用户名: 密码: 验证码:
放牧对陇东黄土高原天然草地土壤理化特性及微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放牧是草地利用的主要方式之一,家畜通过采食、践踏和排泄粪便等3种主要形式影响草地,特别是草地的土壤状况。本论文于2004-2006年,以陕、甘、宁交界的甘肃省环县、陇东黄土高原不同放牧率的天然草地为对象,系统探讨了放牧对草地土壤物理与化学性质、土壤微生物群落构成及其数量和土壤微生物生物量的影响。主要研究结果如下:
     1、土壤粘粒、粉(砂)粒、细砂和粗砂的含量百分比在不同放牧率的轮牧分区显著不同。其中粘粒和粉(砂)粒的含量在不放牧的(0只羊/hm~2)轮牧分区显著高于其他各放牧分区,而不同放牧率的轮牧分区间无显著差异。细砂的含量在5.3只羊/hm~2轮牧分区最高,在0只羊/hm~2的最低。粗砂的含量在8.70只羊/hm~2的轮牧分区最高,在0只羊/hm~2和2.7只羊/hm~2的轮牧分区最低。一年中,土壤粘粒、粉(砂)粒、粗砂含量百分比均是9月最高,其在0-30cm土层内的垂直分布特征为粗砂在0-10cm的表层最高,而粘粒、粉(砂)粒、细砂等则是随土层加深而增加。
     2、连续两年7次对4个放牧强度轮牧分区取样测定土壤有机质和营养成分含量。结果表明,多数情况下,各处理间的有机质和全氮含量无显著差异,而全磷和铵态氮含量在0只羊/hm~2的轮牧分区显著高于2.7只羊/hm~2,硝态氮含量在8.7只羊/hm~2的轮牧分区显著高于0只羊/hm~2的轮牧分区;速效磷含量在2.7只羊/hm~2或0只羊/hm~2轮牧分区显著高于8.7只羊/hm~2的处理。一年中,土壤有机质、全氮、硝态氮含量、pH值均表现为9月最高,全磷和速效磷在11月最高,铵态氮在5月或6月最高。在空间分布上,土壤有机质、全氮、全磷和硝态氮表现为随土层的加深而增加,而土壤铵态氮、速效磷和pH值则表现为随土层的加深而降低。
     3、各轮牧分区内土壤微生物数量中,以真菌最少,仅占微生物总数的0.10-1.29%,其次为放线菌,占微生物总数的17.37-59.63%,细菌数量最高,占微生物总数的40.27-82.23%。就不同放牧率而言,土壤微生物总数在放牧率为8.7只羊/hm~2的轮牧分区最高,在5.3只羊/hm~2的轮牧分区最低。土壤真菌数量则是在2.7只羊/hm~2轮牧分区最高,其次为5.3只羊/hm~2和8.7只羊/hm~2,在0只羊/hm~2的轮牧分区最低。细菌数量亦是在8.7只羊/hm~2的轮牧分区最高,5.3只羊/hm~2轮牧分区最低,0只羊/hm~2和2.7只羊/hm~2介于其间。放线菌数量在2.7只羊/hm~2的轮牧分区最高,其次为5.3只羊/hm~2和8.7只羊/hm~2的轮牧分区,0只羊/hm~2的轮牧分区最低。一年中,真菌和细菌数量的最高值均出现在9月,最低值在4月或11月;而放线菌的最高值在11月,最低值在4月或6月。在空间分布上,土壤真菌、细菌和放线菌表现为随土层的加深而显著降低。土壤真菌和细菌、真菌和放线菌、细菌和放线菌数量之间呈显著的正相关,相关系数分别为0.3362-0.4626、0.2087-0.4535和0.6434-0.6456。土壤真菌、细菌数量分别与土壤中铵态氮、硝态氮含量呈显著正相关(p<0.05),放线菌数量与土壤中全磷含量呈显著正相关(p<0.05),土壤pH值与细菌、放线菌数量均分别呈显著正相关(p<0.05)。
     4、不同放牧强度下,0-10cm、10-20cm和20-30cm土层,土壤微生物量碳均是在8.7只羊/hm~2的轮牧分区内最低,而微生物量氮在8.7只羊/hm~2的轮牧分区内的最高,其他3个放牧率分区间微生物量碳和氮含量差异不显著。土壤微生物量磷在0只羊/hm~2的轮牧分区内最低,其他3个放牧率分区间2.7只羊/hm~2或5.3只羊/hm~2的轮牧分区内的磷含量显著高于8.7只羊/hm~2的分区。不同取样期,土壤微生物量碳和磷在9月份达到最高,微生物量氮在11月份最高。连续两年测定结果同时表明,放牧的累加效应十分明显。2005年各期各区的微生物量碳和氮明显低于2004年相同时期。土壤微生物量碳、氮和磷在空间分布上均表现为随土层的加深而显著降低,且含量在各层次间均差异显著(p<0.05)。土壤微生物量碳和氮、氮和磷、碳和磷均呈显著正相关(p<0.05),相关系数分别为0.3649、0.2195和0.3390。回归方程式分别为y=0.036x+7.2752、y=0.0562x+5.5049和y=0.0064x+5.1656,决定系数分别为0.3649、0.2195和0.3390。土壤微生物量碳分别与粘粒、粉(砂)粒含量显著正相关(p<0.05),而与细砂含量显著负相关。微生物量氮与速效磷呈显著正相关。微生物量磷与土壤pH值显著正相关。
     根据上述结果,似可认为试验草地条件下,适宜放牧率为2.7-5.3只羊/hm~2。
Grazing is one of the main uses of grassland. Livestock interacts with grassland by its activities of feeding, trampling and excreting. Effects of grazing on soil physical and chemical properties, and soil microbes in semi-arid grassland were studied during the period of 2004 to 2006 at Huanxian County, eastern Gansu Province, which belongs to the Loess Plateau. The stocking rates of sheep used in the experiments were 0 sheep unit/ha, 2.7 sheep unit/ha, 5.3 sheep/ha and 8.7 sheep unit/ha. Soil samples were taken for seven times at various growing stages of grassland plants at the depth of 0-30cm from paddocks with different stocking rates. The soil samples were studied for the contents of soil particles at various size, nutrient components, and soil microbial components. The main results are summarized as the follows:
     1、The contents of clay, silt, fine sand and coarse sand were significantly different among the soils taken from paddocks with various stocking rates. The contents of clay and silt at paddocks with 0 sheep unit/ha were significantly higher than the paddocks with other stocking rates. Whereas the contents of coarse sand were the highest at paddock grazed at 8.7 sheep unit/ha , and were the lowest at the paddocks grazed at both 0 sheep unit/ha and 2.7 sheep unit/ha. The highest contents of clay, silt and coarse sand were all obtained on September during the year. In the 0-30 cm soil layers, content of coarse sand was the highest at the 0-10cm depth, while the contents of clay, silt and fine sand were increasing with soil depth.
     2、The contents of soil organic matter and total N were no significant at different treatments. However, the contents of total P and NH_4~+-N at the paddocks with 0 sheep unit/ha were significantly higher than those at the paddocks with 2.7 sheep unit /ha. NO_3~-- N content at paddocks with 8.7 sheep unit /ha was significantly higher than that obtained at the paddocks grazed at 0 sheep unit/ha. Contents of available P at paddocks with at 0 sheep unit /ha and 2.7 sheep unit /ha were significantly higher than that at paddocks with 8.7 sheep unit/ha. Contents of soil organic matter, total N, NOV - N and pH were highest on September during the year regardless the stocking rates and soil depth, while contents of total P and available P were highest on November. NH_4~+- N was highest on May or June. In terms of spatial distribution contents of soil organic matter, total N, total P and NO_3~-- N were all increasing with soil depth. However, contents of NH_4~+- N, available P and pH were decreasing with soil depth.
     3、Among the soil organisms isolated from various paddocks the number of soil fungi was the lowest, which was followed by the number of actinomycete, and the number of bacteria was the highest. They account for 0.10-1.29 %, 17.37-59.63 % and 40.27- 82.23 %, of the total number of microorganism isolated, respectively. The total numbers of soil microorganisms and the number of bacteria were both the highest at paddocks with 8.7 sheep unit/ha and were the lowest at the paddocks with 5.3 sheep unit/ha. Whereas the number of soil fungi was the highest at the paddocks with 2.7 sheep unit/ha, followed by the paddocks with 5.3 sheep unit/ha and 8.7 sheep unit/ha, and the lowest number obtained from the paddocks with 0 sheep unit/ha. The number of actinomycete was highest at the paddocks with 2.7 sheep unit/ha, followed by the stocking rates of 5.3 and 8.7 sheep unit/ha and lowest number was obtained at the paddocks with 0 sheep unit/ha. Both the numbers of fungi and bacteria were the highest on September and the lowest on April and November, while the highest number of actinomycete was on November. The numbers of soil fungi, bacteria and actinomycete were all significantly decreasing with soil depth. The significant positive correlations were found between the numbers of fungi and bacteria, of fungi and actinomycete, of bacteria and actinomycete, the correlation coefficience were 0.3362-0.4626, 0.2087-0.4535 and 0.6434-0.6456, respectively. Soil fungi, bacteria and soil NH_4~+- N, NO_3~-- N was also correlated significantly and positively (p <0.05). Actinomycete number and total P was also significantly and positively correlated (p<0.05). Another significant correlation was found between soil pH and the number of bacteria, the number of actinomycetes, respectively (p<0.05).
     4、Soil microbial biomass C the was lowest at the paddocks with 8.7 sheep unit/ha. However, microbial N was the highest under the same stocking rate. Microbial biomass C and N was not differed significantly among other stocking rates. Soil microbial biomass P was the lowest at paddocks with 0 sheep unit/ha, it was significantly higher at paddocks with 2.7 sheep unit/ha or 5.3 sheep unit/ha than the 8.7 sheep unit/ha treatment. At different sampling dates, soil microbial C and P were the highest on September, microbial N was the highest on November. Two years results showed that the cumulative effect of grazing was very obviously. Microbial biomass C and N in 2005 was significantly lower than those obtained at the same period of 2004. Soil microbial biomass C, N and P were significantly decreasing with soil depth and a significant difference was also found among the soil depths of 0 - 10 cm, 10 - 20 cm and 20 - 30 cm. (p<0.05). A significant and positive correlation was existed between soil microbial biomass C and N, N and P, C and P (p<0.05), the correlation coefficient was 0.3649, 0.2195 and 0.3390, respectively. The corresponding regression equation was y = 0.036x +7.2752, y = 0.0562x + 5.5049 and y = 0.0064x + 5.1656, respectively. Soil microbial biomass C and the content of clay and silt was correlated with each other positively (p<0.05). Microbial C and fine sand content was correlated negatively.
     Based on the results mentioned above it may be conclude that the stocking rates of 2.7 sheep unit /ha and 5.3 sheep unit /ha were more appropriated for the grassland studied.
引文
[1] Abril A and Bucher E H. The effects of overgrazing on soil microbial community and fertility in the Chaco dry savannas of Argentina. Applied Soil Ecology. 1999,12: 159-167.
    [2] Abril A and Bucher E H. Overgrazing and soil carbon dynamics in the western Chaco of Argentina. Applied Soil Ecology. 2001,16: 243-249. [3] Anderson J P E , Domsch K H. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Science. 1980,130: 211-216. [4] Anderson J P E , Domsch K H. Ratios of microbial biomass carbon to total carbon in arable soils. Soil Biology & Biochemistry. 1989,21: 471-479.
    [5] Anderson T H, Domsch K H. The metabolic quotient for CO_2 (qCO_2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology & Biochemistry. 1993, 25: 393-395.
    [6] Arunachalam A and Arunachalam K. Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India. Plant and Soil. 2000, 223: 185-193.
    [7] Aslam T, Choukhary M A, Saggar S. Tillage impacts on soil microbial biomass C, N and P, earthworms and agronomy after two years of cropping following permanent pasture in New Zealand. Soil & Tillage Research. 1999, 51:103-111.
    [8] Bardgett R D, Leemans D K, Cook R, Hobbs P J. Seasonality in the soil biota of grazed and ungrazed hill grasslands. Soil Biology & Biochemistry. 1997,29: 1285-1294.
    [9] Bardgett R D and McAlister E. The measurement of soil fungal : bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biology and Fertility of Soils. 1999, 29: 282-290.
    [10] Bauer A, Cole C V, Black A L. Soil property comparisons in virgin grasslands between grazed and non-grazed management systems. Soil Science Society of America Journalist. 1987, 51: 176-182.
    [11] Bauhaus J, Khanna P K, Raison R J. The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil. Australian Journal of Soil Research. 1993, 31: 621-639.
    [12] Berg W A, Bradford J A, Smis P L. Long-term soil nitrogen and vegetation changes on sandhill rangeland. Journal of Range Management. 1997, 50: 482-486.
    
