用户名: 密码: 验证码:
海岛棉抗病相关ERF转录因子的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是我国最重要的经济作物之一,但黄萎病对棉花种植的影响非常严重,使棉花的产量和品质受到了巨大破坏;为解决这个问题,人们尝试利用分子生物学的手段来提高棉花自身的抗病性。
     近年来,ERF(ethylene-responsive element binding factor)类转录因子已成为植物抗逆机制和植物分子改良研究中的热点。ERFs参与了植物对生物和非生物胁迫的应答反应,在乙烯等信号转导途径中发挥了关键的调控作用。研究表明,ERFs可与GCC-box等顺式作用元件发生互作从而激活病程相关蛋白基因的表达,这对提高植物抗病能力具有重要意义。因此,ERF类转录因子可应用于农作物对生物和非生物胁迫抗(耐)性的改良。
     为了获得新的棉花抗病相关基因并阐明其功能,本研究克隆得到了2个海岛棉ERF转录因子基因,对其分子生物学特性进行了分析,并将基因转化植物后对其抗病相关功能进行了研究,已取得的成果如下:
     1.目的基因的克隆与拷贝数分析:
     以海岛棉(新海20)为材料,共克隆得到2个ERF族转录因子基因:EREB1和EREB2,序列特征分析发现这两个基因属ERF亚族转录因子,是海岛棉ERF中的新成员;Southern Blot分析表明,这两个基因在基因组中为低拷贝基因。
     2.基因表达特性分析:
     RT-PCR分析结果表明EREB1基因和EREB2基因在各组织中都表达,而转录水平受棉花黄萎病菌的诱导,当棉花受到黄萎病菌的侵染后,其表达量明显提高,特别是在棉花的根部和茎部,由此可推测海岛棉ERF转录因子基因EREB1和EREB2很可能在棉花生物胁迫信号转导途径中发挥重要作用。
     3.结合特异性分析:
     对EREB1和EREB2的ERF域蛋白进行体外结合特异性分析,凝胶阻滞结果表明:海岛棉EREB1/2中的ERF域在体外能与ERF顺式元件(GCC-box)发生特异性结合,这说明海岛棉EREB1和EREB2具有典型的ERF转录因子功能特性。
     4.基因功能分析:
     通过农杆菌介导等方法分别将EREB1和EREB2转入烟草和棉花中进行超表达。相关基因表达检测结果表明:在转基因烟草中,海岛棉ERF转录因子可以增强烟草PR基因的表达;在转基因棉花中,可以增强几丁质酶基因、β-1,3-葡聚糖酶基因和PR基因等棉花抗病相关基因的表达。由此推测,将海岛棉ERF基因转入棉花超表达后能够高效激活下游抗病相关基因的表达。通过对已得到的转基因棉花部分幼苗进行黄萎病菌侵染后发现:T0代转EREB1基因棉花幼苗的耐病能力高于对照。
     通过上述研究可知:海岛棉ERF族基因的新成员EREB1/2在调控抗病相关基因表达方面具有重要作用,EREB1/2在转基因烟草和棉花中超表达后可有效增强植株体内抗病相关基因的表达,从而提高了转基因植株的抗病能力。
     本研究是首次将ERF转录因子基因转入棉花中进行相关功能验证的工作,并将继续深入研究和鉴定ERF基因超表达后对提高棉花抗病能力的改良作用,从而为棉花抗病性分子改良提供备选基因,为培育出棉花抗病新品种提供一定的理论基础。
Cotton is one of the most important economic crops in China. However, the yield and quality of cotton have been seriously influenced by the Verticillium wilt. Molecular biology has been employed to make cotton more resistant to this disease.
     Recent years, the ERFs (ethylene-responsive ERF factors) have been a hot pot in molecular mechanism of plant stress-tolerance and stress-tolerance breeding. The ERFs are involved in the responses to biotic and abiotic stresses, and play vital roles in stress signal transduction pathways. Many studies have showed that the ERFs can activate pathogenesis-related (PR) genes by binding the GCC-box cis-element in the pathogenesis-related (PR) genes’promoter. This function is important to enhance plant resistance to pathogen. Therefore, the ERFs could be used to enhance the tolerance to biotic and abiotic stresses in crops.
     The aim of this study was to isolate and investigate new transcription factor genes related to stress tolerance, and then two ERF genes of Gossypium barbadense L had been isolated and charactered, and then dozens of transgenic plantlets had been obtained in this research.
     The following results were achieved through this study:
     1. Isolatlon of the ERF genes:
     In this study, two pathogen-inducible ERF (ethylene-responsive factor) genes in cotton (Gossypium barbadense L.) EREB1and EREB2, had been isolated and characterized. Analysis on the homology of amino acid sequences and the structure features of the 2 genes showed that EREB1 and EREB2 are different and new genes belong to the ERF subfamily. Southern blot results showed that EREB1 and EREB2 might be single copy genes in cotton genomic DNA.
