用户名: 密码: 验证码:
小胶质细胞表达钾离子通道Kv1.2及其对细胞因子和活性氧生成的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小胶质细胞是中枢神经系统的“感受器”,当脑内微环境发生变化时它首先被激活,活化后的小胶质细胞通过释放细胞因子和活性氧(Reactive OxygenSpecies,ROS)等对周围环境进行调整;此时其膜电生理学特性的改变对其生物学行为起到调控作用;小胶质细胞表达多种离子通道,它们协调运转控制着小胶质细胞膜的生物学特性。业已证实小胶质细胞表达电压依从性钾离子通道(Voltage gated potassium channel,Kv),它们所控制的外向延迟整合钾离子电流是小胶质细胞活化的特征,其开放所致的细胞内钾离子浓度降低是上调细胞因子表达的关键步骤。研究表明小胶质细胞表达Kv1.3、Kv1.5,它们与小胶质细胞的增殖、迁移、释放细胞因子和ROS等多种生理功能有关;使用这些通道的阻断剂能够降低小胶质细胞活化的程度,减轻神经元损伤。因此深入研究小胶质细胞膜上Kv的表达及其可能的功能,对阐明小胶质细胞活化的分子机制,寻找调控其活化的靶点具有重要意义。目的:本研究旨在探索钾离子通道Kv1.2在小胶质细胞的表达及其可能的功能。方法:采用免疫荧光双重标记法观察大鼠不同发育阶段脑内阿米巴状小胶质细胞表达Kv1.2的情况;并通过免疫荧光双重标记和real time PCR技术,观察体外培养的小胶质细胞Kv1.2表达的情况。体内建立大鼠缺氧动物模型,观察不同年龄大鼠缺氧后小胶质细胞表达Kv1.2的变化;体外采用脂多糖(Lipopolysaccharide,LPS)、缺氧(Hypoxia exposure,HPE)、三磷酸腺苷(Adenosine 5'-triphosphate,ATP)诱导激活小胶质细胞,通过real time PCR观察小胶质细胞Kv1.2、白细胞介素1β(Interleukin-1β,IL-1β)和肿瘤坏死因子(Tumornecrosis factor,TNFα)mRNA表达的变化;并采用特异性结合钾离子的荧光探针(Potassium-binding benzofuran isophthalate acetoxymethyl ester,PBFI AM)作为标记物,检测小胶质激活后细胞内钾离子浓度的变化。最后,当小胶质细胞被LPS、HPE、ATP诱导激活之后,使用东亚钳蝎毒提取物(rTityustoxin-Kα,TsTx)阻断Kv1.2通道再次观察上述指标的变化;并用LPS激活细胞以及TsTx阻断通道后通过流式细胞仪观察小胶质细胞内ROS产生的改变。结果:体内外小胶质细胞均表达Kv1.2;体内Kv1.2的表达伴随发育过程出现变化,P1-10大鼠脑内阿米巴状小胶质细胞表达Kv1.2,P14开始Kv1.2的表达出现下调,P21的大鼠脑内突起型小胶质细胞几乎不能观察到Kv1.2的表达。P1大鼠缺氧后小胶质细胞表达Kv1.2显著增加;体外real time PCR分析的结果亦证实,当细胞被LPS、缺氧、ATP诱导后Kv1.2 mRNA的表达出现上调;同时小胶质细胞表达IL-1β、TNFα增加;并伴随细胞内钾离子浓度降低。通过TsTx特异性阻断Kv1.2通道电流后,细胞内钾离子浓度出现恢复,同时使得LPS、缺氧、ATP诱导细胞后的IL-1β和TNFα的表达降低,LPS诱导的小胶质细胞ROS产生出现减少。结论:①本研究首次证实小胶质细胞表达Kv1.2,并随动物发育而逐渐消失,提示Kv1.2的表达与发育早期动物脑内的微环境需求有关。②Kv1.2的表达参与了小胶质细胞活化的过程。③Kv1.2的表达在LPS诱导的ROS生成中具有重要作用。④缺氧后小胶质细胞释放IL-1β和TNFα增多可能因缺氧后小胶质细胞表达Kv1.2上调,钾离子外流增多,细胞内钾离子浓度降低所致。⑤Kv1.2的表达在ATP激活小胶质细胞的过程中发挥作用。⑥Kv1.2通道的特异阻断剂TsTx使得小胶质细胞的活化程度减轻。因此,进一步研究该通道的功能,优化该通道阻断剂TsTx的剂量,阻断该通道电流,能够为控制因小胶质细胞过度活化而引起的炎症反应提供有力的实验室证据。
[Abstract]Objective:Microglial cells monitor the state of health of the surrounding tissues in the central nervous system and act as a neuropathology sensor.They are responsive to various stimuli including infections and ischemia and are activated in some dieases.Microglial cells are endowed with different potassium ion channels but their expression and involvement in specific functions has remained to be fully explored.In this connection,ion channels that modulate the membrane potential control the electrophysiological characteristic of microglia.A fuller