    [13] Bossio D A and Scow K M. Impact of carbon and flooding in the metabolic diversity of microbial communities in soils. Applied and Environmental Microbioiology. 1995, 61: 4043-4050.
    [14] Bristow A W and Jarvis S C. Effects of grazing and nitrogen fertilizer on the soil microbial biomass under permanent pasture. Journal of the Science of Food and Agriculture. 1991, 54: 9-21.
    [15] Brock T D, Smith D W, Madigan M T. Biology of microorganisms, fourth ed., Prentice-Hall. Englewood Cliffs, pp. 847. 1984.
    [16] Brookes P C et al. Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry. 1982,16: 169-175.
    [17] Brookes P C and Mcgrath S P. Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science. 1984,35: 341-346.
    
    [18] Brookes P C, Landman A, Pruden G and Jenkinson D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry. 1985,17: 837- 842.
    [19] Brookes P C, Ocio J A and Wu J. Soil Microorganisms. 1990,35: 39-51.
    [20] Brookes P C, Powlson D S and Jenkinson D S. Phosphorus in the soil microbial biomass. Soil Biology & Biochemistry. 1984,16: 169-175.
    
    [21] Burke I C, Yonker C M , PartonW J , et al. Texture, climate, and cultivation effects on soil organic matter content in U. S. grassland soils. Soil Science Society of America Journalist. 1989, 53: 800-805.
    [22] Burke I C, Laurenroth W K, Milchunas D G. Biogeochemistry of managed grasslands in central North America. In: Paul E A eds. Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America. Boca Raton: CRC Press, 1997. 85-102.
    
