] Shelokar P. S., Jayaraman V. K., Kulkami B. D.. An ant colony approach for clustering[J]. Analytic Chimica Acta, 2004, 509(2):187-195.
    [61]王培珍,陈维南.基于模糊聚类和二维阈值的图像分割[J].东南大学学报, 1998, 6:74-78.
    [62] Chaudhuri D., Chaudhuri B. B.. A Novel Multiseed Nonhierarchical Data Clustering Technique[J]. IEEE SMC, 1997, 27(5):871-877.
    [63] Postaire J. G., Zhuang R. D., Lecocq-Botte C.. Cluster Analysis by Binary Morphology[J]. IEEE PAMI, 1993, 15(2):170-180.
    [64] Krishnapuran, Keller J. M.. A possibilistic c-means algorithm[J]. IEEE Trans. Fuzzy Syst, 1993, 2:100-112.
    [65] Liew A. W. C., Leung S. H., Lav W. H.. Fuzzy Image Clustering Incorporating Spatial Continuity[J]. IEE Proc-Vis. Image Signal Process, 2000, 147(2):185-192.
    [66] Yang M. S.,Wu K. L.. Unsupervised possibilistic clustering[J]. Pattern Recognition, 2006, 39(1):5-21.
    [67] Yang M. S., Tsai H. S.. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction[J]. Pattern Recognition Letters, 2008, 29:1713-1725.
    [68] Hou Z., Qian W., Huang S., et al. Regularized fuzzy c-means method for brain tissue clustering[J]. Pattern Recognition Letters, 2007, 28:1788-1794.
    [69] Karmakar G. C., Dooley L.. A Generic Fuzzy Rule Based Technique for Image Segmentation[C]. In: Proceedings(ICASSP'01)of IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, UT USA, 2001, 3:1577-1580.
    [70] Pham D. L.. Fuzzy clustering with spatial constraints[C]. Proceedings of the International Conference Image Processing, 2002, 65-68.
    [71] Wang X., Wang Y., Wang L.. Improving fuzzy c-means clustering based on feature-weight learning[J]. Pattern Recognition Letters, 2004,25:1123-1132.
    [72] Wu K. L., Yang M. S.. Alternative c-means clustering algorithm[J]. Pattern Recognition, 2002, 35(10):2267-2278.
    [73] Osher S., Sethian J. A.. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jaeobi formulation[J]. Journal of Computational Physics, 1988, 79(l):12-49.
    [74] Osher S., Shu C. W.. High-order essentially no scillatory schemes for Hamilton-Jaeobi equation[J]. SIAM Journal of Numerical Analysis, 1991, 28(4):907-922.
    [75] Osher S., Sethian J. A.. Level Set Methods and Dynamic ImPlicit Surfaces[M]. New York: Springer-Verlag, 2002:22-114.
    [76] Ciga Y.. Surface Evolution Equation-A Level Set Method[M]. Lipschitz Lecture Notes 44, Germany. University of Bonn, 2002, 56-85.
    [77] Kass M., Witkin A., Terzopoulos D.. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, l(4):321-331.
    [78] Cohen L. D.. On active contour models and balloons[J]. CVGIP: Image Understanding, 1991, 53(2):211-218.
    [79] Cohen L. D., I Cohen. Finite-element methods for active contour models and balloons for 2-D and 3-D images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11):1131-1147.
    [80] Xu C., Prince J. L.. Snakes, Shapes and Gradient Vector Flow[J]. IEEE Trans.on Image Processing, 1998, 7(3):359-369.
    [81] Caselles V., Kimmel R., Sapiro G.. Geodesic active contours[C]. In: Proceeding 5th International Conference on Computer Vision, Boston, MA, USA, 1995:694-699.
    [82] Caselles V., Kimmel R., Sapiro G.. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(l):61-79.
    [83] Xu C., Yezzi A., Prince J. L.. on the Relation ship between Parametric and Geometric Active Contours[A], Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers[C], 2000, 1: 483-489.
    [84] Nikos Paragios, Olivier Mellina-Gottardo, Visvanathan Ramesh,. Gradient vector flow fast geometric active contours, IEEE Transactions on Pattren Analysis and Machine Intelligence, 2004, 26(3):402-407.