understanding of the ion channels is therefore vital in elucidating the mechanism of microglial activation.Method:Immunohistochemistry for Kv1.2 was carried out using the ABC method.Double immunofluorescence labeling for Kv1.2 and OX42/Lectin(The mark of microglia)was used to determine the Kv1.2 cellular location.P1 postnatal rats were kept in a chamber filled with a gas mixture of 5%oxygen and 95%nitrogen for 3 hours.Quantitative RT-PCR was carried out on a Light Cycler 3 instrument to analysis the IL-1βand TNFαmRNA expression.Intracellular levels of potassium were assessed by determination of PBFI fluorescence.In order to confirm that the changes in intracellular potassium concentration and release of cytokines by microglial cells under different conditions involved Kv1.2,TsTx,a specific and a potent Kv1.2 current blocker were applied to the cells in culture.Results:This study has shown Kv1.2 expression in the amoeboid microglia in the postnatal rats' brain between P1 and P10 days.At P14,Kv1.2 expression was localized in the ramified microglia and at P21,it was hardly detected.In P1 rats exposed to hypoxia,Kv1.2 immunoreactivity in amoeboid microglia was markedly enhanced.RT-PCR analysis confirmed Kv1.2 mRNA expression in microglial cell culture and murine BV-2 cells. Furthermore,it was up-regulated when the cells were subjected to hypoxia. Additionally,Kv1.2 mRNA expression coupled by that of IL-1βand TNF-αincreased following ATP,and LPS application.Concomitantly,the intracellular potassium concentration in activated microglia as determined by PBFI fluorescence decreased. Blockade of Kv1.2 channel with TsTx resulted in partial recovery of intracellular potassium concentration accompanied by a reduced expression of IL-1βand TNF-αas well as production of intracellular ROS.Conclusion:Kv1.2 expression change is related to the specific necessary of microglia during rat developing.Its expression increase related to the microglia activation.We conclude that Kv1.2 in microglia is sensitive to hypoxia,ATP and LPS.Its up-regulated expression as elicited by the external stimuli may be linked to IL-1βand TNFαexpression and ROS production. Hence,optimizing the dosage of TsTx in suppression of Kv1.2 function may be a potential therapeutic means in ameliorating neuroinflammation in which microglial activation is implicated.