     2. Analysis of the genes’s expression pattern:
     The results of RT-PCR showed that the transcription of the EREB1 and EREB2 genes express in many organs and tissues, and were strongly induced by Verticillium wilt, especially in roots and stem of cotton. It was deduced that the transcription of EREB1 and EREB2 genes might play important roles in signal transduction pathways responded to the pathogen infection.
     3. Analysis of DNA-binding specificity:
     Electrophoretic mobility shift assays (EMSA) revealed that the ERF domain in EREB1 and EREB2 proteins could specifically bind to GCC-box cis-element, the result and these analysis further confirmed the DNA-binding specificity in vivo.
     4. Analysis of gene function:
     EREB1 and EREB2 were respectively transformed into Nicotiana babacum and Gossypium hirsutum L by Agrobacterium infiltration method, etc. Analysis of the genes’s expression showed that the overexpression of EREB1 and EREB2 could enhance the PR genes in transgenic Nicotiana babacum.The overexpression of EREB1, and EREB2 can enhance resistance-related genes such as Chitinase ,β-1, 3-glucanase and PR genes in Gossypium hirsutum L.These results showed that overexpressing EREB1 and EREB2 genes could enhance the expression of downstream disease resistance related genes, the transgenic cotton were more resistant to pathogen compared with CK after infected by Verticillium wilt.
     In summary, these two novel ERF transcription factors genes from Gossypium barbadense L had the typical function of ERF. The EREB1/2 could activate the expression of pathogenesis-related genes, and then enhanced the pathogen resistance in the plantlets of transgenic tobacco and cotton. This research was the pilot work about the ERF genes in cotton(Gossypium hirsutum L), and further in-depth study was going on to test the overexpression of these two genes may enhance the resistance to pathogen, find more potential PR genes and lay the foundation for cultivating new pathogen resistant cotton lines through molecular breeding.
引文
[1]陈捷胤.棉花重要抗黄萎病相关基因的表达特性分析及GhPR10功能初步研究[硕士学位论文].2007.
    [2]陈振声.棉花品种资源抗黄萎病田间鉴定.棉花学报, 1980, 3:25~27.
    [3]窦道龙.棉花抗黄萎病基因工程研究和防卫反应相关基因的克隆[博士学位论文]. 2002.
    [4]杜威世,杜雄明,马峙英.棉花黄萎病抗性遗传和分子生物学研究进展.棉花学报,2002.
    [5]贾士荣,郭三堆,安道昌.转基因棉花,北京:科学出版社,2001.
    [6]李成伟,李付广等.棉花黄萎病及抗病育种研究进展.棉花学报,2008,20(5):385~390.
    [7]李付广.双价转基因抗虫棉的获得及其抗虫性与生理生化特性[博士学位论文].2003.
    [8]李静,韩秀兰,沈法富,刘莲.提高棉花花粉管通道技术转化率的研究.棉花学报,2005,17(2):67~71.
    [9]李文正,黄荣峰等.ERF转录因子及其在烟草抗逆性改良中的应用,生物技术通报,2006,(4):30-34.
    [10]李颖章.苹果抗火疫病和棉花抗黄萎病菌毒素的生理机制研究[博士学位论文].2000.
    [11]刘传亮,武芝霞,张朝军等.农杆菌介导棉花大规模高效转化体系的研究.西北植物学报,2004,(5):76-82.
    [12]刘传亮,于娅,王玉芬等.棉花基因枪茎尖转化研究.棉花学报,2003 ,15(4):243~247.
    [13]刘方,王坤波,宋国立.中国棉花转基因研究与应用.棉花学报,2002,14(4):249~253.
    [14]刘康,孙敬,张天真等.内源及外源植物激素对陆地棉无絮突变体胚珠纤维初始发育诱导效应的研究.棉花学报,1999,11(1):48256.
    [15]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报,2000,45(14):1465~1474.
    [16]吕素莲,尹小燕,张可炜等.农杆菌介导的棉花茎尖遗传转化及转betA植株的产生.高技术通讯,2004, 14(11):20~25.
    [17]潘家驹,张天真,蒯本科等.棉花黄萎病抗性遗传研究.南京农业大学学报,1994,17(3):8~18.
    [18]沈其益.棉花病害的基础研究与防治.北京:科学出版社,1992.
    [19]王高鸿,黄久常等.乙烯利诱导玉米根皮层通气组织的形成与程序化细胞死亡的关系.华中师范大学学报,2000,34(4):463~467.
    [20]王莉梅,石磊岩.北方棉花黄萎病落叶型菌系鉴定.植物病理学报,1999,29:181~189.
    [21]王志兴.转基因抗病棉花和抗虫马铃薯株系的培育.中国科学院植物研究所博士后研究工作报告, 2000.
    [22]翁宇,戴小枫.农作物乙烯合成和信号转导途径及其对抗病反应的调控.分子植物育种,2008,6(4):739~748.