    [85] Weickert J., ter Haar Romeny B.M., Viergever M. A.. Efficient and reliable schemes for Nonlinear diffusion filtering[J]. IEEE Transactions on Image processing, 1998, 7(3):398-410.
    [86] Chan T. F., Vese L.. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
    [87] Chan T. F., Sandberg B.Y., Vese L.A.. Active contours without edges for vector-valued images[J]. J. Visual Communication Image Representation, 2000, 11(2), 130-141.
    [88] Nikos Paragios, Rachid Detiche. Coupled geodesic active regions for image segmentation:A level set approach.[C]In Proceeding of 6th Eur. Conf. on Computer Vision, Dublin, 2000:224-240.
    [89] Yezzi A., Zollei L., Kapur T.. A variational fiamework for integrating segmentation registration through active contours[J]. Medical Image Analysis, 2003, 7(2):171-185.
    [90] Yezzi Jr Anthony, Tsai Andy, Willsky Alna. A fully global approach to image segmentation via coupled curve evolution equations[J]. Joumal of Visual Communication and Image Representation, 2002, 13(1-2):195-216.
    [91] Li C., Xu C., Gui C., Fox M. D.. Level set evolution without re-initialization: A new variational formulation[C]. In IEEE Conferenceon Computer Vision and Pattern Recognition(CVPR), 2005, l: 430-436.
    [92]周林,平西建,童莉.一种改进的自适应距离保持水平集演化方法[J].应用科学学报, 2011, 29(3):274-280.
    [93] Li C. M., Kao C. Y., Gore J. C., et al. Implicit active contours driven by local binary fitting energy[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, 2007:339-345.
    [94] Li C. M., Kao C. Y., Gore J. C., et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 17(10):1940-1949.
    [95] Li C., Huang R., Ding Z.. A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity [C]. Proceedings of 11th International Conference on Medical Image Computing and Computer-Assisted Intervention. New York, 2008, 2:1083-1091.
    [96] Chen Y., Zhang J., Macione J.. An improved level set method for brain MR images segmentation and bjas correction[J]. Computerized Medical Image and Graphics, 2009, 33(7):510-519.
    [97] Droske M., Meyer B., Rumpf M., etc. An adaptive level set method for medical image segmentation[C]. Lecture Notes In Computer Science, Proeeedings of the 17th International Conference on Information Processing in Medical Imaging, 2001, 2082:416-422.
    [98] Deng J., Tsui H.T.. A fast level set method for segmentation of low contrast noisy biomedical images[J], Pattern Recogn-Lett23, 2002:161-169.
    [99] Yuan X., Situ N., Zouridakis G.. A narrow band graph partitioning method for skin lesion segmentation [J]. Patten Recognition, 2009, 42(6):1017-1028.
    [100] Ayed B. I., Mitiche A., Belhadj Z.. Level set curve evolution partitioning of polarimetric images[C]. Proceedings of IEEE International Conference on Image Processing. Genoa, Italy, 2005:281-284.
    [101] Ayed B. I., Mitiche A., Belhadj Z.. Multiregion level-set partitioning of synthetic aperture radar images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):793-800.
    [102] Ayed B. I., Mitiche A., Belhadj Z.. Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9):1493-1500.
    [103]岑峰,戚飞虎,曾文珺.基于边缘吸引力场正则化的短程线主动轮廓模型[J].电子学报, 2003, 31(l):15-20.
    [104] Silveira M., Heleno S.. Water/Land Segmentation in SAR Images using level sets[C]. Proceedings of IEEE International Conference on Image Processing San Diego, CA, 2008:1896-1899.
    [105] Silveira M., Heleno S.. Separation between water and land in SAR images using region-based level sets[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3):471-475.
    [106] Dubes R. C., Jain A. K.. Algorithms for Clustering Data. Englewood Cliffs. NJ: Prentice Hall, 1988.
    [107] Duda R. O., Hart P. E.. Pattern Classification and Sence Analysis. John Wiley and Sons, New York, 1973.
    [108] Tou J. T., Gonzales R. C.. Pattern Recognition Principles. Readind, MA: Addison-Weisey, 1974.
    [109] Young T. Y., Fu K. S.. Handbook of Pattern Recognition and Image Processing. Academic Press, New York, 1986:23-24.