引文
[1]Hortega R.P.Eltercer elemento de los centros nerviosos.Ⅰ.La microgh'a en estado normal.Ⅱ.Intervencio'n de la rnicrogh'a en los procesos patolo' gicos(celulas en bastoncito yvuerpos gra'nulo-adiposos.Ⅲ.Naturaleza proable de la microgh'a,Bol Soc Esp Biol,1919,9:69-129
    [2]Farber K,Kettenmann H.Physiology of microglial cells.2005,Brain Res Rev,48:133-143
    [3]Bessis A,Bechade C,Bernard D,et al.Microglial control of neuronal death and synaptic properties.Glia,2007,55:233-238
    [4]Norenberg W,Gebicke-Haerter P.J.,Illes P.,Inflammatory stimuli induce a new K+ outward current in cultured rat microglia,Neurosci.Lett.,1992,147:171- 174
    [5]McRae A,Dahlstr_m A and Ling EA.Microglia in neurodegenerative disorders:emphasis on Alzheimer's disease.Gerontology,1997,43:95-108
    [6]李凡,李树清,张敬各.银杏内酯B对树鼩血栓性脑缺血后GFAP表达的影响及机制探讨。《中国病理生理杂志》,2005,(4)661-664
    [7]李 凡 李树清。脑损伤后炎症反应与白细胞介素8.《微循环学杂志》,2003,(03)46-48
    [8]Wu YP,Ling EA.Induction of microglial and astrocytic response in the adult rat lumbar spinal cord following middle cerebral artery occlusion.Exp Brain Res,1998,118:235-242
    [9]Boucsein H,Kettenmann H,Nolte C.Electrophysiological properties of microglial cells in normal and pathologic rat brain slices.Eur J Neurosci,2000,12:2049-2058
    [10]Eder C.,Decoursey T.E.Voltage-gated proton channels in microglia.Prog.Neurobiol.2001,64:277-305
    [11]Norenberg W,Gebicke-Haerter P.J.,Illes P.,Inflammatory stimuli induce a new K+ outward current in cultured rat microglia,Neurosci.Lett.1992,147:171 -174
    [12]Norenberg W,Gebicke-Haerter PJ,Illes P.Voltage-dependent potassium channels in activated rat microglia.J Physio1,1994,475:15-32
    [13]Rajesh K,Lipi R,Xiaoping Z,et al.K~+ channels and the microglial respiratory burst.Am J Physiol Cell Physio1.2001,280(4):C796-C806
    [14]Jae K.R.,Hyun B.C,Radov L,et al.Broad-Spectrum effects of 4-Aminopyridine to modulate amyloid -1- 42-induced cell signaling and functional responses in human microglia.The Journal of Neuroscience.2006,26(45):11652-11664
    [15]Ling EA,Wong WC.The origin and nature of ramified and amoeboid microglia:a historical review and current concepts.Glia,1993,7:9-18
    [16]Schilling T,Eder C.Ion channel expression in resting and activated microglia of hippocampal slices from juvenile mice.Brain Reserch,2007,186:21-28
    [17]Boucsein H,Kettenmann H,Nolte C.Electrophysiological properties of microglial cells in normal and pathologic rat brain slices.Eur J Neurosci,2000,12:2049-2058
    [18]Lyons SA,Pastor A,Ohlemeyer C,et al.Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion.J Cereb Blood Flow Metab,2000,20:1537-1549
    [19]Chew LJ,Takanohashi A,Bell M.Microglia and inflammation:impact on developmental brain injuries.Ment Retard Dev Disabil Res Rev.,2006,12(2):105-112
    [20]Fordyce CB,Jagasia R,Zhu X.Microglia Kv1.3 channels contribute to their ability to kill neurons.J Neurosci,2005,25:7139-7149
    [21]Fields R.D.,Bumstock G.Purinergic signalling in neuron-glia interactions.Nat Rev Neurosci,2006,7(6):423-36.