    [23]吴家和,张献龙,罗晓丽,聂以春,田颖川,陈正华.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性.遗传学报,2004,31(2):183~188.
    [24]徐兆师,小麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定[博士学位论文].2005.
    [25]于娅,刘传亮,马峙英等.基因枪转化技术在棉花遗传转化上的应用.棉花学报,2003,15(4):243~247.
    [26]张天真,周兆华,阎留芳等.棉花对黄萎病的抗性遗传模式及抗(耐)病品种的选育技术.作物学报2000 26(4):431~437.
    [27]章元寿,王建新等.用棉花黄萎病菌毒素检测棉花抗病性的研究,植物保护,1991,(4):2~4.
    [28]朱美君,王学臣,陈珈.植物的编程性细胞死亡.植物生理学通讯,1999,35(8):353~358.
    [29] Abeles F.B, Morgan P.W, SaltveitJ.M.E. Ethylene in Plant Biology. 1992, 2nd edition (San Diego: Academic Press).
    [30] Agarwal M, Hao Y. Kapoor Aet al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired f reezing tolerance. J Biol Chem 2006,281(49):37636~37645.
    [31] Allen M.D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by aβ-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal 1998, 17: 5484~5496.
    [32] Bai1lieul F, Genetet l,Kopp M et al. A new elicitor of the hypersensitive response in tobacco: a fungal glycoprotein elicits cell death,expression of defence genes,production of salicylic acid,and induction of systemic acquired resistance.Plant J 1995,8(4):551~60.
    [33] Bailey D, O’Hare P. Transmembrane bZIP transcription factors in ER stress signaling and t he unfolded protein response. Antioxid Redox Signal 2007, 9 (12):2305~2322.
    [34] Benharmou N,Broglie K,Chetl,Broglie R. Cytology of infection of 35S-Bean chitinase transgenic Canola plant by Rhizoetonia Solani-Cytochemical aspects of chitin breakdown in vivo.Plant Journal 1993,4(2):295~305.
    [35] Bent A.F, Yu I.C. Applications of molecular biology to plant disease and insect resistance. Advances in Agronom 1999, 66:251~298.
    [36] Berrocal-Lobo M., Molina A, Solano R. Constitutive expression of ETHYLENE RESPON SEFACTOR1 in Arabidopsis confers resistance to severalnecrotrophic fungi. The Plant Journal 2002, 29(1): 23~32.
    [37] Bobb A J, Eiben H G, and Bustos M M, PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J, 1995, 8:331~343.
    [38] Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J. Cell. Biochem., 1994.55:32~58.
    [39] Brisson L.F.Tenhken R., Lamb C.1. Fuction of oxidative cross-linking of cell wall structural proteins in plant disease resistance1. Plant Cell 1994, 6: 1703~1712.
    [40] Brown R.L, Kazan K, McGrath K.C,Maclean D.J.,Manners J.M,A role for the GCC-box in jasmonate-mediated activation of the PDFL1 gene ofArabidopsis. Plant Physiol 2003.132: 1020-1032.
    [41] Brune B, Von Knethen A, Sandau K.B. Nitric oxide(NO):an effector of apoptosis. Cell Death Differ 1999, 6(10):969~975.
    [42] Buttner M.,Singh K.B, Arabidopsis thaliana ethyLene-responsive element binding protein(AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA 1997, 94(11):5961~5966.
    [43] Cao Z F, Chen F, Li J. TINY, a DREB-Like Transcription Factor Binding to DRE Element.Tsighua Science and Technology, 2001, 6(5):432~437.
    [44] Chakravarthy S, Tuori RP,D'Ascenzo MD.,et al., The tomato factor Pti4 regulates defense-related genes expression via GCC box and non-GCC box cis elements. Plant Cell. 200315: 3033-3050.
    [45] Chao Q,Rothenberg M,Solano R,Roman G,Terzaghi W Ecker J.R. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 1997, 89:1133~1144.
    [46] Chen W, Provart N.J,Glazebrook.J, Katagiri F, Wang X,Zhu T et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 2002,14:559~574.
    [47] Cheong Y.H,Kim K.N,Pandey G.K,Gupta R,Grant J.J,Luan S,CBL1 a calcium sensor that differentially regulates salt drought and cold responses in Arabidopsis.Plant Cell 2003.15: 1833-1845.
    [48] Clarke J.D, Volko S.M., Ledford H et al. Roles of salicylic acid,jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell, 2000,12(11):2175~2190.
    [49] Daayf M, Nicole B, Boher A, Pando and J.P. Geiger Early vascular defense reactions of cotton roots infected with a defoliating mutant strain of Verticillium dahliae .European Journal of Plant Pathology 1997, 103: 125~136.
    [50] Dai X.Y,Xu Y.Y.,Ma Q.B,et al. Overexpression of an R1R2R3 MYB gene, OsMYB-R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 2007, 143(4):1739~1751.
