用户名: 密码: 验证码:
咪唑基六氟磷酸盐离子液体的凝胶化及其超分子凝胶性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小分子量化合物凝胶因子可通过分子间氢键、π-π相互作用,以及其它非共价键作用形成超分子聚集体结构进而形成稳定的超分子凝胶。由于其具有介于固、液体之间的特性,被广泛应用在催化、电解质材料等领域。离子液体是由阴离子和阳离子组成的离子化合物,由于其液相温度范围宽、不挥发、高沸点、溶解性好、电导率高且电化学稳定窗口宽等优良性能日益受到广泛关注,尤其是在高效的电解质材料领域具有极大的应用前景。
     本文通过分子设计的方法将酰胺基团、苯环和烷基链引入凝胶因子的分子结构中,合成出三类结构不同的凝胶因子(4,4′-二(n-烷基酰胺基)二苯醚(简称BSDE-n,n为烷基链长,下同);4,4′-二(n-烷基酰胺基)二苯甲烷(简称BSDM-n);2,4-二(n-烷基酰胺基)甲苯(简称BSUT-n)。研究了三类凝胶因子在有机溶剂中凝胶化性能及自组装机理。侧重研究了三类凝胶因子在不同离子液体中的凝胶化,制备了离子液体超分子凝胶。研究了离子液体超分子凝胶的电化学性能和流变学性质。
     本论文包括以下主要内容:
     1、通过分子设计的方法合成的凝胶因子(BSDM-n,BSDE-n,BSUT-n)能在20多种有机溶剂中发生聚集、自组装,进而在这些有机溶剂中形成热可逆的超分子凝胶。分别研究了凝胶因子结构、凝胶因子浓度以及不同溶剂体系对凝胶体系的相转变温度(T_(GS))和最低凝胶化浓度(MGC)的影响。
     2、在三类凝胶因子的作用下,制备了离子液体[bmim]PF_6超分子凝胶。凝胶化性能最好的三种凝胶因子分别为4,4′-二(辛酰胺基)二苯醚(简称BSDE-8),4,4′-二(辛酰胺基)二苯甲烷(简称BSDM-8),2,4-二(辛酰胺基)甲苯(简称BSUT-8)。结果表明,凝胶因子的最低凝胶化浓度按BSDE-8,BSDM-8,BSUT-8的顺序增加。离子液体超分子凝胶相转变温度T_(GS)按BSDE-8,BSDM-8,BSUT-8的顺序减小。采用偏光显微镜研究了凝胶因子在离子液体中的自组装机理,结果表明,凝胶因子首先形成纤维状聚集体并进一步聚集形成球晶状结构。
     3、采用线性电位扫描,循环伏安法和交流阻抗法等电化学测试方法,研究了离子液体超分子凝胶的电化学性能。结果表明,凝胶体系具有较宽的电化学稳定窗口,一般为—2.6V到2.6V。采用BSDE-8制备的离子液体凝胶的电化学窗口为—2.6V到1.6V,这主要是由于BSDE-8分子中醚氧键(—O—)在1.6V处容易被氧化。电导率随温度的变化关系符合阿累尼乌斯方程,且凝胶体系电导率同纯离子液体电导率差别在同一数量级。BSDE-8离子液体超分子凝胶的电导率最高,是因为醚氧键(—O—)与苯环之间的大π键容易导致凝胶因子之间的π-π堆积,增强了凝胶因子之间的作用力,减少了凝胶体系中凝胶因子与离子液体之间的相互作用,使得更多的离子能够参与导电。因此,凝胶因子的结构对离子液体超分子凝胶体系的电化学行为有重要影响。
     4、用ARES流变仪研究了三种离子液体超分子凝胶体系的流变学性质。应变扫描结果表明,当应变振幅为0.4%时,三种离子液体超分子凝胶体系的应变在其线性粘弹区内。频率扫描结果表明,随着剪切速率的增加,凝胶体系的弹性模量(G′)和粘性模量(G″)随之增加,高浓度体系的弹性模量(G′)和粘性模量(G″)分别比低浓度体系的高。凝胶体系的tanδ在整个频率范围内均小于1,凝胶因子浓度较低时,tanδ随频率的增加而减小;浓度较高时tanδ随频率的增加先减小后增大。凝胶体系复合粘度η~*随着凝胶因子浓度的增加在同一剪切频率下也增加,而在同一凝胶因子浓度下凝胶体系复合粘度η~*随剪切频率的增加而减小,呈现剪切变稀性质。温度扫描结果表明,随着温度的增加,离子液体凝胶体系的弹性模量(G′)和粘性模量(G″)均增大,在整个温度范围内G′>G″,凝胶体系表现固态弹性行为。凝胶体系tanδ随温度的增加先升高后减小,在测试范围内tanδ<1。凝胶体系的复合粘度η~*随温度的升高而增加。在相同温度、相同剪切速率及相同凝胶因子浓度的条件下,离子液体超分子凝胶体系的弹性模量G′和复合粘度η~*均按BSDE-8,BSDM-8,BSUT-8的顺序减小。这是因为三种凝胶因子相比,BSDE-8分子间最容易形成π-π堆积,增强了凝胶因子之间的作用力,使形成的凝胶因子聚集体三维网络结构更致密,导致凝胶体系具有更高的复合粘度η~*和弹性模量G′。因此,凝胶因子的结构对离子液体超分子凝胶体系的流变学行为有重要影响。
In recent years, supramolecular gels formed by the self-assembly of gelators throughintermolecular hydrogen bonding,π-πstacking and other non-covalent bond interationswere applied on catalyzer, electrolyte and other fields because of its properties between theliquids and solids. Ionic liquids composed of anions and cations have useful properties suchas extremely low volatility, high thermal stability, wide liquid phase temperature range,nonflammab- ility, high chemical stability, high ionic conductivity, and a wideelectrochemical window. These advantages implied that ionic liquids would play animportant role in such technological applications as electrolyte materials.