    [22]Cavaliere F,Amadio S,Dinkel K,et al.P2 receptor antagonist trinitrophenyl-adenosine -triphosphate protects hippocampus from oxygen and glucose deprivation cell death.J Pharmacol Exp Ther.,2007,23(1):70-7
    [23]Wu LJ,Vadakkan KI,Zhou M.ATP-Induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents.Glia,2007,5:810-821
    [24]Zhou Y,Ling EA,Dheen ST.Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia.J Neurochem,2007,102:667-678
    [25]Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)Method.Methods,2001,24:402-408
    [26]Kasner SE,Ganz MB.Regulation of intracellular potassium in mesangial cells:a fluorescence analysis using the dye,PBFI.Am J Physiol,1992,262:F462-F467
    [27]McRae A,Dahlstr_m A and Ling EA.Microglia ha neurodegenerative disorders:emphasis on Alzheimer's disease.Gerontology,1997,43:95-108
    [28]Schilling T,Quandt FN,Cherny ⅤⅤ,et al.Upregulation of Kvl.3 K(+)channels ha microglia deactivated by TGF-β.Am JPhysiol 2000.279:C1123-421134
    [29]Kotecha SA,Schleicher LC.A Kvl.5 to Kvl.3 switches ha endogenous hippocampal microglia and a role in proliferation.J Neurosci,1999,19:10680-10693
    [30]K.hanna R,Roy L,Zhu XP,Schlichter LC.K+ channels and the microglial respiratory burst.Am J Physiol Cell Physiol,2001,280:C796-C806
    [31]Kaur C,Viswanathan S,.Dheen ST,Ling EA.Insulin-like growth factor-Ⅰ and Ⅱ expression and modulation in activated microglial cells by lipopolysaccharide and retinoic acid.Neuroscience,2006,138:1233-1244
    [32]Wu CY,Lu J,Cao Q,Guo CH,Gao Q,Ling EA.Expression of 2',3'-cyclic nucleotide 3-phosphodiesterase in the amoeboid microglial cells in the developing rat brain.Neuroscience,2006,142:333-341
    [33]Rezaie.P.Microglia in the Human Nervous System during Development.Neuroembryology 2003,2:18-31
    [34]Eder C.Ion channels in microglia(brain macrophages).American J Physiology,1998,275:C327-C342
    [35] Kettenmann H, Hoppe D, Gottmann K, et al. Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res,1990,26:278-287
    [36] Brockhaus J, Moller T, Kettenmann H. Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia, 1996,16: 81-90
    [37] Schlichter LC, Sakellaropoulos G, Ballyk B, et al. Properties of K+ and Cl- channels and their involvement in proliferation of rat microglial cells. Glia,1996,17: 225-236
    [38]Fischer HG, Eder C, Hadding U, et al. Cytokine-dependent K+ channel profile of microglia at immunologically defined functional states. Neuroscience.,1995, 64(1): 183-191
    [39] Norenberg W, Gebicke-Haerter PJ, Illes P. Voltage-dependent potassium channels in activated rat microglia. J Physiol,1994,475:15-32
    [40] Schmidtmayer J, Jacobsen C, Miksch G,et al. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: membrane currents.Glia., 1994,12(4):259-267
    [41] Draheim HJ, Prinz M, Weber JR, et al. Induction of potassium channels in mouse brain microglia: cells acquire responsiveness to pneumococcal cell wall components during late development. Neuroscience.,1999,89(4): 1379-1390
    [42] Raivich G, Banati R. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev, 2004,46(3): 261-281
    [43] Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother, 2004, 58(1): 39-46
    [44] Chung S, Lee J, Joe EH, et al. Beta-amyloid peptide induces the expression of voltage dependent outward rectifying K+ channels in rat microglia. Neurosci Lett, 2001,300(2):67-70
    [45] Kim DH, Cho H, Kim HS, et al. Anti-inflammatory effects of 8-hydroxydeoxyguanosine in LPS-induced microglia activation: suppression of STAT3-mediated intercellular adhesion molecule-1 expression. Exp Mol Med.,2006,38(4):417-427
    [46]Cayabyab FS, Khanna R, Jones OT, et al. Suppression of the rat microglia Kv1.3 current by src-family tyrosine kinases and oxygen/glucose deprivation. Eur J Neurosci, 2000,12(6):1949-60
