用户名: 密码: 验证码:
天然气发动机起动及怠速转速闭环控制的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界能源危机问题的突显和环境保护呼声的日益高涨,近年来天然气作为一种新型的代用燃料已经得到了人们广泛的关注与支持。
     本文介绍了自主开发的发动机信号模拟发生装置,其可以真实地模拟出发动机的传感器信号;内置数码管显示,且人机界面友好,操作简单;该发动机信号模拟发生装置能够为电控单元ECU的调试提供各种发动机传感器信号,能够较好地反应出在发动机工况变化中传感器的内在关系,为ECU动态软件调试提供了良好的传感器信号模拟条件,是一种便携、低廉的发动机ECU辅助调试工具。
     本文还介绍了自主开发的发动机转速采集系统,其可以实时准确地对发动机的转速信号进行采集,而且采集到的试验数据可以存储在Excel文件内,便于进行后期的离线数据分析;转速采集系统能够为发动机台架试验提供辅助作用,是一种方便、低廉的发动机台架试验测试工具。
     除此之外,本文的主要研究内容就是应用自主开发的车用天然气发动机多片式ECU控制系统,通过独立的控制策略设计与程序开发,采用经过改装后的JL465Q5发动机作为试验台架,进行了天然气发动机的冷起动试验、怠速转速闭环控制试验、断缸试验和过渡工况试验等一系列研究工作。
     在进行起动试验过程中,通过自主开发的天然气发动机冷起动试验监控系统在线调整冷起动时的天然气喷射脉宽、点火提前角、旁通空气阀开度等参量进行起动过程的对比试验研究,论述了发动机缸内残余废气、冷却水温度、点火能量、多次点火等因素对天然气发动机起动过程的影响。
     在进行怠速转速闭环控制试验过程中,分别采用了怠速单闭环和双闭环两种控制策略。所谓的单闭环控制就是在怠速工况下只对旁通空气进气量进行PID算法控制,而点火提前角和天然气喷射脉宽采用固定值,通过试验研究了影响旁通空气进气量的比例项系数Air_Kp、积分项系数Air_Ki、天然气喷射脉宽和点火提前角对天然气发动机怠速工况的影响,并分别选取目标转速为1600rpm、1200rpm和850rpm进行了试验研究分析。所谓双闭环控制就是在怠速单闭环的基础上衍生出来的,发动机的电控系统ECU除了对旁通空气进气量进行PID控制之外,同时也对天然气喷射脉宽进行PID算法控制,两者之间相互独立,具备各自的PID参数设置。试验针对怠速目标转速分别为1200rpm、850rpm和800rpm进行了单闭环与双闭环的对比试验研究,并得到了一些试验结论。除此之外,还进行了750rpm和700rpm的较低怠速目标转速的试验研究。
     所谓的断缸试验,其目的就是为了验证天然气发动机怠速转速闭环控制的效果,通过模拟出发动机在怠速工况下火花塞的故障情况,切断发动机连接一缸火花塞的高压线,从而研究怠速闭环控制的可靠性。
     所谓的过渡工况试验,其目的就是要控制天然气发动机在不同的怠速转速之间过渡的平顺性试验。由于怠速目标转速设定与发动机的冷却水温度有着较大的联系,随着冷却水温度的逐渐升高,怠速目标转速应逐渐降低。为了使不同的目标转速之间的怠速转速过渡较为平稳,进行了天然气发动机过渡工况试验研究。
As world energy crisis is more and more serious and environmental protection is widely concerned, recently natural gas as a new alternative fuel has been attentive and supported.
     In this paper a simulating device producing engine signals is developed independently. It can simulate engine sensor signals. The value of Signals can be shown in the nixietube. There are some advantages such as friendly man-machine interface,simple operation and so on. All kinds of engine sensor signals used for ECU debugging can be provided by a simulating device. Internal relationship of sensors during different engine conditions can be reflected. A good sensor simulation conditions is provided for dynamic software debugging of ECU. The results show that all kinds of combined analog signals can be produced flexibly by the simulating device. The simulating device can play an excellent auxiliary role in ECU software logical debugging and fault test.
     In this paper a set of engine speed acquisition system developed independently is introduced. Engine speed signal can be real-time acquired accurately. Engine speed data can be saved in the Excel file in order to analyse them conveniently. The engine speed acquisition system can play an excellent auxiliary role in engine experiments. And it is a set of simple and convenient testing tool in engine bench test.