    [110] Pham D. L., Prince J. L.. An adaptive fuzzy c-means algorithm forimage segmentation in the presence of intensity inhomogeneities. [J] Pattern Recognition Letters, 1999, 20:57-68.
    [111] Liew A.W., Yan H.. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation[J], IEEE Trans. On Medical Imaging, 2003, 22(9): 1063-1075.
    [112] Udupa J. K., Samarasekera S.. Fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation [J]. Graphical Models Image Processing, 1996, 58(3):246-261.
    [113] Yamany S. M., Farag A. A., Hsu S.. A fuzzy hyperspectral classifier for automatic target recognition(ATR)systems[J]. Pattern Recognition Letters, 1999, 20:1431-1438.
    [114] Zadeh L. A.. Fuzzy sets[J]. Information Control, 1965(8):338-353.
    [115]谢季坚,刘承平.模糊数学方法及其应用(第三版)[M].武汉华中科技大学出版社,2006.
    [116] Cristianini N., Taylor J. S.. An introduction to SVMs and other kernel-based learning methods. Cambridge [M]. UK: Cambridge University Press, 2000.
    [117] Scholkopf B.. Support Vector Learning: R. Oldenbourg Verlay (Ph.D Dissertation) [D], 1997.
    [118] Girolami M.. Mercer kernel-based clustering in feature space [J]. IEEE Trans. Neural Networks, 2002, 13(3): 780-784.
    [119] Chiang. J. H., Hao P. Y.. A new kernel-based fuzzy clustering approach: support vector clustering with cell growing [J]. IEEE Trans. Fuzzy Syst., 2003, 11 (4): 518-527.
    [120] Shen H., Yang J., Wang S., Liu X.. Attribute weighted Mercer kernel based fuzzy clustering algorithm for general non-spherical datasets [J]. Soft Comput., 2006, 10 (11): 1061-1073.
    [121] Zhang D. Q., Chen S. C.. Clustering incomplete data using kernel-based fuzzy c-means algorithm [J]. Neural Process. Lett., 2003, 18 (3): 155-162.
    [122] Muller K. R., Mika S., Ratsch G., Tsuda K., Scholkopf B.. An introduction to kernel-based learning algorithms [J]. IEEE Transactions on Neural Networks , 2001, 12(2): 181-201.
    [123] Scholkopf B., Smola A. J., Muller K. R.. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computing, 1998, 10:1299-1319.
    [124] Chuang K. S.,Tzeng H. L.,Chen S.,et al. Fuzzy c-means clustering with spatial information for image segmentation [J]. Computerized Medical Imaging and Graphics, 2006, 30: 9-15.
    [125]杨悦,郭树旭,任瑞治,于永力.基于核函数及空间邻域信息的FCM图像分割新算法[J].吉林大学学报(工学版) , 2011, 41 (05): 1605-1611.
    [126] Yue Yang, Shuxu Guo, Runlan Tian, Peng Liu. A novel kernel-based fuzzy c-means algorithm with spatial information for image segmentation[C]. 2010 International Conference on Information Security and Artificial Intelligence, 2010,2: 101-105.
    [127] Bezdek J. C.. Cluster validity with fuzzy sets [J]. Cybernetics and Systems, 1973, 3(3): 58-73.
    [128] Bezdek J. C.. Mathematical models for systematic and taxonomy [C]. Proc. of Eight International Conference on Numerical Taxonomy, San Francisco, 1975: 143-166.
    [129] Ahmed M. N., Yamany S. M., Mohamed N., et al.. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Trans. on Medical Imaging, 2002, 21(3): 193-199.
    [130] KENNEDY J., EBERHART R. C.. Particle swarm optimization [C]. Proc of IEEE International Conference on Neural Networks. 1995:1942-1948. IEEE Service Center, Piscataway, NJ.
    [131] Eberhart R. C., Kennedy J.. A New Optimizer Using Particle Swarm Theory [C]. Proceedings of Sixth Symposium on Micro Machine and Human Science, 1995:39–43. IEEE Service Center, Piscataway, NJ.
    [132] Al-kazemi B., Mohan C.K.. Multi-phase generalization of the particle swarm optimization algorithm[C]. In: Proceeding of the IEEE International Conference on Evolutionary Computation,Honolulu: IEEE Inc,2002: 489-494.