    [47]Prentice HM, Milton SL, Scheurle MD, et al. Gene transcription of brain voltage-gated potassium channels is reversibly regulated by oxygen supply. Am J Physiol Regulatory Integrative Comp Physiol,2003,285:1317-1321
    [48]Qiu MH, Zhang R, Sun FY. Enhancement of ischemia-induced tyrosine phosphorylation of Kv1.2 by vascular endothelial growth factor via activation of phosphatidylinostol 3-kinase. J Neurochem,2003,87:1509-1517
    [49]Conforti L, Bodi I, Nisbet JW. O2 sensitive K+ channels: role of the Kv1.2 α-subunit in mediating the hypoxic response,J Physiol,2000,524:783-793
    [50]Nitabach MN,Llamas DA,Thompson IJ,et al..Phosphorylation-dependent and phosphorylation-independent modes of modulation of shaker family voltage-gated potassium channels by SRC family protein tyrosine kinases.J Neurosci.2002,15;22(18):7913-922
    [51]Argaw AT,Zhang Y,Snyder BJ,et al.IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program.J Immunol.,2006,177(8):5574-5584
    [52]Wang JY,Wang JY.Chin J Physiol.Hypoxia/Reoxygenation induces nitric oxide and TNF-alpha release from cultured microglia but not astrocytes of the rat.2007,50(3):127-134
    [53]Kremlev SG,Roberts RL,Palmer C.Differential expression of chemokines and chemokine receptors during microglial activation and inhibition.J Neuroimmunol.,2004,149(1-2):1-9
    [54]Catty ML,Wixey JA,Colditz PB,et al.Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat:a comparison of two different dose regimens.Int J Dev Neurosci,2008 Mar 4
    [55]Nutile-McMenemy N,Elfenbein A,Deleo JA,Minocycline decreases in vitro microglial motility,betal-integrin,and Kvl.3 channel expression J Neurochem.,2007,103(5):2035-2046
    [56]Sperlagh B.,Illes P.Purinergic modulation of microglial cell activation.Purinergic Signal.2007,3(1-2):117-127
    [57]Visentin S,Renzi M,Frank C,Greco A,Levi G.Two different ionotropic receptors are activated by ATP in rat microglia.J Physio1,1999,519:723-736
    [58]Sasaki YY,Hoshi M,Akazawa C,et al.Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain.Glia,2003,44:242-250
    [59]Xiang Z,Burnstock GG.Expression of P2X receptors on rat microglial cells during early development.Glia,2005,52:119-126
    [60]Inoue K,Nakajima K,Morimoto T,Kikuchi Y,Koizumi S,Illes P,Kohsaka S.ATP stimulation of Ca2+-dependent plasminogen release from cultured microglia.Br J Pharmacol,1998,123:1304-1310
    [61]Kust BM,Biber K,van Calker D et al.Regulation of K~+ channel mRNA expression by stimulation of adenosine A_(2A)-receptors in cultured rat microglia.Glia,1999,25:120- 130
    [62]Walev,I.,K.Reske,M.Palmer,A.Valeva,S.Bhakdi.Potassium-inhibited processing of IL-1β in human monocytes.EMBO J,1995,14:1607
    [63]Werkman TR,Gustafson TA,Rogowski RS,et al.Tityustoxin-K alpha,a structturally novel and highly potent K+ channel peptide toxin,interacts with the alpha-dendrotoxin binding site on the cloned Kvl.2 K+ channel.Mol Pharmacol,1993,44:430-436
    [64]Rogowski RS,Krueger BK,Collins JH,et al.Tityustoxin K alpha blocks voltage-gated noninactivating K+ channels and unblocks inactivating K+ channels blocked by alpha-dendrotoxin in synaptosomes.Proc Natl Acad Sci,1994,91:1475-1479
    [1]Hortega R.P.Eltercer elemento de los centros nerviosos. I. La microgl(?)'a en estado normal. II. Intervencio'n de la microgh'a en los procesos patolo' gicos (celulas en bastoncito yvuerpos gra' nulo-adiposos. III. Naturaleza proable de la microgh'a. Bol Soc Esp Biol,1919,9: 69-129
    [2] Ling EA, Wong WC. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. 1993,Glia ,7: 9-18
    
    [3] Farber K, Kettenmann H. Physiology of microglial cells. 2005,Brain Res Rev, 48:133-143