    [23] Carran R A and Theobald P W. Effects of excreta return on properties of a grazed pasture soil. Nutrient Cycling in Agroecosystems. 2000, 56: 79-85.
    [24] Carter M R. Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil & Tillage Research. 1986, 7: 29-40.
    
    [25] Castillo V M , Mena M M , Albaladejo J. Runoff and soil loss response to vegetation removal in a semiarid environment. Soil Science Society of America Journalist. 1997, 61: 1071-1076.
    [26] Chen C R, Condron L M, Davis M R and Sherlock R R. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand soil. Plant and Soil. 2000,220:151-163.
    [27] Coffin D P, Laycock W A , Lauenroth W K. Disturbance intensity and above- and below -ground herbivory effects on long-tern (14years) recovery of a semiarid grassland. Plant Ecology. 1998, 139: 221-233.
    [28] Coleman D C, Reid C P P, Cole C V. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research. 1983,13: 1-55.
    [29] Collins H P, Rasmussen P E. Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Science Society of America Journalist. 1992, 56: 783-788.
    [30] Conant R T, Paustian K, Ellio tt E T. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications. 2001,11 (2): 343-355.
    [31] Connell J H, Slatyer P O. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist. 1977, 111(982): 1119-1144.
    [32] Conant R T, Paustian K. Potential soil sequestration in overgrazed grassland ecosystems. Global Biogeocheical Cycles. 2002,16 (4): 1143-1151.
    [33] Cutle D W, Dixon A. The effect of soil storage and water content on the protozoa population. Ann. Appl. Biol. 1927,14: 247-254.
    [34] Dakhah M, G F Gifford. Influence of vegetation, rock cover and trampling on infiltration rates and sediment production. Water Resource Bull. 1980,16: 979-986.
    [35] Derner J D, Beriske D D, Boutton T W. Does grazing mediate soil carbon and nitrogen accumulation beneath C_4, perennial grasses along an environmental gradient? Plant and Soil. 1997,191: 147-156.
    [36] Desjardins T, Andreux F, Volkoff B, et al. Organic carbon and ~(13)C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia. Geoderma. 1994, 61: 103-118.
    [37] Donkor N T, Gedir J V, Hudson R J, Bork E W, Chanasyk D S and Naeth M A. Impacts of grazing systems on soil compaction and pasture production in Alberta. Canadian Journal of Soil Science. 2002, 82:1-8.
    [38] Dormaar J F, Johnston A , Smoliak S. Seasonal changes in carbon content, dehydrogenase, phosphatase, and urease activities in mixed prairie and fescue grassland Ah horizons. Journal of Range Management. 1984,37: 31-36.
    [39] Dreccer M F, Lavado R S. Influence of cattle trampling on preferential flow paths in alkaline soils. Soil Use and Management. 1993, 9:143-148.
    [40] Drewry J J, Littlejohn R P, Paton R J, Singleton P L, Monaghan R M, Smith L C. Dairy pasture responses to soil physical properties. Australian Journal of Soil Research. 2004, 42: 99-105.
    
    [41] E.M.拉甫连科等.野外地植物学,第一卷.科学出版社,1965,492—493.
    
    [42] Francis G S, Tabley F J, White K M. Soil degradation under cropping and its influence on wheat yield on a weekly structured New Zealand silt loam. Australian Journal of Soil Research. 2001,39(2): 291-305.
    [43] Frank A B, Tanaka D L and Follett R F. Soil carbon and nitrogen of northern Great Plains grasslands as influenced by long-term grazing. Journal of Range Management. 1995, 48 (6): 528-534.
    [44] Frank A B, Tanaka D L, Hoffman L and Follett R F. Soil carbon and nitrogen of northern Great Plains grasslands as influenced by long-term grazing. Journal of Range Management. 1995, 48 (6): 470-474.
    [45] Frank D A and Evans R D. Effects of native grazers on grassland N cycling in Yellow stone National Park. Ecology. 1997, 78: 2238-2248.
    [46] Frank D A, Groffman P M. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellow stone National Park. Ecology. 1998, 79 (7): 2229-2241.
    [47] Franzlubbers A J, Hons F M, Zuber D A. Seasonal changes in soil microbial biomass and mineralizable C and N in Wheat management systems. Soil Biology & Biochemistry. 1994, 22:1469-1475.
    
    [48] Franzluebbers A J, Stuedemann J A, Schomberg H H, et al. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biology and Biochemistry. 2000a, 32: 469-478.
    [49] Franzluebbers A J, Wright S F, Stuedemann J A. Soil aggregation and glomalin under pastures in the Southern Piedmont USA. Soil Science Society of America Journalist. 2000b, 64:1018-1026.
    [50] Franzluebbers A J and Stuedemann J A. Impast of cattle and forage management on soil surface properties in the southern Piedmont, USA. In: Proceedings of the Sod-Based Cropping System Conference, North Florida Research and Education Center, Quincy, University of Florida, Gainsville, FL, 20-21 February, 2003, pp. 71-80.
    [51] Gallardo A and Schesinger W H. Soil Biology & Biochemistry. 1994, 26:1409-1415.
    [52] Garica F O and Rice C W. Microbial biomass dynamics in tallgrass prairie. Soil Science Society of America Journalist. 1994,58: 816-824.
    [53] Giflord F G, Hawkins R H. Hydrologic impact of grazing on infiltration: a critical review. Water Research. 1978,14: 305-313.
    
    [54] Gijisman A J, Oberson A, Friesen D K, Sanz J I. Nutrient cycling through microbial biomass under rice- pasture rotations replacing native savanna. Soil Biology & Biochemistry. 1997, 29(1): 1433-1441.
    [55] Greene R S B, Kinnell P I A, Wood J T. Role of plant cover and stock trampling on runoff and soil erosion from semiarid wooded rangelands. Australia Journal of Soil Research. 1994,32: 953-973.
    [56] Greenwood P B, Mcnamara R M. An analysis of the physical condition of two intensively grazed South land soils. Proceedings of the New Zealand Grassland Association. 1992,54: 71-75.
    [57] Greenwood K L , MacLeod D A , Hutchinson K J. Long-term stocking rate effects on soil physical properties. Australia Journal of Experimental Agriculture. 1997, 37: 413-419.
    [58] Greenwood K L, McKenzie B M. Grazing effects on soil physical properties and the consequences for pastures: a review. Australian Journal of Experimental Agriculture. 2001, 41(8): 1231-1250.
    [59] Groffman P M, Rice C W, Tiedje J M. Denitrification in a tallgrass prairie landscape. Ecology. 1993, 74: 855-862.
    [60] Guerif J. Factors influencing compaction2induced increases in soil strength. Soil &Tillage Research. 1990,16: 167-178.
    [61] Hammond A L.(张崇贤译).世界资源报告(1992-1993)[M].北京:中国环境科学出版 社.1993. 146-152.
    [62] Han G D, Hao X Y, Zhao M L, Wang M J, Ellert B H, Willms W and Wang M J. Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Innet Mongolia. Agriculture, Ecosystems & Environment. 2008,125: 21-32.
    [63] Hassink J. Effects of soil texture and grassland management on soil organic C and N and rate of C and N mineralization. Soil Biology & Biochemistry. 1994, 26:1221-1231.
    [64] Haynes R J, Williams P H. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advance Agronomy. 1993,49: 119-199.
    