    [133] Hu X. H.,Eberhart R. C.. Adaptive particle swarm optimization: detection and response to dynamic systems[C]. In: Proceedings of the 2002 Congress on Evolutionary Computation,Honolulu,HI,USA,2002: 1666-1670.
    [134] Patan G., Russo M.. Comparisons between fuzzy and hard clustering techniques [A]. Proc of WILF’99 [C]. 1999.
    [135] Yue Yang, Shuxu Guo, Runlan Tian, Peng Liu , Fuzzy C-means clustering algorithm for image segmentation based on improved particle swarm optimization[C]. 2011 3rd International Conference on Computer Design and Applications, 2011, 6: 438-441.
    [136] Omran M., Engelbrecht A., Salman A.. Particles Swarm Optimization Method for Image Clustering[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19(3): 297-321.
    [137]罗志宏,冯国灿,成秋生.结合聚类和改进的C-V演化方程在医学图像分割中的应用[J].计算机应用, 2008, 28(9): 2288-2291.
    [138]张开华,周文罡,张振等.一种改进的C-V主动轮廓模型[J].光电工程,2008,35(12):112-116.
    [139]李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757.
    [140]宋新,罗军,王鲁平,沈振康.基于快速水平集算法的图像分割方法[J].信号处理,2008, 3(24): 422-425.
    [141]董建园,郝重阳.基于统计先验形状的水平集图像分割综述[J].计算机科学,2010, 37(1): 3-9.
    [142] Kass. Michael, Witkin. Andrew, Terzopoulos. Demetri. SNAKES: ACTIVE CONTOUR MODELS [J]. IEEE.,1987:259-268.
    [143]杨新,李俊,杜啸晓.图像偏微分方程的原理与应用[M ].上海:上海交通大学出版社,2003.
    [144] Caselles V., Catte F., Coll T., Dibos F.. A Geometric Model for Active Contours in Image Processing [J]. Numerische Mathematik. 1993, 66(1): 1-31.
    [145] Malladi R., Sethian J. A., Vemuri B. C.. Shape modeling with front propagation:a Level Set approach[J]. IEEE Trans. On PAMI, 1995, 17(2): 158-175.
    [146] Caselles V., Catte F., Coll T., Dibos F.. A geometric model for active contours in image processing[J], Numer. Math, 66, 1993, 1-31.
    [147] Malladi R., Sethian J. A., Vemuri B. C.. Shape modeling with front propagation: a level set approach[J]. IEEE Trans. Patt. Anal. Mach. Intell., 17, 1995, 158-175.
    [148]徐国良,张琴,刘丹.带噪声散乱数据的光滑曲面重构—变分水平集方法[J].计算机辅助设计与图形学学报,2007,19(7): 840-848.
    [149]何传江,田巧玉.几何活动轮廓模型中停止速度函数的尺度变换[J].计算机工程与应用,2008,44(8): 82-84.
    [150]何传江,李梦,詹毅.用于图像分割的自适应距离保持水平集演化[J].软件学报,2008, 19(12): 3161-3169.
    [151] Xu C. Y., Yezzi A., Prince J. L.. On the relationship between parametric and geometric active contours[C]. Processing of 34th Asilomar Conference on Signals Systems and Computers. Pacific Grove: IEEE Press, 2000: 483-489.
    [152] Chen S. C., Zhang D. Q.. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. IEEE Trans. on Systems Man Cybernet, Part B, 2004, 34(4): 1907-1916.
    [153] Cai W. L., Chen S. C., Zhang D. Q.. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J]. Pattern Recognition, 2007,40(3): 825-838.
    [154] Hou Z., Qian W., Huang S., et al.. Regularized fuzzy c-means method for brain tissue clustering [J]. Pattern Recognition Letters, 2007, 28(13): 1788-1794.
    [155] Wang J. Z., Kong J., Lu Y. H., et al.. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints [J]. Computerized Medical Imaging and Graphics, 2008, 32(8): 685-698.
    [156] Ma L., Staunton R. C.. A modified fuzzy c-means image segmentation algorithm for use with uneven illumination patterns [J]. Pattern Recognition, 2007, 40(11): 3005-3011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700