    [51] Dong H., Delaney T.P.,Bauer D.W.,et al.Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene.Plant J 1999,20(2):207~215.
    [52] Duan H, Li F, Wu X,Ma D,Wang M, Hou Y. Cloning and characterization of two EREBP transcription factors from cotton (Gossypium hirsutum L.).Biochemistry (Moscow) 2006, 71(3): 285~293.
    [53] Dubery I.A, Slater V. Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae, Phytochemistry 1997, 44(8): 1429~1434.
    [54] Dubouzet J.G.,Sakuma.Y, Kasuga M, Dubouzet E.G,Miura S,Seki M, Shinozaki K, Kamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L.,encode transcription activators that function in drought, high saltand cold-responsive gene expression , The Plant Journal 2003.33 (4): 751~ 763.
    [55] Edwards K, John D.C, Thompson C. A simple and rapid method for the preparation of plan tgenomic DNA for PCR analysis. Nucl Acid Res 1991, 19: 1349.
    [56] Eulgem T, Somssich I .E. Networks of WRKY t ranscription factors in defense signaling. Curr Opin Plant Biol 2007,10 (4):366~371.
    [57] Fits L.v.d, Hilliou F, Memelink J. T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Research 2001, 10(6):513~521.
    [58] Frank F.W, Bing Y, Lowell B.J. Prospects for understanding avirulence gene function, Current Opinionin in Plant Biology 2000, 3:291~298.
    [59] Fujimoto S.Y., Ohta M.,Usui A.,Shinshi H.,Ohme-Takagi M., Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression, Plant Cell 2000,12: 393~404.
    [60] Gagne J.M, Smalle J,Gingerich D.J,Walker J.M,Yoo S.D,Yanagisawa S, Vierstra R.D. Arabidopsis EIN3-binding F-box 1 and 2 formubiquitin-protein ligases that repress ethyleneaction and promote growth by directing EIN3 degradation,Proc.Natl.Acad. Sci., USA 2004, 101(17): 6803~6808.
    [61] Giraudat J, Hauge B M, Valon C, et al. Isolation of the Arabidopsis ABI3 gene by positionalcloning. Plant Cell, 1992, 4: 1251~1261.
    [62] Goff S.A, Cone K.C, Chandler V L. Functional analysis of the transcriptional activator encoded by the maize B gene:evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev, 1992, 6(5): 864~875.
    [63] Grenier J, Potvin C, Asselin A, Barley. Pathogenesis-related proteins with fungal cell wall lytic activity inhibit thegrowth of yeasts. Plant Physiol 1993, 103:1277~1283.
    [64] Gu Y.Q,Wildermuth M.C,Chakravarthy S,Loh Y.T,Yang C,He X,Han Y,Martin G.B. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 2002, 14(4): 817~ 831.
    [65] Gu Y.Q,Yang C, Thara V.K,Zhou J, Martin CxB. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 2000.12: 771-785.
    [66] Guedes M.E.M,Kuc J,Hammerschmidl R.,et al1. Accumulation of six sesquiterpenoid phytoalexin in tobacco leaves infiltrated with pseudomonas. Lachrymansl Phytochemistry 1982, 21: 2989~2998.
    [67] Guiltinan M J, Miller L. Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol Biol, 1994, 26(4): 1041~1053.
    [68] Guo.H.,Ecker J.R., The ethylene signaling pathway: new insights. Current Opinion in Plant Biology 2004, 7(1): 40~49.
    [69] Hahn M.G., Microbial e1icitors and their receptors in p1ants.Annu Rev Phytopathol 1996, 34:387~412.
    [70] Hall A.E., Findell J.L.,Schaller G.E.,Sisler E.C.,and Bleecker A.B., Ethylene perception by the ERS1 protein in Arabidopsis.Plant Physiol 2000 , 123: 1449~1458.
    [71] Hao.D., Ohme-Takagi M.,SaraiA.,Unique mode of GCC box recognition by the DNA-binding domain of Ethylene- responsive element-binding factor (ERF domain) in plants. J. Biol. Chem. 1998, 273(41): 26857~26861.
    [72] Hao L and Xu X. The Structure and Function of WRKY Superfamily of Plant Transcription Factors. Plant Physiology and Molecular Biology, 2004, 40(2): 260~265.
    [73] Harry B.S., Signal Transduction in Systemic Acquired Resistanee.Plant Cell 2000 12:179~181.
    [74] Heine G.F.,Malik V., Dias A.P , et al . Expression and molecular characterization of ZmMYB2IF35 and related R2R32MYB transcription factors. Mol Biotechnol 2007, 37 (2) :155~164.
    [75] HoneeG.,, Bu1tink J.,Jabs T.,et al. Induction of defense-related responses in Cf9 tomato cells by the AVR9 elicitor peptide of eladosporium fulvum is Developmentally regulated. Plant Physiol 1998,117(3):809~820.