     In addition, in this paper multi-chip ECU control system developed independently for vehicle-used natural gas engine is applied. Control strategy is designed independently. Program is developed by C language. Refitting JL465Q5 engine is applied as the test bench. A lot of experiment study has been done. For example, cold starting experiment, idle speed closed-loop control experiment, cylinder disconnection experiment and transient condition experiment and so on.
     When cold starting experiment is done, some parameters can be controlled through experimental monitoring system in order to do some comparative experimental study with different values, for example injection pulse width of natural gas, ignition advance angle, and bypass air valve opening and so on. Some influencing factors to starting process of natural gas engine are discussed, for example, residual gas in cylinder, cold water temperature, ignition energy multi-time ignition and so on.
     When idle speed closed-control experiment is done, two control strategies are applied, they are idle speed control with single closed loop and idle speed control with double closed loop. Single closed loop is to control idle speed through bypass air intake quantity with PID algorithm. And injection pulse width of natural gas and ignition advance angle keep invariant. In the experiment goal speed is set as follow, 1600rpm, 1200rpm and 850rpm. From the experiment results the author analyses different parameters to idle condition influence of natural gas engine. The parameters are as follow, Air_Kp, Air_Ki, injection pulse width of natural gas and ignition advance angle. Double closed loop is derived from single closed loop. In addition to control bypass air intake quantity with PID algorithm, ECU also control injection pulse width of natural gas with PID algorithm at the same time. They are independent each other and have PID parameters respectively. Comparative experimental study between single closed loop and double closed loop is done when the goal speed is respectively set as follow, 1200rpm, 850rpm and 800rpm. A series of test conclusions are acquired. In addition, lower idle speed experiment is done, such as 750rpm and 700rpm.
     The goal of the cylinder disconnection experiment is to verify the effect of idle speed closed-loop control. Fault condition of spark plug is simulated in order to study the reliability of idle speed closed-loop control through disconnecting the high voltage wire connecting the spark plug in idle condition.
     The goal of the transient condition experiment is to study the ride comfort from one speed to another speed. The goal idle speed is greatly related with cold water temperature of natural gas engine. The goal idle speed should be fallen gradually as cold water temperature is higher. Therefore, the transient condition experiment must be done in order to obtain stability at different speed transition.
引文
1孙济美.天然气和液化石油气汽车[M].北京:北京理工大学出版社,2001.12
    2闰云飞,张力,冉景煌.天然气汽车发动机低NOx燃烧排放技术研究现状[J].天然气工业,2007.27(5):126-128
    3王绍銧,夏群生,李建秋.汽车电子学[M].北京:清华大学出版社,2005.8
    4阎光灿.天然气汽车的发展状况分析[J].天然气与石油,2005.12:28~32
    5邹华.电控汽油机控制策略分析与研究.武汉理工大学学位论文,2005.3
    6舒华,姚国平.汽车电子控制技术(汽车运用工程专业用)[M].北京:人民交通出版社,2001.11