    [65] He Z L, O'Donell AG and Syers J K. Soil Biology & Biochemistry. 1995,
    [66] Heal O W, Madean S F. Comparative productivity in ecosystem-secondary productivity [A].In: Van Dobben W H, Melonnell P H L. Unifying Concepts in Ecology[C]. Hague: The Hague Holland Press House, 1975, 89-108.
    [67] Henrot et al. Vegetation removal in two soils of the humid tropics: effect on microbial biomass. 1994,26:111-116.
    [68] Hiernaux P, Bielders C L , Valentin C, Bationo A, Fernandez-Rivera S. Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. Journal of Arid Environments. 1999, 41: 231-245.
    [69] Hobbs N T. Modification of ecosystems by ungulates. Journal of Range Management. 1996, 60: 695-713.
    [70] Hofstede R G M. The effects of grazing and burning on soil and plant nutrient concentrations in Colombia Paramo grasslands. Plant and Soil. 1995,173: 111-132.
    [71] Holland J N, Cheng W X, Crossley Jr. D A. Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14. Oecologia. 1996, 107: 87-94.
    [72] Holland E A and Detling J K. Plant response to herbivory and belowground nitrogen cycling. Ecology. 1990, 71:1040-1049.
    [73] Holland E A, Parton W J, Detling J K, et al. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow. The American Naturalist. 1992,140: 685-706.
    [74] Holt J A. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Applied Soil Ecology. 1997, 5: 143-149.
    [75] Holt J A, Bristow K L and McIvor J G. The effects of grazing pressure in soil animals and hydraulic properties of two soils in semi-arid tropical Queensland. Australia Journal of Soil Research. 1996,34: 69-79.
    [76] Hodgson J and Illius A W. The ecology and management of grazing systems. CAB I, Oxon, U K, 1995.
    
    [77] Ingham R E and Detling J K. Plant-herbivore interactions in a North American mixed grass prairie III. Soil nematode populations and root biomass on Cynomy sludovicianus colonies and adjacent uncolonized areas. Oecologia (Berlin), 1984, 63: 307-313.
    [78] Jaramillo V J and Detling J K. Small-scale heterogeneity in semi-arid North American grassland. I. Tillering, uptake and retranslocation in simulated urine patches. Journal of Applied Ecology. 1992,29:1-8.
    [79] Jefferies R L, Klein D R, Shaver G R. Vertebrate herbivores and northern plant communities: reciprocal influences and responses. Oikos. 1994,71: 193-206.
    
    [80] Jenkinson D S. Determination of microbial biomass carbon and nitrogen in soil[A]. In: J. R. Wilson (ed) Advances in Nitrogen Cycling in Agricultural Ecosystems[C]. CAB International, Wallingford, England, 1988,368-386.
    [81] Jenkinson D S, Ladd J N. Microbial biomass in soil: Measurement and turnover [A]. In: Paul V E A, Ladd J N.(eds), Soil Biochemistry [C]. Vol 5. Marcel Dekker, New York, 1981. 415-471.
    [82] Jensen M, Michelsen A and Gashaw M. Responses in plant, soil inorganic and microbial nutrient pools to experimental fire, ash and biomass addition in a woodland savanna. Oecologia. 2001,128: 85-93.
    [83] Joergensen R G, Brookes P C and Jenkinson D S. Soil Biology & Biochemistry. 1990, 22: 1129-1136.
    
    [84] Joergensen R G, Meyer B and Mueller T. Soil Biology & Biochemistry. 1994, 26: 987-994.
    [85] Johnston A, Dormaar J F, Smoliak S. Long-term grazing effects on fescue grassland soils. Journal of Range Management. 1971,24:185-188.
    [86] Kainer K A, Duryea M L, Costa de Macedo N, et al. Brazil nut seedling establishment and autecology in extractive reserves of Acre, Brazil. Ecology Applied. 1998, 8 (2): 397-410.
    [87] Keller A A and Goldstein R A. Impact of carbon storage through restoration of drylands on the global carbon cycle. Environment Management. 1998, 22: 757-766.
    [88] Kennedy A C and Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant & Soil. 1995,170: 75-86.
    [89] Khan K S. Effects of cadmium, lead and zinc pollution on microbial biomass in red soil. Ph. D. thesis of Zhejiang Agricultural University. 1998,1-206.
    [90] Klemedtson L, Berg P, Clarholm M. Microbial nitrogen transformation in the root environment of barley. Soil Biology & Biochemistry. 1987,19: 551-558.
    