    [76] Huang B.,Jin L.,Liu JY., Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum).J Plant Physiol 2007. [Epub ahead of print]
    [77] Huang B.,Jin L.G.,,and Liu J.Y., Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton.Science in China Series C: Life Sciences 2007, 5 0(1): 7~14.
    [78] Huang B.,Liu J.Y., Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum.Biochim Biophys Acta 2006 Jun, 1759(6):263~269.
    [79] Hunt M.D.,Neuenschwander U.H.,Delaney T.,et al. Recent advances in systemic Acquired resistance research-a review.Gene 1996,179(1):89~95.
    [80] Jach G.,Gorhardt B.,Mundy J.,Logemann J.,Pinsdorf E.,Leah R.,Schell J.,Maas C., Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant 1995, 8:97~109.
    [81] Jaglo K R, Klef S, Amundsen K L, et al. Components of the Arabidopsis C·repeat/dehydration responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127: 910~917.
    [82] James T.T., Dubery I.A., Inhibition of Polygalacturonase from Verticillium dahliae by a Polygalaeturonaseinhibiting protein from cotton. Phytoehemistry 2001, 57:149~156.
    [83] James T.T., et al. Inhibition of Polygalacturonase from Verticillium dahliae by apply galacturonase inhibiting protein from cotton.phytochemistry 2001,57: 149~156.
    [84] Jofuku.K.D., Den.Boer.B.G.,,Van.MontaguM.,and Okamuro J.K., Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell 1994, 6(9): 1211~1225.
    [85] Kagaya Y, Ohm ya K, Hattori T. RAV 1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants.Nucleic Acids Res, 1999, 27 (2):470~478.
    [86] Kasuga M.,Liu Q Miura S. et al. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor Nature biotechnology, 1999, 17:287-291.
    [87] Keen N.T., Plant disease resistance progress in basic understanding and practical application. Advances in Botanical Researeh 1999, 30:292~328.
    [88] Keller H., Pamboukdjian N., Ponchet.M.,et al. Pathogen-induced elicitin production In transgenic tobacco generates a hypersensitive response and nonspecific Disease resistance. Plant Cell 1999,11(2):223~235.
    [89] Kizis D., and Pages M., Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant Journal 2002,30(6): 679~689.
    [90] Kizis D., Lumbreras.V., and Pagès M., Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS letters 2001, 498(2-3):187~189.
    [91] Lauge R., De Wit P.J., Fungal avirulence genes: structure and possible functions.Fungal Genet Biol 1998, 24(3):285~297.
    [92] Lee J.H., Kim D.M.,Lee J.H.,Kim J.,Bang J.W.,Kim W.B.,and Pai H.S., Functional characterization of NtCEF1, An AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta 2005, 222(2): 211~224.
    [93] Lee S. C., Choi H W,Hwang I .S.,et al. Functional roles of the pepper pathogen-induced bZIP transcription factor,CAbZIP1,in enhanced resistance to pathogen infection and environmental stresses .Planta 2006,224(5):1209~1225.
    [94] Li J.,Brader G.,Palva E.T., The WRKY70 transcription factors:a node of convergence for jasmonate-mediated and salicylate-mediatedsignals in plant defense .Plant Cell 2004,16:319~331.
    [95] Li W.Z., Zhang H.W.,Wang J.Y.,and Huang R.F., Ethylene responsive factors and their application in improving tobacco tolerance to biotic and abiotic stresses. Shengwu Jishu Tongbao (Biotechnology Bulletin) 2006,(4):30~34.
    [96] Liansen Liu1, Michael J. White and Thomas H. MacRae Transcription factors and their genes in higher plants Functional domains, evolution and regulation Eur. J. Biochem.1999 262, 247-257
    [97] Liu CJ, Heinstein P, and Chen XY, Expression Pattern of Genes Encoding Farnesyl Diphosphate Synthase and Sesquiterpene Cyclase in Cotton Suspension-Cultured Cells Treated with Fungal Elicitors. MPMI, 1999, 12(12):1095~1104.
    [98] Lorenzo.O., Piqueras R.,Sanchez-Serrano J.J.,and Solano R., ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 2003,15(1):165~178.
    [99] Luo Sai-nan, Yang G S, Shi X H, et al. On the Application of Transcription Factor to Plant Stress Resistance. Journal of Hunan Agricultural University (Natural Sciences), 2005, 31(2): 219~225.
    [100] Martinez C.,Baccou J.C.,Bresson E.,et al,Salicylic Acid Mediated by the Ox1dative Burst Is a Key Molecule in Local and Systemic Responses of Cotton Challenged by an Avirulent Race of Xanthomonas campestris pv malvacearum. Plant Physiol, 2000, 122:757~766.
    [101] MATTEO L,et al.Genes from Mycoparasitic Fungi as a Source for Improving Plant Resistance to Fungal Pathogens .Agricultural Sciences 1998,95(7):7860~7865.