    [4]Colton CA, Jia M, Li MX, et al. K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels.Am J Physiol,1994,266(6):1650-5
    [5]Moller T, Nolte C, Burger R, et al. Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia, 1997,17(2):615-24
    [6]Norenberg W, Cordes A, Blohbaum G, et al.Coexistence of purino- and pyrimidinoceptors on activated rat microglial cells.Br J Pharmacol,1997,121(6):1087-98
    [7]Hahn J, Jung W, Kim N,et al. Characterization and regulation of rat microglial Ca(2+) release-activated Ca(2+) (CRAC) channel by protein kinases. Glia,2000 ,31(2):118-24
    [8] Verkhratsky A, Kettenmann H.Calcium signalling in cells. Trends Neurosci,1996,19:346-352
    [9] Schmidtmayer J, Jacobsen C, Miksch G,et al. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: membrane currents.Glia,1994,12(4):259-67
    [10]Schlichter LC, Sakellaropoulos G, Ballyk B,et al. Properties of K+ and Cl- channels and their involvement in proliferation of rat microglial cells. Glia.1996,17(3):225-36
    [11] Eder C. Ion channels in microglia (brain macrophages). American J Physiology,1998,275:C327-C342
    [i2]Eder, H.G. Fischer, U. Hadding, U. et al.Properties of voltage-gated currents of microglia developed using macrophage colony-stimulating factor.Pfluegers Arch,1995,430:526-533
    [13] Klee R., Heinemann U., Ede r C. Voltage-gated proton currents in microglia of distinct morphology and functional state. Neuroscience ,1999,91:1415-1424
    [14] Morihata H., Nakamura F., Tsutada T., et al. Potentiation of a voltage-gated proton current in acidosis-induced swelling of rat microglia. J. Neurosci, 2000,20: 7220-7227
    [15]Toescu EC, Moller T, Kettenmann H,et al. Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience, 1998 ,86(3):925-935
    
    [16] Walz W, Ilschner TS, Ohlemeyer C, et al. Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci,1993,13:4403-4411
    
    [17] McLarnon JG, Sawyer D, Kim SU. Cation and anion unitary ion channel currents in cultured bovine microglia. Brain Res. 1995 693(1-2):8-20
    [18]McRae A, Dahlstr_m A,Ling EA. Microglia in neurodegenerative disorders: emphasis on Alzheimer's disease. Gerontology,1997,43:95-108
    [19] Draheim HJ, Prinz M, Weber JR,et al. Induction of potassium channels in mouse brain microglia: cells acquire responsiveness to pneumococcal cell wall components during late development. Neuroscience. 1999;89(4):1379-1390
    [20]Norenberg W, Gebicke-Haerter P.J., Illes P., Inflammatory stimuli induce a new K+ outward current in cultured rat microglia, Neurosci. Lett. 1992,147:171-174
    [21]Norenberg W, Gebicke-Haerter PJ, Illes P.Voltage-dependent potassium channels in activated rat microglia. J Physiol, 1994,475:15-32
    [22]Schmidt K, Eulita D, Veh R, Kettenmann H, Kirchhoff F. Heterogeneous expression of voltage-gated potassium channels of the shaker family (Kv1) in oligodendrocyte progenitors. Brain Re,1999,843: 145-160
    [23]Kotecha SA, Schleicher LC. A Kv1.5 to Kv1.3 switches in endogenous hippocampal microglia and a role in proliferation. J Neurosci, 1999,19: 10680-10693
    [24] Rajesh K, Lipi R, Xiaoping Z, et al. K+ channels and the microglial respiratory burst. Am J Physiol Cell Physiol .2001,280(4):C796-C806
    [25] Jae K.R.,Hyun B. C, Radov L,et al. Broad-Spectrum effects of 4-Aminopyridine to modulate amyloid -1- 42-induced cell signaling and functional responses in human microglia. J Neuroscience. 2006 ,26(45):11652-11664
    [26] Chung S, Jung W, Lee MY. Inward and outward rectifying potassium currents set membrane potentials in activated rat microglia. Neurosci Lett,1999,262(2):121-124
    [27] Fischer HG, Eder C, Hadding U, et al. Cytokine-dependent K+ channel profile of microglia at immunologically defined functional states. Neuroscience., 1995, 64(1):183-191