    [91] Kobayashi T, Hori Y, Nomoto N. Effects of trampling and vegetation removal on species diversity and microenvironment under different shade conditions. Journal of Vegetation Science. 1997,8 (6): 873- 880.
    [92] Koutika L S, Bartoli F, Andreux F, et al. Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in the eastern Amazonia Basin. Geoderma. 1997,76:87-112.
    [93] Koutika L S, A ndreux F, Hassink J , et al. Characterization of organic matter in the top soils under rain forest and pastures in the eastern Brazilian Amazon basin. Biology and Fertility of Soils.1999,29:309-313.
    [94]LeCain D R,Morgan J A,Schuman G E,et al.Carbon exchange rates in grazed and ungrazed pastures of Wyoming.Journal of Range Management.2000,53:199-206.
    [95]LeCain D R,Morgan J A,Schuman G E,et al.Carbon exchange and species compo sition of grazed pastures and exclosures in the shortgrass steppe of Colorado.Agriculture,Ecosystems & Environment.2002,93:421- 435.
    [96]Leithead H L.Runoff in relation to range condition in the big Bend-Davis Mountain section of Texas.Journal of Range Management.1959,12:83-87.
    [97]Leriche H,LeRoux X,Gignoux J,Tuzet A,Fritz H,Abbadie L and Loreau M.Which functional processes control the short-term effect of grazing on net primary production in grassland ? Oecologia.2001,129:114-124.
    [98]Li Xiao-Yan,Liu Lian-You and Wang Jian-Hua.Wind tunnel simulation of aeolian sandy soil erodibility under human disturbance.Geomorphology.2004,59:3-11.
    [99]Liu X Y,Lindemann W C,Whitford W G,Steiner R L.Microbial diversity and activity of disturbed soil in the northern Chinhuahuan Desert.Biology and Fertility of Soils.2000,32:243-249.
    [100]Lovell R D,Jarvis S C and Bardgett R D.Soil microbial biomass and activity in long-term grassland:effects of management changes.Soil Biology & Biochemistry.1995,27:969-975.
    [101]Lusigi W J and Glaser G.Desertification and nomadism:a pilot approach in eastern Africa.Nature and Resources.1984,20(1):21-31.
    [102]Lynch J M and Panting L M.Cultivation and the soil biomass.Soil Biology &Biochemistry.1980,12:29-33.
    [103]Ma.M.Seasonal variation of fungi in soil in the vicinity of peaking.Nat.Hist.Bull,1983,5:293-297.
    [104]Maithani K,Arunachalam A,Tripathi R S and Pandey H Z.Influence of leaf litter quality on N mineralization in soils of subtropical humid forest regrowths.Biology and Fertility of Soils.1998,27:44-50.
    [105]Maria B V,Nilda M A,Norman P.Soil degradation related to overgrazing in the semi-arid
    [106]southern Caldenal area of Argentina.Soil Science.2001,166(7):441- 452.
    [107]Mawdsley J L and Bardgett R D.Continuous defoliation of perennial ryegrass(Lolium perenne)and white clover(Trifolium repens)and associated changes in the microbial population of an upland grassland soil.Biology and Fertility of Soils.1997,24:52-58.
    [108]Mclnnes P F.Effects of moose browsing on vegetation and litter of the boreal forest.Ecology.1992,73:2059-2075.
    [109]McNaughton S J.Ecology of a grazing ecosystem:the Serengeti.Ecological Monographs.1985,53:291-320.
    [110]McNaughton S J,Ruess R W,Seagle S W.Large mammals and process dynamics in African ecosystems. BioScience. 1988, 38: 794-800.
    [111] McNaughton S J, Banyikwa F F, McNaughton M M. Promotion of the cycling of diet-enhancing nutrients by African grazer. Science. 1997, 278 (5): 1798-1800.
    [112] Melinda A W, Trlica M J Frasier G W, et al. Seasonal grazing affects soil physical properties of a montane riparian community. Journal of Range Management. 2002, 55: 49-56.
    [113] Milchunas D G and Laurenroth W K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs. 1993, 63 (4): 327-366.
    [114] Milchunas D G, LaurenrothW K, Burke L C. Livestock grazing: animal and plant biodiversity of shortgrass steppe and the relationship to ecosystem functioning. Oikos. 1998, 83: 65-74.
    [115] Mitchell C A, Custer T W, Zwank P J. Herbivore on shortgrass by wintering redheads in Texas. Journal of Wildlife Management. 1994, 58: 131-141.
    [116] Moraes J F L, Volkoff B, Cerri C C, et al. Soil properties under the Amazon forest and changes due to pasture installation in Rondonia Brazil. Geoderma. 1996, 70: 63-81.
    [117] Mwendera E J and Mohamed S M A. Infiltration rates, surface runoff, and soil loss as influenced by grazing pressure in Ethiopian high lands. Soil Use and Management. 1997, 13: 29-35.
    [118] Naeth M A, Bailey A W, Pluth D J, et al. Grazing impacts on litter and soil organic matter in mixed prairie and fescue grassland ecosystems of Alberta. Journal of Range Management. 1991,44 (1): 7-12.
    [119] Nielsen N M, Winding A, Binnerup S, et al. Microorganisms as indicators of soil health. Ministry of the Environent. National Environmental Research Institute. NERI Technical Report No. 388. 2002.15-16.
    [120] Noellemeyer E, Quiroga A R and Estelrich D. Soil quality in three range soils of the semi-arid Pampa of Argentina. Journal of Arid Environments. 2006,65: 142-155.
    [121] Northup B K, Brown J R, Holt J A. Grazing impacts on the spatial distribution of soil microbial biomass around tussock grasses in a tropical grassland. Applied Soil Ecology. 1999,13: 259-270.
    [122] Noy-Meir I. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 1973, 4: 25-52.
    [123] Noy-Meir I. Desert ecosystems: higher trophic levels. Annu. Rev. Ecol. Syst. 1974, 5: 195-214.
    [124] Ocio J A and Brookes P C. An evaluation of methods for measuring the microbial biomass in soil following recent additions of wheat straw, and the characterization of the biomass that develops. Soil Biology & Biochemistry. 1990, 22: 685-694.
    [125] Ojima D S, Schimel D S, Parton W J, Owensby C E. Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry. 1994, 24: 67-84.
    [126] Okano S. Availability of mineralized N from microbial biomass and organic matter after drying and heating of grassland soils. Plant and Soil. 1990,129: 219-225.
    [127] Pankhurst C E. Biological indicators of soil health and sustainable productivity. In Greenland D J, Szabolcs I. ed. Soil Resilience & Sustainable Land Use. 1994, 331-351.
    [128] Pankhurst C E, et al. Defining and assessing soil health and sustainable productivity [A]. Biologucal Indicators of Soil Health [C]. C A B International. 1997,1-324.
    [129] Parton W J, SchimelD S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great P lains grasslands. Soil Science Society of America Journalist. 1987, 51:1173-1179.
    [130] Paul E A and Voroney R P. Nutrient and energy flow through soil microbial biomass. Ellwood D C, Hedger J N, Lutham M J, et al. eds. Contemporary Microbial Ecology. London: Academic Press, 1980,215-237.
    