    [102] Melissa K.H., Karin J.L., Bruce R.L.,Identification of disease response genes Expresses in Gossypium hirsutum upon infection with the wilt pathogen V.dahilae. PMB 1999, 40:289~296.
    [103] Menke F.L., Champion.A., Kijne J.W.,and Memelink J., A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2.The EMBO Journal 1999, 18:4455~4463.
    [104] MeyerA., V.Slater,I.A.Dubery. Aphytotoxicprotein-lipopolysaccharide complex produced by Verticillium dehliae.Phytochemistry 1994, 35:1449~1453.
    [105] Midoro-Horiuti T., Brooks E.G., Goldblum R.M .,Pathogenesis-related proteins of plants as allergens Ann Allergy Asthma Immunol 2001Oct,87(4):261~271.
    [106] Mueller W.C., Morgham A.T., Ultrastructure of the vascular responses of cotton to Verticillium dahliae. Canadian Journal of Botany 1993, 71(1):32~36.
    [107] Nakano T., Suzuki K., Fujimura T. and Shinshi T. 2006. Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiology 140(2): 411-432.
    [108] Neumann.M.J, Dobinson KF1 Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliaeL Fungal Genetics & Biology,2003,38 (1):54~63.
    [109] Niderman T.,Genetetl.,Buryere T.,Gees R.,Stintzi A.,Legrand M.,Fritig B.,Mosinger E. Pathogenesis-related PR-1 Proteins are antifungal.Isolation and characterization of three 14-kilodalton proteinsof tomato and of a basic PR-1 of tobacco with inhibitory activity against phytophthora infestans. Plant Physiol 1995, 108:17~27.
    [110] Nielsen K.K., NielsenJ.E.Madrid S.M., Mikkelsen J.D., Charaeterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol 1997, 113:83~91.
    [111] Nishiui T., Suzuki K.,Kitajima S.,Sato H.,and Shinshi H., Wounding activates immediate early transcription of genes for ERFs in tobacco plants. Plant Molecular Biology 2002, 49(5):473~482.
    [112] Novillo F.,Alonso J.M.,Ecker J.R.,Salinas J.,CBF2/DREBIC is a negative regulator of CBF1/DREB 1 B and CBF3/DREB 1 A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 2004.101:3985~3990.
    [113] Ohme-Takagi M.,and Shinshi H., Ethylene inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 1995,7(2):173~182.
    [114] Ohme-Takagi M., Suzuki K.,and Shinshi H., Regulation of ethylene-induced transcription of defense genes. Plant and Cell Physiology 2000, 41(11):1187~1192.
    [115] Ohta M., Ohme-Takagi M., and Shinshi H., Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions.The Plant Journal 2000, 22(1):29~38.
    [116] Okamuro J.K., Caster B., Villarroel R., van Montagu M., and Jofuku K.D., The AP2 domain of APETALA2 definesa large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA. 1997, 94:7076~7081.
    [117] O?ate-Sánchez L., Anderson J.P., Young J., Singh K.B., AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol 2007, 143(1):400~409.
    [118] Park J.M.,Park C.J., Lee S.B., Ham B.K., Shin R., and Peak K.H., Over expression of the tobacco Tsi1 gene encoding anEREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 2001, 13(5):1035~1046.
    [119] Qin F.,Sakuma Y.,Li J.,Liu Q.,Li Y.Q.,Shinozaki K.,Yamaguchi-Shinozaki K., Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.Plant Cell Physiol 2004,45(8):1042~1052.
    [120] Qu Z.L., Wang H.Y., Xia G.X., GhHb1: a nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae1.Biochim Biophys Acta 2005,1730(2):103~113.
    [121] Qu Z.L.,Zhong N.Q.,Wang H.Y.,et al. Expression of the Cotton Non-symbiotic Hemoglobin Gene GhHbd1 Triggers Defense Responses and Increases Disease Tolerance in Arabidopsis1 .Plant Cell Physiol 2006,47(8):1058~1068.
    [122] Reddy A B, Wright R A, Wheeler G E, et al. Nonobstructive gastroparesis in amyloidosis improved with metoclopramide.Arch Intern Med.,1983, 143(2): 247~248.
    [123] Reymond P., Farmer E.E., Jasmonate and salicylate as global signals for defense gene expression,Curr Opin Plant Biol. 1998,1(5):404~411.
    [124] Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome wide comparative analysis among eukaryotes. Science, 2000, 290: 2105~2110.
    [125] Roberto Solano., Stepanova A., Chao Q.,and Rcker J.R., Nuclear events in ethylene signaling: a tran--scriptional cascade mediated by Ethylene-insensitive and ethylene-response-factor,Genes Dev 1998, 12(23):3703~3714.
    [126] Sakuma Y.,Liu Q.,Dubouzet J.G.,,et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs,transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and Biophysical Research Communications 2002, 290:998~1009.