    7张红光,盛宏至,潘奎润,张锐.车用柴油/天然气双燃料发动机的开发[J].农业机械学报. 2003.5:8-11
    8 Yap, D.,Peucheret, S.M,Wyszynski, M.L.,Xu, H. Natural gas HCCI engine operation with exhaust gas fuel reforming. International Journal of Hydrogen Energy[J],2006,31(5):587-595
    9 Bhanduri, K.,Bansal,A.,Shukla A,Khare, M. Performance and emissions of natural gas fueled internal combustion engine. Journal of Scientific and Industrial Research[J],2005,64(5):333-338
    10 McTaggart-Cowan, G.P.,Jones,H.L,Rogak,S.N.,Bushe,W.K,Hill, P.G,Munshi,S.R. The effects of high-pressure injection on a compression-ignition direct injection of natural gas engine[J]. Journal of Engineering for Gas Turbines and Power,2007,129(2):579-588
    11卓斌,刘启华.车用汽油机燃料喷射与电子控制[M].北京:机械工业出版社, 2001
    12窦慧莉,刘忠长,李骏,李建群,闫涛.电控喷射稀燃天然气发动机的开发[J].内燃机学报,2007,25(2):137-143
    13 [英国]汤姆·德恩顿著,鲁植雄、薛金林、张大成等译.汽车电气与电子系统(第二版)[M].江苏科学技术出版社,2005.1
    14周龙保.内燃机学(第二版)[M].北京:机械工业出版社,2005.1
    15于秀敏,唐睿,杨世春,刘乐.汽油机与LPG发动机冷起动特性试验[J].农业机械学报. 2007.4:4-7
    16高原. JettaCNG发动机冷起动控制策略的研究.吉林大学硕士论文. 2006.4
    17苏岩,刘忠长,许允,王永军,杜宝程.冷却液温度对柴油机起动首循环燃烧的影响[J].内燃机学报,2007,25(3):202-207
    18栗工,李理光,邱冬平,刘志敏.冷起动首循环瞬态HC排放特性试验研究[J].内燃机学报,2007,25(2):118-124
    19王振锁,李理光,宫长明等.基于循环控制的LPG电喷发动机冷起动初探[J].内燃机学报,2004,22(4):337-343
    20徐琳.汽油机电控系统冷起动控制策略及标定.武汉理工大学学位论文,2006.11
    21 Hrovat D,et al.Models and Control Methodologies for IC Engine Idle Speed Control Design[J], Control Eng.Practice,1997.5(8)
    22蔡昌贵,黄韶炯.基于PID的汽油机怠速控制策略[J].农机化研究. 2006.9:144-146
    23袁银南,朱磊,张彤,陈笃红.小排量汽油机电控管理系统怠速稳定性研究[J].车用发动机. 2007.6:64-67
    24马凡华,汪俊君,程伟,王宇,吴晓,赵淑莉.不同掺氢比的HCNG燃料对天然气发动机怠速性能影响研究[J].内燃机学报,2008,26(4):296-301
    25李鹏威,王京,蔡文远,李忠志,徐晓洁.天然气发动机怠速控制策略的研究[J].内燃机学报,2008,26(5):440-445
    26李云清,庞勋.发动机怠速控制的研究[J].现代车用动力,2006(4): 13-15
    27程庆,黄河,吴平友.发动机怠速智能控制系统的研究[J].传动技术,2003(12): 31-3 3
    28 Beck N J,George A F,vander lee B,Electronic Directly Injected Natural Gas Fueling of Diesel Engines.SAE.961671,1999: 56~58
    29 OLSSON K,JOIIANSSON B. Combustion Chambers for Natural Gas SI Engines Part2: Combustion and E-missions[C]. SAE Paper 950517
    30王海江,陈瑾,徐卫忠,金锋,张荣山.车用气体燃料发动机怠速控制优化研究[J].柴油机·Diesel Engine,2004(6):19-22
    31 UmierskiM,Korfer T H,Stommel P. Low Emission and Fuel Consumption Natural Gas Engines with High Power Density for Stationary and Heavy-Duty Application[C]. SAE Paper1999-01-2896,1999.
    32黄佐华,苗海燕,周龙保,等.火花点火发动机燃用含氧燃料的冷起动和怠速时未燃碳氢排放影响的实验研究[J].小型内燃机,1998,27(5):1-4
    33黄佐华,庞俊国,潘克煜,等.冷起动和怠速时火花点燃式发动机缸内未燃碳氢生成过程的研究[J].燃烧科学与技术,1997,3(4):406-411
    34李国岫,姚宝峰.天然气发动机稀燃工况燃烧循环变动特性研究[J].车用发动机,2007,168(2):26-29
    35陶云飞.基于电子控制节气门的怠速控制策略仿真研究.吉林大学硕士学位论文. 2006.5
    36张振东,陈万忠,等.汽油机怠速转速闭环控制系统的研究[J].农业机械学报,2000,31(1):12-14
    37王宇明,张付军,刘波澜,黄英,王永庭.便携式发动机工况信号模拟器的设计与开发[J].内燃机工程. 2006.12:63-67
    38马潮,詹卫前,耿德根. ATmega8原理及应用手册[M].北京:清华大学出版社,2003.3
    39马潮.高档8位单片机ATmega128原理与开发应用指南(上)[M].北京:北京航天航空大学出版社,2004.12
    40吴双力,崔剑,王伯岭. AVR-GCC与AVR单片机C语言开发[M].北京:北京航天航空大学出版社,2004.8
    41金春林,邱慧芳,张皆喜. AVR系列单片机C语言编程与应用实例[M].北京:清华大学出版社,2003
    42谭浩强. C程序设计(第二版)[M].北京:清华大学出版社,1999.12
    43周润景,张丽娜.基于PROTEUS的电路及单片机系统设计与仿真[J].北京:北京航空航天出版社,2006
    44王春发,刘兴华,张幽彤,等.天然气发动机电控系统转速采集的研究[J].车用发动机. 2000.12:25-27
    45汪云.发动机转速测试系统中转速采集的研究[J].小型内燃机与摩托车. 2004.2:15-17
    46郑国勇,张红光,刘凯,郑轶,王道静,宫卫东,吴迪.车用CNG发动机监控系统的开发[J].小型内燃机与摩托车. 2008.3:1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700