    [131] Paul E A. Dynamic of organic matter in soils. Plant and Soil. 1984, 76: 275-285.
    [132] Pei S. F, Fu H, Wan C G. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agriculture, Ecosystem & Environment. 2008,124: 33-39.
    [133] Percival H J, Parfitt R L, Scott N A. Factors controlling soil carbon levels in New Zealand grassland: Is clay content important? Soil Science Society of America Journalist. 2000, 64: 1623-1630.
    [134] Pietikainen J and Fritze H. Microbial biomass and activity in the humus layer following burning: short-term effects of two different fires. Canadian Journal of Forest Research. 1993, 23:1275-1285.
    [135] Powlson D S, Brookes P C and Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry. 1987,19:159-164.
    [136] Proffit A P B, Jarvis R J, Bendotti S. The impact of sheep trampling and stocking rate on the physical properties of a red duplex soil with two initially different structures. Australia Journal of Agricultural Research, 1995,46: 733-747.(a)
    [137] Proffit A P B, Bendotti S, McGarry D. A comparison between continuous and controlled grazing on a red duplex soil. I. Effects on soil physical characteristics, Soil & Tillage Research. 1995, 35: 199-210.(b)
    [138] Rauzi F and Smith F M. Infiltration rates: three soils with three grazing levels in northeastern Colorada. Journal of Range Management. 1973, 26: 126-129.
    [139] Reeder J D and Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116: 457-463.
    [140] Richardson A E. Soil microorganisms and phosphorus availability. In: Soil Biota: Management in Sustainable Farming. Eds Pankhurst C E, Double B M, Gupta V V S R and Grace P R. 1994, pp 50-62. CSIRO, Melboutne, Australia.
    [141] Ritchie M E, Tilman D, JohannesM H K. Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology. 1998, 79:165-177.
    [142] Robertson F A, Myers R J K, Saffigna P G. Carbon and nitrogen mineralization in cultivated and grassland soils in subtropical Queensland. Australian Journal of Soil Research. 1993,31(5): 611-619.
    [143] Romulo S C M, Edward T E, David W V, Stephen A W. Carbon and nitrogen dynamics in elk winter ranges. Journal of Range Management. 2001, 54: 400-408.
    [144] Ross D J. Measurements of microbial biomass C and N in grassland soils by fumigation-incubation procedures: influence of inoculum size and the control. Soil Biology & Biochemistry. 1990, 22(3): 289-294.
    [145] Ross D J, Speir T W, Tate K R and Feltham C W. Burning in a New Zealand snow-tussock grassland: effects on soil microbial biomass and nitrogen and phosphorus availability. New Zealand Journal of Ecology. 1997, 21(1): 63-71.
    [146] Russell J R, Betteridge K, Costall D A, et al. Cattle treading effects on sediment loss and water infiltration. Journal of Range Management. 2001, 54: 184-190.
    [147] Russelle M P. Nitrogen cycling in pasture and range. Journal of Production Agriculture. 1992, 5:13-23.
    [148] Sarathchandra S V, Perrott K W, Boase M R and Waller J E. Seasonal changes and the effects of fertilizer on some chemical, biochemical and microbiological characteristics of high-producing pastoral soil. Biology and Fertility of Soils. 1988, 6: 328-335.
    [149] Sarathchandra S V, Perrott K W and Upsdell M P. Microbiological and biochemical characteristics of a range of New Zealand soils under established pastures. Soil Biology & Biochemistry. 1984,16: 177-183.
    [150] Schimel J. Ecosystem consequences of microbial diversity and community structure. Ecol. Stud. 1995,113: 239-254.
    [151] Schimel D S and Parton W J. Microclimatic controls of nitrogen mineralization and nitrification in short-grass steppe soils. Plant and Soil. 1986, 93: 347- 357.
    [152] Schuman G E, Reeder J D, Manley J T, et al. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications. 1999, 9(1): 65-71.
    [153] Seastedt T R. Maximization of primary and secondary productivity by grazer. The American Naturalist. 1985,126: 559-564.
    [154] Seastedt T R, Ramundo R A, Hayes D C. Maximization of densities of soil animals by foliage herbivory: empirical evidence, graphical, and conceptual models. Oikos. 1988, 51: 243-248.
    [155] Seitlheko E M, Allen B L, Wester D B. Effect of three grazing intensities on selected soil properties in semi-arid west Texas. Africa Journal of Range Forage Science. 1993, 10 (2): 82-85.
    [156] Sevenson K E and Debano L F. Influence of Spanish goats on vegetation and soils in Arizona Chaparral. Journal of Range Management. 1991,44 (2): 111-117.
    [157] Shariff A R, BiondiniM E, Grygiel C E. Grazing intensity effects on litter decomposition and soil nitrogen mineralization. Journal of Range Management. 1994,47: 444-449.
    [158] Sinclair A R E and Fryxell J M. The Sahel of Africa: ecology of a disaster. Canadian Journal of Zoology. 1985, 63: 987- 994.
    [159] Singh J S, Raghuvanshi A S, Singh R S and Srivastava S C. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature (London). 1989, 399: 499-500.
    [160] Singh R S, Srivastava S C, Raghubanshi A S, Singh J S, Singh S P. Microbial C, N and P in dry tropical savanna: effects of burning and grazing. Journal of Applied Ecology. 1991, 28: 869-878.
    [161] Smith J L. Cycling of nitrogen through in microbial activity. In: Hatfield J L, Stewart B A (ed). Soil biology: effects on soil quality. CRC. Press, Inc. 1994, 91-120.
    [162] Smith J L, Paul E A. The significance of soil microbial biomass estimations [M]. New York :Marcel Dekker, 1990.357-398.
    [163] Smith J L and Paul E A. The significance of soil microbial biomass estimations [M]. In: Soil Biochemistry V. 6, Bollag J M & Stotzky G (eds), Marcel Dekker, INC, New York, 1991, pp. 359-396.
    [164] Smoliak S, Dormaar J F, Johnston A. Long-term grazing effect on Stipa bouteloua prarie soils. Journal of Range Management. 1972, 25: 246-250.
    [165] Somova L A and Pechurkin N S. Functional, regulatory and indicator features of microorganisms in man-made ecosystems. Advance. Space Research. 2001, 27 (9):1563-1570.
    [166] Sparling G P. Ratio of microbial biomass carbon to soil organic matter carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research. 1992,30: 195-207.
    [167] Sparling G P. Release of ninhydrin-reactive compounds during fumigation of soil to estimate microbial C and N. Soil Biology & Biochemistry. 1993,25: 1803-1805.
    [168] Sparling G P. Soil microbial biomass activity and nutrient cycling as indicators of soil health. In: Pankhurst C, et al. (eds). Biological Indicators of Soil Health. CAB International. 1997, 97-119.
    [169] Sparling G P, West A W and Reynolds J. Soil Biology & Biochemistry. 1989, 27: 161-168.
    