    [127] Sanford J.C. ,Klein T. M.,Wol F.E.D.,et al. Deliver of substance into cells and tissues using aparticle bombardment. Process J Part Sci Technol 1987, 5:27~37.
    [128] Sasaki.K.,Mitsuhara.I.,Seo.S.,Ito.H.,Matsui.H.,Ohashi.Y. Two novel AP2/EREBP domain proteins interact with cis-element VWRE for wound-induced expression of the Tobacco tpoxN1 gene. Plant J 2007, 50(6):1079~1092.
    [129] Schnathorst W.C., Life cycle and epidemiology of Verticillium. Fungal Wilt Diseases of Plants 1981 (Ed. by M. E. Mace, A. A. Bell & C. H. Beckman),page 81~111, Academic Press, New York.
    [130] Sessa G.,,Meller Y.,and Fluhr R. A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-1b gene.Plant Molecular Biology 1995, 28 (1): 145~153.
    [131] Shan D.M., Genetic engineering for fungal and bacterial diseases.Current Opinion in Biotechnology 1997, 8(2): 208~214.
    [132] Shen H.S.,Cao K.M. , Wang X.P., A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis t haliana interferes wit h t he formation of homodimer . Biochem Biophys Res Commun2007,362 (2):425~430.
    [133] Shen H, Wang Z Y. Expressional analysis of an EREBP transcription factor gene OsEBP-89 in rice.Acta Biochim Biophys Sin (Shanghai). 2004, 36(1): 21~26.
    [134] Shen S.,Li Q.,He S.Y.,et al. Conversion of compatible Plant-Pathogen Interactions into incompatible interactions by expression of the Pseudomonas syringae pv.syringae 61 hrmA gene in transgenic tobacco plants.Plant J 2000,23(2):205~213.
    [135] Shin R., Park.J.M.,An J.M.,and Peak K.H., Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens, Mol. Plant. Microbe. Interact 2002, 15(10): 983~989.
    [136] Shinozaki K., Yamaguchi-Shinozaki K.,Seki M., Regulatory network of gene expression in the drought and cold stress responses.Curr Opinion Plant Biol 2003, 6:410~417.
    [137] Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM.,Zhang L,Cheng J, Wei LP, Wang ZY. and Zhu YX. Transcriptome Profiling, Molecular Biological, and Physiological Studies Reveal a Major Role for Ethylene in Cotton Fiber Cell Elongation. Plant Cell 2006.18 (3), 651~664.
    [138] Singh K., Foley R.C.,and O?ate-Sánchez L., Transcription factors in plant defense and stress responses. Curr Opin. Plant Biol. 2002, 5 (5): 430~436.
    [139] Smit F., Dubery I.A.,Cell wall reinforcement in cotton hypocotyls in response to a V.dahliae elicitor. Phytochemistry 1997,44 :811~815.
    [140] Somssich I.E., Schmelzer E., Bollmann J.,Hahlbrock K., Rapid activation by fungal elicitor of genes encoding“pathogenesis-related”proteins in cultured parsley cells. Proc Natl Acad Sci USA 1986, 83(8):2427~2430.
    [141] Song C P, Agarwal M, Ohta M, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional re--pressor in abscisic acid and drought stress responses. Plant Cell, 2005, 17(8):2384~2396.
    [142] Tang M.,Lu S.,Jing Y, Zhou X.,Sun J.,Shen S.,Isolation and identification of a cold-induciblc geneencoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiol Biochem 2005.43:233-239.
    [143] Tang M., Sun J.,Liu Y.,Chen F.,Shen S., Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas.Plant Mol Biol. 2007,63(3):419~428.
    [144] Tang W., Newton R.J,. Li C.,Charles T.M.,Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis.Plant Cell Rep. 2007 ,26(1):115~124.
    [145] Thangavelu,M.,Belostotsky,D.,Bevan,M.W.,Flavell,R.B.,Rogers,H.J.andLonsdale,D.M.,,Partial characteri--zation of the Nicotiana tabacum actin gene family: evidence for pollen-specific expression of one of the gene family members Mol. Gen. Genet. 1993.240 (2), 290-295.
    [146] Thomma BPHJ . Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 1999, 121: 1093~1101.
    [147] Tournier B.,Sanchez-Ballesta MT.,Jones B. Et al. New members of the tomato ERF family showspecific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett,2003,550: 149-154.
    [148] Townsend B.J.,Poole A.,Blake C.J.,Llewellyn D.J., Antisense suppression of a (+)–delta-cadinene synthase gene in cotton p revents the induction of this defense response gene during bacterial blight infection but not its constitutive exp ression1. Plant Physiol1 2005, 138 (1): 516~528.
    [149] Ulker B., Shahid Mukhtar M., Somssich I. E., The WRKY 70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 2007, 226 (1):125~137.
