用户名: 密码: 验证码:
新型节能环保煤气发生炉的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的目的是研制一台新型节能环保煤气发生炉,为解决目前国内煤气发生炉普遍存在的一些弊端提供参考。
     自90年代起,煤气化技术在全国推广。但这些煤气化装置由于带出物多(大于3%),且炉渣可燃物达13%-15%,最高时超过20%,煤气发生炉效率低(在70%-80%之间),并且部分焦油雾随带出物在除尘器、水封等处冷凝析出,既浪费能源,又污染环境。在分析国内煤气发生炉的基础上,研发了节能环保煤气发生炉。此煤气发生炉采用全新的设计理念,能显著减少带出物,提高气化炉热效率。环保节能煤气发生炉的炉篦上部风量<25%,且绝大部分的风量从底部通过,这样,气化剂中部分氧气随气流经灰渣层预热,到燃烬层与炽热炉渣中未燃尽的碳燃烧,放出热量。由于温度高,氧化充分,接触时间长,(此层比氧化层厚),使炉渣中的可燃物得以更加充分的燃烧,排出的炉渣可燃物含量< 5%,明显低于目前市场上其他厂家的气化炉。既提高了产气率又满足了排放达到国家一类地区排放标准的要求,应用前景可观。
In recent years, the coal gasification technology is generalized in the whole country, but various coal gasifiers available on the current market not only waste energy but also pollute the environment because of too much carryover (more than 3%), combustible slag fuel up to 13% -15% with the highest more than 20%, and low efficiency (between 70%-80%), also part of the fog tar is precipitated on the dust collector and water seal accompanied with carryover. The author, together with the group members, made a comprehensive analysis on the domestic coal gasifiers and developed a new energy-saving and environmental coal gasifier.
     1. In this paper, a large number of data about coal gasifiers both at home and abroad is collected and analyzed, from which we realized the urgency and necessity for coal gasifier research and development.Coal gasification is an an important method for the chemical processing and the key to the clean use of coal. Coal gasification technology, especially high-pressure, high-capacity air-bed gasification technology, shows good economic and social benefits, represent the development trendm, is the cleanest coal use technology and the leading and key to clean coal technology. With the increasingly strict environmental standards, the advantages of air-bed gasification become increasingly outstanding.
     2. The paper makes high temperature gasification kinetics analysis on seven kinds of coal by thermogravimetric analysis method, and thermogravimetric analysis experimental data is mathematic processed by Coats-Redfern integral method and get high temperature reaction kinetic parameters, and makes analysis on the the factors that impact high-temperature gas dynamics. Through analysis we can arrive at weight loss difference of the coal in O2 and CO2 environment respectively during temperature-programmed process.
     3. New energy-saving and environmental coal gasifier adopts a new design concept that can bring out a significant reduction in carryover and improve the thermal efficiency of gasifier. In order to achieve this objective, a uniformly distributed gradient wind technology is developed so that the velocity and temperature of airflow at the same cross-section is uniformly distributed.
     The upper air volume above the grate of this new energy-saving and environmental coal gasifier is <25%, and most of the air flow passes through from the bottom with combustible slag fuel <5%, which is lower than the value of porduct from any other manufacturer available on the market. At the same time to save energy, coal emissions meet with the national emission standards defined for region of class 1. The equipment has a very promising application prospect.
引文
[1]岑可法,池涌.洁净煤技术的研究与发展[M].动力工程,1997, 17(5): 15-16
    [2]于涌年.煤炭利用回顾与未来有效技术[M].煤化工, 1994, 6(3): 1-7
    [3] Neville A H Holt Coal Gasification Research, Development and Demonstration– Needs and Opportumtie, Gasification Technologies Conference[J], 2001
    [4]夏鲲鹏,陈汉平,王贤华,张世红,高斌,刘德昌.气流床煤气化技术的现状及发展[J]煤炭转化,2005,(04) .
    [5] Pike AW, Donnems, DIXONR.Dynamic modeling and simulation of the air blown gasification cycle Prototype integrated Plant[A]. International Conference on Simulation[C]. IEE, 1998: 354-356
    [6] P. Grosdidier, M. Morari, A computer aided methodology for the design of decentralized controllers. ComPut. Chem. Eng, 1987, 11: 423-433
    [7]焦树建.整体煤气化燃气一蒸汽联合循环(IGCC).北京:中国电力出版社,1999.6第一卷
    [8]中国科学院工程热物理研究所,美国杜兰大学.中美专家关于整体煤气化联合循环(IGCC)技术报告.DOE/FE-0357, 1996
    [9] E. H. Bristol, Resent results on interaction in multivariable Process control. In: Proceeding of the 7lst Annual AlehE Meeting, Houston, TX, USA, 1979
    [10]林如谋,蔡睿贤.整体煤气化联合循环发电技术的综合研究[J].发电设备,1996, 134(2): 31-37
    [11]韦思亮,倪维斗,刘尚明.IGCC电站中气化炉控制系统研究[J].热能动力工程,2002, 17: 551-554
    [12] L. Tung, T.Edger, Analysis of control-outPut interaction in dynamic systems, AIChE J, 1981, 27: 690-693
    [13]段立强.IGCC系统全工况特性与设计优化以及新系统开拓研究:[博士学位论文].中国科学院研究生院,2002
    [14]聂义民,毕宾生,彭爱华.气化炉的计算机模拟及其应用[J].氮肥.1997, 1: 23-34
    [15] G. Becker and A. packard. Robust Performance of linear Parametrically varyingsystems using Parametrically-dependent linear feedback. System&Control Letters, 1994, 23: 205-215
    [16]吴晓燕,张双选编著.MATLAB在自动控制中的应用[M].西安:西安电子科技大学出版社,2006
    [17]王辅臣,龚欣,代正华等.Shell粉煤气化炉的分析与模拟[J].华东理工大学学报,2003, 29(2): 202-205.