    [170] Urbasek F and Chalupsky J. Biology and Fertility of Soils. 1992,14: 60-70.
    [171] Srivastava S C, Jha A K and Singh J S. A review of the effects of pesticides on microbial activity in soil. Canadian Journal of Soil Science. 1989, 69: 849 - 855.
    [172] Srivastava S C. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry. 1992, 24: 711-714.
    [173] Stevenson F J. Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients [M]. Johm Wiley & Sons, INC, New Yerk, 1985.
    [174] Stevenson F J. Cycles of Soil: carbon, nitrogen, phosphorus, sulfur, micronutrients [M]. Johm Wiley & Sons, INC, New Yerk, 1989.
    [175] Su Y Z, Zhao H L, Zhang T H and Zhao X.Y. Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China. Soil & Tillage Research. 2004, 75: 27-36.
    [176] Su Y Z, Li Y L, Cui J Y and Zhao W Z. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena. 2005, 59: 267-278.
    [177] Snyman H A and Du Preez C C. Rangeland degradation in a semi-arid South Africa—II: influence on soil quality. Journal of Arid Environments. 2005, 60:483-507.
    [178] Tisdale J M and Oades J M. Organic matter and water stable aggregates in soils. Journal of Soil Science. 1982,33: 141-163.
    [179] Tomanek G W. Dynamics of mulch layer in grassland ecosystem. In: Dix R L eds. The grassland ecosystem, a preliminary synthesis. Range Sci. Dep. Series No. 2. Fort Collins: Colorado State Univ, 1969. 225-240.
    [180] Van de Van T A M, Fryrear D W, Spaan W P. Vegetation characteristics and soil loss by wind. Journal of Soil Water Conservation 1989,44: 347-349.
    [181] Van Haveren B P. Soil Bulk Density as Influenced by Grazing Intensity and soil Type on a Shortgrass Prairie Site. Journal of Ranger management. 1983,36 (5): 586-588.
    [182] Vitousek P M et al. Mechanisms of nitrogen retention in forest ecosystem: A field experiment. Science. 1984, 225: 51-52.
    [183] Wang K H, McSorleya R, Bohlenb P, Gathumbib S M. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biology & Biochemistry. 2006,38: 1956-1965
    [184] Wardle D A. Controls of temporal variability of the soil microbial biomass: A global synthesis. Soil Biology & Biochemistry. 1998,30 (13): 1627-1637.
    [185] Warren S D, NevillM B, Blackburn W H, et al. Soil response to trampling under intensive rotation grazing.. Soil Science Society of America Journalist. 1986, 50: 1336-1340.
    [186] Wasson, R.J. and P.M. Nanninga, Estimating wind transport of sand on vegetated surface. Earth Surf. Processes Landf. 1986,11: 505-514.
    [187] Weigel J R, Britton C M , M cpherson G R. Trampling effects from sho rt2duration grazing on tobosagrass range. Journal of Range Management. 1990,43 (2): 92-95.
    [188] Wienhold B J, Hendrickson J R, Karn J F. Pasture management influences on soil properties in the Northern Great Plains.Journal of Soil and Water Conservation.2001,56(1):27-31.
    [189]Wilson J B and Agnew A D Q.Positive-feedbacks witches in plant communities.Advances in Ecological Research.1992,23:263-336.
    [190]Winter S R and Unger P W.Irrigated wheat grazing and tillage effects on subsequent dryland grain sorghum production.Agronomy Journal.2001,93(3):504-510.
    [191]Wu J.The turnover of organic carbon in soil.Ph.D thesis.1990,Reading University.
    [192]Wu J.The turnover of organic C in soil[D].U.K:University of Reeding,1991.
    [193]Yu Y W,Nan Z B and Hou F J.The effects of sheep urine on growth characteristics of different life from plants in a Chinese steppe grassland.Acta Ecologica Sinica.2008,28(5)(in press).
    [194]Zhao W Z,Xiao H L,Liu Z M and Li J.Soil degradation and restoration as affected by land use change in the semiarid Bashang area,northern China.Catena.2005,59:173-186.
    [195]陈华癸.微生物学.农业出版社.1962,237-240.
    [196]陈华癸,樊庆笙.微生物学(第四版)[M].北京:中国农业出版社,1999,169-170.
    [197]陈珊,张常钟,刘东波,张镇瑗,杨靖春.东北羊草草原土壤微生物生物量的季节变化及其与土壤生境的关系.生态学报,1995,15(1):91-94.
    [198]陈秀蓉.陇东典型草原草地退化与微生物相关性及其优势菌系统发育分析与鉴定.甘肃农业大学博士论文.2003.
    [199]陈佐忠,草原生态系统研究(第五集)[C].北京:科学出版社,1995.70-77.
    [200]陈佐忠,汪诗平,王艳芬,等.中国典型草原生态系统.北京:科学出版社.2000.
    [201]杜玉珍,赵钢,阎景赟.放牧制度对天然草地土壤物理性状及奶牛生产性能的影响.中国草地.2005,27(4):47-51.
    [202]高雪峰,韩国栋,张功,赵萌莉,卢萍.放牧对荒漠草原土壤微生物的影响及其季节动态研究.土壤通报.2007,38(1):145-148.
    [203]高英志,韩兴国,汪诗平.放牧对草原土壤的影响.生态学报.2004,24(4):790-797.
    [204]高英志,汪诗平,韩兴国,陈全胜,王艳芬,周志勇,张淑敏,杨晶.退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究.植物生态学报.2004,28(3):285-293.
    [205]郭继勋,祝廷成.羊草草原土壤微生物的数量和生物量.生态学报.1997,17(1):78-82.
    [206]关世英,文沛饮,康师安,常进宝.不同牧压强度对草地土壤养分含量的影响[A].草原生态系统研究(第五集)[C].北京:科学出版社.1997,17-22.
    [207]关世英,常金宝,贾树海,李绍良,陈有君,王玉芬.草原暗栗钙土退化过程中的土壤性状及其变化规律的研究.中国草地.1997,(3):39-43.
    [208]韩永伟,韩建国,王堃,张蕴微.农牧交错带退耕还草对土壤微生物量C、N的影响.农业环境科学学报.2004,23(5):993-997.
    [209]何振立.土壤微生物生物量及其在养分循环和环境质量评估中的意义.土壤.1997,29(2):61-69.
    [210]洪坚平,谢英荷,Markus Kleber,Karl Stahr.德国西南部惠格兰牧草区土壤微生物生物量的研究.生态学报.1997,17(5):493-496.
    [211]红梅,韩国栋,赵萌莉,索培芬,潘林瑞.放牧强度对浑善达克沙地土壤物理性质的影响.草业科学.2004,21(12):108-111.
    [212]侯扶江,任继周.甘肃马鹿(Cervus elap hus kansuensis Pocock)冬季放牧的践踏作用及其对土壤理化性质影响的评价.生态学报.2003,23(3):486-495.
    [213]侯扶江,常生华,于应文,林慧龙.放牧家畜的践踏作用研究评述.生态学报.2004,24(4):784-789.
    [214]胡海波,张金池,高智慧,陈顺伟,臧廷亮.岩质海岸防护林土壤微生物数量及其与酶活性和理化性质的关系.林业科学研究.2001,15(1):88-95.