    [150] Umbeck P.,Johnson J.,Barton K.,et al.Genetically transformed cotton (Gossypium hirsutumL.)Plants.Biotech1987, 5:263~266.
    [151] Van Loon L.C., Pierpoint W.S.,and Boller T.,et al. Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter 1994, 12 (3):245~264.
    [152] Van Loon L.C.,Re P.M.,Pietersel C.M.J. Significance of inducible defense-related proteins in infected plants.Annu Rev Phytopathol 2006,44:135~162.
    [153] Van Loon L.C.The Nomenclature of pathogenesis-related proteins . Physiol. Mol. Plant Pathol 1990 , 37 : 229~230.
    [154] VanWees S.C., DeSwart E.A.,Van Pelt J.A.,et al. Enhancement of induced disease Resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 2000, 97(15):8711~8716.
    [155] Washburn K B, Davis E A, Ackerman S. Coactivators and TAFs of transcription activation inwheat. Plant Mol Bio1, 1997, 35(6): l037~1043.
    [156] Weigel D, Alvarez J, Smyth D R, et al. LEAFY controls floral meristem identity in Arabidopsis.Cell, 1992, 69: 843–859.
    [157] Xiong L and Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisie acid inducible mitogen activated protein kinase. Plant Cell, 2003, 15(3):745~759.
    [158] Xu.Z.S.,Xia.L.Q.,Chen.M.,Cheng.X.G.,Zhang.R.Y.,Li.L.C.,Zhao.Y.X.,Lu.Y.,Ni.Z.Y.,Liu.L.,Qiu.Z.G, Ma.Y.Z.,,Isolation and molecular characterization of the Triticum aestivum L.ethylene-responsive factor 1 (TaERF1)that increases multiple stress tolerance. Plant Mol Biol. 2007 [Epub ahead of print].
    [159] Yamanaka,T.,Miyama,M. and Tada,Y. Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening Biosci. Biotechnol. Biochem. 2009;73 (2), 304-310.
    [160] Yamasaki K.,Kigawa T.,Inoue M.,Yamasaki T.,Yabuki T.,Aoki M.,Seki E.,Matsuda T.,Tomo Y.,Terada T.,Shirouzu M.,Tanaka A.,Seki M.,Shinozaki K.,and Yokoyama S., Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insenstive3-like3. J. Mol. Biol.2005, 348: 253~264.
    [161] Yang S.F.,and Hoffman N.E., Ethylene biosynthesis and its regulation in higher-plants. Plant Physiol.Plant Mol. Biol.1984, 35: 155~189.
    [162] Yoh S, Qiang L, Joseph G D, et al. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible GeneExpression. Biochemical and Biophysical Research Communications, 2002, 290: 998~1009.
    [163] Zhang H.,Zhang D.,Chen J.,Yang Y, Huang Z.,Huang D.,Wang X.C.,Huang R.,Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol 2004b.55: 825-834.
    [164] Zhang J.,Mace M.E.,Stipanovic R.D.,et al.Production and fungitoxicity of the terpenoid phytoalexins in cotton inoculated with Fusarium oxysporum f.sp.vasinfectum. Phytopathol.1993,139:247~252.
    [165] Zhang J.Y.,Broeckling C.D.,Sumner L.W.,Wang Z.Y.Heterologous expression of two Medicago truncatula putativeERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol. 2007 Jun;64(3):265~278.
    [166] Zhang S.Z.,Yang B.P.,Feng C.L.,Tang H.L.,Genetic Transformation of Tobacco with the Trehalose Synthase Gene from Grifola frondosa Enhances the Resistance to Drought and Salt in Tobacco. Journal Integrative Plant Biology 2005. 47:579-587.
    [167] Zhang X.,Zhang Z.,Chen J.,Chen Q.,Wang X.,and Huang R.Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta 2005, 222(3): 94~501.
    [168] Zhang Z.,Yao W.,Dong N.,Liang H.,Liu H.,Huang R., A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. J Exp Bot. 2007 58(11):2993-3003.
    [169] Zhang Zhong-lin , Xie Zhen , Zou Xiao-lu , et al . A rice WRKY gene encodes a t ranscriptional repressor of t he gibberellin signaling path-way in aleurone cell. Plant Physiol 2004, 134 :1500~1513.
    [170] Zhong R.Q., Richardson E.A., Ye Z.H., The MYBs transcription Factor is a direct target of SND1 and regulates secondary wall biosynt hesis in Arabidopsis. Plant Cell 2007, 19 (9):2776~2792.
    [171] Zhou J.,Tang X.,and Martin G.B., The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes, The EMBO Journal 1997,16(11): 3207~3218.
    [172] Zhu B, Chen T H H, Li P H. Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol.,1995, 108: 929~937.
    [173] Zuo K.J.,Qin J.,Zhao J.Y., Ling H.,Zhang L.D.,Cao Y.F.,and Tang K.X., Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes.Gene 2007, 391(1-2): 80~90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700