    [28] Kettenmann H, Banati R, Walz W. Electrophysiological behavior of microglia.Glia, 1993,7(1):93-101
    [29] Schilling T, Quandt FN, Cherny VV, et al. Upregulation of Kv1.3 K (+) channels in microglia deactivated by TGF-β. Am JPhysiol,2000,279: C1123-C1134
    [30] Chung S, Joe E, Soh H,et al. Delayed rectifier potassium currents induced in activated rat microglia set the resting membrane potential. Neurosci Lett.,1998 ,242(2):73-76
    [31] Eder C, Decoursey T.E.Voltage-gated proton channels in microglia. Prog. Neurobiol, 2001,64: 277-305
    [32] Boucsein H, Kettenmann H, Nolte C. Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci,2000,12: 2049-2058
    [33] Lyons S.A., Pastor A., Ohlemeyer C, et al, Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion, J. Cereb. Blood Flow Metab. 2000,20:1537-1549
    [34] Schilling T, Eder C .Brain Reserch Ion channel expression in resting and activated microglia of hippocampal slices from juvenile mice. 2007,186: 21-28
    [35]Ilschner S,Ohlemeyer C,Gimpl G,et al.Modulation of potassium currents in cultured murine microglial cells by receptor activation and intracellular pathways.Neuroscience.,1995,66(4):983-1000
    [36]Eder C,Heinemann U.Proton modulation of outward K+ currents in interferon-gamma-activated mieroglia.Neurosei Lett.,1996,206(2-3):101-104
    [37]Visentin S,Levi G.Protein kinase C involvement in the resting and interferon-gamma-induced K+ channel profile of microglial cells.J Neurosci Res.,1997,47(3):233-241
    [38]Pannasch U,Farber K,Nolte C,et al.The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia.Mol Cell Neurosei.,2006,33(4):401-411
    [39]Shibata N,Kobayashi M.The role for oxidative stress in neurodegenerative diseases.Brain Nerve.2008 Feb;60(2):157-170
    [40]Bessis A,Bechade C,Bernard D,Roumier A.Microglial control of neuronal death and synaptic properties.Gila,2007,55:233-238
    [41]Chung S,Lee J,Joe EH,Uhm DY.Beta-amyloid peptide induces the expression of voltage dependent outward rectifying K+ channels in rat microglia.Neurosci Lett.,2001,300(2):67-70
    [42]Kim DH,Cho IH,Kim HS,Jung JE,et al.Anti-inflammatory effects of 8-hydroxydeoxyguanosine in LPS-induced microglia activation:suppression of STAT3-mediated intercellular adhesion molecule-1 expression.Exp Mol Med.,2006,38(4):417-427
    [43]Khanna R,Roy L,Zhu XP,Schlichter LC.K+ channels and the microglial respiratory burst.Am J Physiol Cell Physiol,2001,280:C796-C806
    [44]Deng YY,Lu J,Sivakumar V,et al.Amoeboid Microglia in the Periventricular White Matter Induce Oligodendrocyte Damage through Expression of Proinflammatory Cytokines via MAP Kinase Signaling Pathway in Hypoxic Neonatal Rats.Brain Pathol.2008 Mar 26.
    [45]Kremlev SG,Roberts RL,Palmer C.Differential expression of chemokines and chemokine receptors during microglial activation and inhibition.J Neuroimmunol.,2004,149(1-2):1-9
    [46]Carry ML,Wixey JA,Colditz PB,et al.Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat:a comparison of two different dose regimens.Int J Dev Neurosci.,2008,Mar 4
    [47]McMenemy N N,Elfenbein A,Deleo JA,Minocycline.decreases.in vitro microglial motility,betal-integrin,and Kv1.3 channel expression.J Neurochem,2007,103(5):2035-46
    [48]Franciosi S,Ryu JK,Choi HB,et al.Broad-spectrum effects of 4-aminopyridine to modulate amyloid betal-42-induced cell signaling and functional responses in human microglia.J Neurosci,.2006,26(45):11652-11664
    [49]Suma T,Koshinaga M,Fukushima,et al.Effects of in situ administration of excitatory amino acid antagonists on rapid microglial and astroglial reactions in rat hippocampus following traumatic brain injury.Neurol Res.,2008