    [215]胡荣桂.环境污染与防治.1993,15:24-27.
    [216]贾树海,崔学明,李绍良,等.牧压梯度上土壤物化性质的变化.见:中国科学院内蒙古草原生态系统定位研究站编.草原生态系统研究(第五集),北京:科学出版社,1996,P12-16.
    [217]贾树海,王春枝,孙振涛,等.放牧强度和放牧时期对内蒙古草原上土壤压实效应的研究.草地学报.1999,7(3):217-221.
    [218]蒋文兰,张英俊,符义坤,等.绵羊宿营法防除天然草地灌木杂草研究,Ⅱ绵羊啃食和践踏对植物与土壤物理性状的影响.草业学报.1999,8(增刊):82-89.
    [219]李建龙,许鹏,孟林,王建华.不同轮牧强度对天山北坡低山带蒿属荒漠秋场土草畜影响研究.草业学报.1993,2(2):60-65.
    [220]李世清,凌莉,李生秀.影响土壤中微生物体氮的因子.土壤与环境.2000,9(2):158-162.
    [221]李世清,李生秀,张兴昌.不同生态系统土壤微生物体氮的差异.土壤侵蚀与水土保持学报.1999,5(1):69-73.
    [222]李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特征.土壤学报.2002,39(1):97-104.
    [223]李香真,陈佐忠.放牧草地生态系统中氮素的损失和管理.气候与环境研究.1997,2(3):241-250.
    [224]李香真,陈佐忠.不同放牧率对草原植物与土壤C、N、P含量的影响.草地学报.1998,6(2):90-98.
    [225]李永宏,汪诗平.草原植物对家畜放牧的营养繁殖对策初探.草原生态系统研究(第五集).北京:科学出版社.1997,23-31.
    [226]廖仰南等.锡林河流域土壤微生物的季节变化及其土层垂直分布.草原生态系统研 究,第一集.科学出版社.1985,166-192.
    [227]廖仰南,张桂枝.内蒙古草原土壤微生物生态学研究[A].草原生态系统研究[M].北京:科学出版社,1985,1:181-192.
    [228]柳丽萍,廖仰南.羊草草原和大针茅草原不同牧压下的土壤微生物特性及其多样性[J].见:草原生态系统研究.北京:科学出版社,第五集,70-78.
    [229]刘满强,胡锋,何园球,李辉信.退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义.土壤学报.2003,40(6):937-944.
    [230]刘世贵,葛绍荣.川西北退化草地土壤微生物数量与区系研究.草业学报.1994,3(4):70-76.
    [231]龙章富,刘世贵.退化草地土壤农化性状与微生物区系研究.土壤学报.1996,33(2):192-200.
    [232]鲁如坤主编.土壤农业化学分析方法.中国土壤学会.1999,北京:中国农业科技出版社.P107.
    [233]吕秀华.东北羊草草原不同生境土壤微生物与土壤理化性质关系研究.东北师范大学硕士论文.2003.
    [234]罗明,邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究.中国草地.1995,5:29-33.
    [235]马爽,杨成德,薛莉,陈秀蓉.陇东黄土高原不同载畜量土壤的微生物季节变化.草原与草坪.2004,2:27-30.
    [236]孟昭娴.放牧对羊草草原微生物区系影响的研究初报.第四届东北草原学术会议论文集.1984,91-97.
    [237]牛海山,李香真,陈佐忠.放牧率对土壤饱和导水率及其空间变异的影响.草地学报.1999,7(3):211-216.
    [238]庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响.植物营养与肥料学报.2000,6(4):476-480.
    [239]裴海昆.不同放牧强度对土壤养分及质地的影响.青海大学学报(自然科学版).2004,22(4):29-31.
    [240]戎郁萍,韩建国,王培,等.放牧强度对草地土壤理化性质的影响.中国草地.2001,23(4):41-47.
    [241]邵玉琴,赵吉.草原蘑菇圈中土壤微生物类群数量的动态分布研究.中国草地.2000,1:47-50.
    [242]邵玉琴,赵吉.内蒙古库布齐油蒿固定沙丘土壤微生物数量的季节动态分布研究.中国草地,2000,2:42-45.
    [243]邵玉琴,赵吉,廖仰南.内蒙古库布齐沙带东段油蒿(Artemisia ordosica)根际土壤微生物类群数量的研究.内蒙古大学学报(自然科学版).1996,27(1):98-102.
    [244]邵玉琴,赵吉,杨劼.恢复草地和退化草地土壤微生物类群数量的分布特征.中国沙漠.2004,24(2):223-226.
    [245]石永红,韩建国,邵新庆,刘贵河.奶牛放牧对人工草地土壤理化特性的影响.中国草地学报.2007,29(1):24-30.
    [246]宋炳煜.几个主要地面因子对草原群落蒸发蒸腾的影响.植物生态学报.1996,20(6):485-493.
    [247]苏明,张玉霞,宋桂荣,宫雅琴.退化草场恢复演替与合理利用的土壤微生物生态效应.哲里木畜牧学院学报.1997,7(1):28-31.
    [248]孙维,赵吉.不同草原生境下的土壤微生物生物量研究.内蒙古农业大学学报.2002,23(1):29-31.
    [249]谭周进,肖启明,杨海君,李倩.放牧对张家界索溪峪景区土壤微生物区系及活度的影响.自然资源学报,2005,20(6):885-890.
    [250]王明君,韩国栋,赵萌莉,陈海军,王珍,郝晓莉,薄涛.草甸草原不同放牧强度对土壤有机碳含量的影响.草业科学.2007,24(10):6-10.
    [251]王其兵,李凌浩,刘先华,等.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析.植物生态学报.1998,22(5):409-414.
    [252]汪诗平,李永宏.内蒙古典型草原退化机理的研究.应用生态学报.1999,10(4):437-441.
    [253]王仁忠.放牧干扰对松嫩平原羊草草地的影响.东北师大学报自然科学.1996,4:77-82.
    [254]王淑平,周广胜,孙长占,姜亦梅,姜岩,刘孝义.土壤微生物量氮的动态及其生物有效性的研究.植物营养与肥料学报.2003,9(1):87-90.
    [255]王岩,蔡大同,等.土壤微生物量N和微生物量C与土壤有机质C、N及施肥关系 南京农业大学学报.1993,16:159-163.
    [256]王艳芬,陈佐忠,Larry T Tieszen.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报.1998,22(6):545-551.
    [257]王玉辉,何兴元,周广胜.放牧强度对羊草草原的影响.草地学报.2002,10(1):45-49.
    [258]王云章等.冬小麦地深耕施肥对真菌区系的影响.微生物.1960,2(1):1-8.
    [259]温明章,于丹,郭继勋.凋落物层对东北羊草草原微环境的影响.2003,21(5):395-400.
    [260]卫智军,乌日图,达布希拉图,苏吉安,杨尚明.荒漠草原不同放牧制度对土壤理化性质的影响 中国草地.2005,27(5):6-10.
    [261]谢正苗,卡里德,黄昌勇,俞劲炎.镉铅锌污染对红壤中微生物生物量碳氮磷的影响.植物营养民肥料学报.2000,6(1):69-74.
    [262]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报.2002,39(1):89-96.
    [263]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [264]姚槐应,何振立,黄昌勇.红壤微生物量氮的周转期及其研究意义.土壤学报.1999,36(3):387-394.
    [265]姚爱兴,王培.放牧强度和放牧制度对草地土壤及植被的影响.国外畜牧学-草原与牧草.1993,(4):1-5.
    [266]姚爱兴.放牧对多年生黑麦草/白三叶草地及奶牛生产性能的影响[M].北京:中国农业大学草地研究所.1995.
    [267]姚爱兴,王培,夏景新.不同放牧强度下奶牛对多年生黑麦草/白三叶草地土壤特性的影响.草地学报.1995,3(3):181-189.
    [268]姚爱兴,李平.不同放牧制度下奶牛对多年生黑麦/白三叶草地土壤特性的影响.草地学报.1996,4(2):95-102.
    [269]杨靖春,刘义,郭玲.放牧对羊草草原微生物区系的影响.中国草地.1984,2:35-40.
    [270]殷勤燕,陈宗泽.大豆土壤微生物生物量碳的测定方法.微生物学杂志.1997,17(2):61-62.
    [271]俞慎,李勇,王俊华,车玉萍,潘映华,李振高.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报.1999,36(3):413-422.
    [272]翟瑞常,张之一.耕作对土壤生物碳动态变化的影响.土壤学报.1996,33(2):201-210.
    [273]张成娥,陈小丽.植被破坏前后土壤微生物分布与肥力的关系.土壤侵蚀与水土保持学报.1996,2(4):77-83.
    [274]张桂枝,廖仰南.锡林河流域退化草场土壤微生物生物量的初步研究.中国草地.1990,(1):37-40.
    [275]张金霞,等.放牧强度对高寒灌丛草甸土壤CO2释放速率的影响.草地学报,2001,9(3):183-190.
    [276]张蕴薇.华北农牧交错带放牧强度对新麦草草地的影响.北京:中国农业大学硕士论文.2002.
    [277]张蕴薇,韩建国,李志强.放牧强度对土壤物理性质的影响.草地学报.2002,(10):74-78.
    [278]张蕴薇,韩建国,韩永伟,牛忠联.不同放牧强度下人工草地土壤微生物量碳、氮的含量.草地学报.2003,11(4):343-345.
    [279]张蕴薇,韩建国,杨富裕.华北农牧交错带地区放牧强度对草地土壤氮营养的影响.四川草原.2005,1:7-9.
    [280]张伟华.不同牧压强度对草原土壤水分、养分及其地上生物量的影响.干旱区资源与 环境.2000,14(4):61-64.
    [281]张崇邦.东北羊草草原土壤微生物数量动态的研究.克山师专学报.1999,2(3):7-10.
    [282]赵吉,刘萍,邵玉琴,李志伟,廖仰南.人为因素对草原土壤微生物和生物活性的影响.内蒙古大学学报(自然科学版).1996,27(4):568-572.
    [283]赵吉.不同放牧率对冷蒿小禾草草原土壤微生物数量和生物量的影响.草地学报.1999,17(3):223-227.
    [284]赵吉,廖仰南,张桂枝,邵玉琴.草原生态系统的土壤微生物生态.中国草地.1999,3:57-67.
    [285]赵刚.草地畜牧业可持续发展刍义.内蒙古草业,1999,(2):1-6.
    [286]中国畜牧业年鉴编辑委员会.中国畜牧业年鉴,1999.北京:中国农业出版社,2000.
    [287]周丽艳,王明玖,韩国栋.不同强度放牧对贝加尔针茅草原群落和土壤理化性质的影响.干旱区资源与环境.2005 19(7):182-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700