    [18] S. Skogestad and I. Postlethwaite. Multivariable feedback control. Analysis and design. Wiley, January1997
    [19] M. Withcher, T.J. McAVoy, Interacting control system: steady-state and dynamic measurement of interaction, Ind.Eng. Chen.Fund, 1985, 24: 221-235
    [20]于海龙,张传名,刘建忠等.新型水煤浆喷嘴雾化新能的试验研究[J].中国电机工程学报,2005, 25(22): 99-103.
    [21]徐越,吴一宁.二段式干煤粉气化技术的模拟研究与分析[J].中国电机工程学报,2003(23): 10: 186-190.
    [22] P. Grosdidier, M. Morari, Closed-looP ProPerties from steady-state gain information. Ind. Eng. Chem. Fund, 1985, 24: 221-235
    [23]沈湘林,熊源泉.煤粉加压密相输送实验研究[J].中国电机工程学报,2005, 25(24): 103-107.
    [24]倪维斗,李政.以煤气化为核心的多联产能源系统[J].煤化工,2003, 104(1): 3-10.
    [25] C. ChinandN. Munro, Control of the ALSTOM gasifier benchmark Problem using H2 methodology, Journal of Process Control, 2003, 13: 759-768
    [26]邓世敏,危师让,林万超.IGCC系统专用单元模型研究[J].中国电机工程学报,2001, 21(3): 34-36.
    [27] E. H. Bristol, On a new measure of interactions for multivariable Process control, IEEE Trans, Automat. Control, 1966, 11: 133-134
    [28]袁宏宇,瞿海根,任海平等.气流床气化炉熔渣沉积模型实验研究[J].华东理工大学学报,2005, 31(3): 393-397.
    [29]唐宏青.煤化工工艺技术评述与展望[J].燃料化学学报,2001, 29(1): 1-5.
    [30]项友谦.煤气化过程的模型和模拟与优化操作[J].煤炭转化,2002, 25(2): 60-63.
    [31]韩志明,李政,倪维斗.Shell气化炉的动态建模和仿真[J].清华大学学报(自然科学版),1999, 39(3): 111-114.
    [32]张东亮.中国煤气化工艺(技术)的现状与发展[J].煤化工,2004, 111(2): 1-5.
    [33]周俊虎,匡建平,周志军等.粉煤气化炉冷态和热态流场和温度场分布特性的数值模拟[J].中国电机工程学报,2007, 27(20): 30-35.
    [34]李政,王天娇.Texaco煤气化炉数学模型的研究―建模部分[J].动力工程,2001, 21(2): 1161-1168
    [35] Alejandro M, Fanor M.Rectivity of coal gasification with steam and CO2[J].Fuel, 1998, 77(15): 1831-1839.
    [36] Chen Caixia, Masayuki H, Toshinori K.Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers[J].Fuel,2001, 80(10): 1513-1523.
    [37] Seggiani M.Modelling and simulation of time varying slag flow in a prenflo entratined-flow gasifier[J].Fuel, 1998, 77(14): 1611-1621.
    [38] Watkinaon A P, Lucas J P, Lim C J.Aprediction of performance of commercial coal gasifiers[J].Fuel, 1991, 70(4): 519-527.
    [39] Ruprecht P S, Chafer W, Wallace P.A computer model of entrained coal gasification[J].Fuel, 1988, 67(6): 739-743.
    [40] Gong Sunling, Xu Zhihong.Improved simulation system of pulverized coal gasifier[J].Journal of Chemical Industry and Engineering, 1997, 12(2): 245-254.
    [41] Ni Qizi, Williantns A.A simulation study on the performance of an entrained-flow coal gasifier[J].Fuel, 1995, 74(1): 102-110.
    [42]许世森,任永强.两段式干煤粉气流床气化炉.中国专利,012404071.2001-11-30
    [43]徐越,危师让,等.基于Aspen Plus的干煤粉气流床气化炉模拟[J].西安交通大学学报,2003, 37(7): 692-694
    [44]王连勇,蔡九菊,王爱华,田红,刘汉桥.煤炭气化技术进展[A].2004全国能源与热工学术年会论文集(2)[C], 2004
    [45]王晓炜.福建无烟煤扩大流化床催化气化工艺设计及实验研究[D].福州大学,2006
    [46]丁华.煤及其显微组分热解气化反应特性研究[D].煤炭科学研究总院,2006
    [47]于海龙.新型水煤浆气化喷嘴和气化炉的开发以及气化过程数值模拟[D].浙江大学,2004
    [48]匡建平.黑液水煤浆催化气化机理以及气流床气化数值模拟研究[D].浙江大学,2007
    [49]张继臻,种学峰.煤质对Texaco气化装置运行的影响及其选择(下)[J].化肥工业,2002,(04)
    [50] D R Simbeck, H E Johnson Gasification Database and World Market Gasification Technologies Conference[J], 1999
    [51]乌晓江,张忠孝,朴桂林,小林信介,森滋胜,板谷义纪,陈国艳.煤粉加压气流床气化特性实验研究[J].工程热物理学报,2008,(08)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700