    [50]Sperlagh B.,Illes P.Purinergic modulation of microglial cell activation.Purinergic Signal.2007,3(1-2):117-127
    [51]Kreutzberg GW.Microglia:a sensor for pathological events in the CNS.Trends Neurosci,1996,19:312-318
    [52]Ferrari D,Villalba M,Chiozzi P,et al.Mouse microglial cells express a plasma membrane pore gated by extracellular ATP.J Immunol,1996,156:1531 - 1539
    [53]Fields R.D.,Bumstock G.Purinergic signalling in neuron-gila interactions.Nat Rev Neurosci.,2006,7(6):423-436
    [54]Honda S,Imai Y,Ohsawa K,Nakamura Y,Inoue K,Kohsaka S.Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors.J Neurosci,2001,21:1975-1982
    [55]Ferrari D,Chiozzi P,Simonetta F,et al.Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin.J Exp Med,1997,185:579-582
    [56]Mogami Y S,Koizumi S,Tsuda M,et al.Mechanisms underlying extracellular ATP-evoked IL-6 release in mouse microglial cell line,MG-5.J Neurochem,2001,78:1339-1349
    [56]Inoue K,Nakajima K,Morimoto T,et al.ATP stimulates Ca~(2+)ependent plasminogen release from cultured microglia.Br J Pharmacol,1998,123:1304-1310
    [57]Hide I,Tanaka M,Inoue A,et al.Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia.J eurochem,2000,5:965-972
    [58]Moiler T,Kann O,Verkhratsky A,Kettenmann H.Activation of mouse microglial cells affects P2 receptor signaling.Brain Res,2000,53:49-59
    [59]Ferrari D,Villalba M,Chiozzi P,et al.Mouse microglial cells express a plasma membrane pore gated by extracellular ATP.J Immunol,1996,56:1531-1539
    [60]Ferrari D,Wesselborg S,Bauer MK,et al.Extracellular ATP activates transcription factor NF-_B through the P2Z purinoreceptor by selectively targeting NF-_B p65.J Cell Biol,997c,39:1635-1643
    [61]Cavaliere F,Amadio S,Dinkel K,et al.P2 receptor antagonist trinitrophenyl-adenosine -triphosphate protects hippocampus from oxygen and glucose deprivation cell death.J Pharmacol Exp Ther.,07,23(1):70-7
    [62]Wu LJ,Vadakkan KI,Zhou M.ATP-Induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents.Glia,2007,5:810-821
    [63]Kust BM,Biber K,van Calker D et al.Regulation of K~+ channel mRNA expression by stimulation of adenosine A_(2A)-receptors in cultured rat microglia.Glia,1999,5:120- 130
    [64]Walev,I.,Reske K.,Palmer M.,et al.Potassium-inhibited processing of IL-1β in human monocytes.J EMBO.1995.14:1607-1637
    [65]Illes P,Norenberg W,Gebicke-Haerter PJ.Molecular mechanisms of microglial activation.B.Voltage- and purinoceptor-operated channels in microglia.Neurochem Int,1996,29:13-24
    [66]Haynes SE, Hollopeter G, Yang G, The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci., 2006 ,(12):1512-1509
    [67]Tada KN, Koizumi S, Inoue K. Involvement of betal integrin in microglial chemotaxis and proliferation on fibronectin: different regulations by ADP through PKA. Glia.,2005 ,52(2):98-107
    [68]Ohsawa K, Irino Y, Nakamura Y,et al. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia.,2007,5(6):604-16
    [69] Morioka N, Abdin MJ, Kitayama T, et al.2X(7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport. Glia.,2008 ,6(5):528-538
    [70] Ferrari D, Villalba M, Chiozzi P, et al. Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol,1996,56:1531-1539
    [71] Ferrari D, Wesselborg S, Bauer MK, Schulze-Osthoff K. Extracellular ATP activates transcription factor NF-_B through the P2Z purinoreceptor by selectively targeting NF-_B p65. J Cell Biol,1997c,39:1635-1643
    [72]Sentin S, Renzi M, Frank C, et al.Two different ionotropic receptors are activated by ATP in rat microglia. J Physiol,999,519: 723-736
    [73] Walz W, Dschner TS, Ohlemeyer C, Banati R, Kettenmann H. Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neuroscil,1993,13:4403-4411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700