     Three kinds of gelators named 4,4'-bis(N'-octanamino)diphenyl ether (BSDE-n)、4,4'-bis (N'-octanamino)diphenyl methane (BSDM-n) and 2,4'-bis(N'-octanureido)toluene(BSUT-n) were synthesized by using functional groups such as amide group, benzenegroup and alkyl chains in molecular designing way. The gelation abilities of supramoleculargels could be obtained by controlling the length of alkyl chains, and then the mechanism ofself-assembly and gelation abilities in organic solvents were investigated. Gelators weretried to gel ionic liquids, and then ionic liquids supramolecular gels were formed. Threekinds of gelators named 4,4'-bis(octanamino)diphenyl ether (BSDE-8). 4,4'-bis(octanamino)diphenyl methane (BSDM-8) and 2,4'-bis(octanureido)toluene (BSUT-8) andthe ionic liquid [bmim]PF_6 were chosen as they formed the better ionic liquidsupramolecular gels. The electrochemical properties and rheological behavior of gels wereinvestigated by using those ionic liquids supramolecular gels.
     This paper is consisted of several sections as the following:
     1. Three kinds of gelators named 4,4'-bis(N'-octanamino)diphenyl ether (BSDE-n)、4,4'-bis (N'-octanamino)diphenyl methane (BSDM-n) and 2,4'-bis(N'-octanureido)toluene(BSUT-n) which were synthesized by using functional groups such as amide group、benzene group and alkyl chains by molecular designing could be self-assemblied in morethan 20 kinds of organic solvents.The influrence of gelator types, different gelatorconcentrations, different solvents to gel-sol phase dissociation temperature(T_(GS)) and minimum gelation concentrations were discussed. The morphology and structures ofsupramolecular gels in organic solvents were characterized by POM and FE-SEM.
     2. Ionic iquids supramolecular gels were formed by using three kinds of gelators and theionic liquid [bmim]PF_6. The gelation abilities of ionic iquids supramolecular gels werediscussed. Three kinds of gelators named 4,4'-bis(octanamino)diphenyl ether (BSDE-8)、4,4'-bis(octanamino)diphenyl methane (BSDM-8) and 2,4'-bis(octanureido)toluene (BSUT-8)had the best gelation abilities. The results showed that the mean minimum gelconcentrations (MGC) rose up as follows: BSDE-8, BSDM-8 and BSUT-8. The T_(GS) felldown as follows: BSDE-8, BSDM-8 and BSUT-8. The polarized optical microscopy imageof [bmim]PF_6 gels revealed the formation of spherical crystallites resulting from thefibrillar aggregates of the gelators.
     3. Linera sweep、cyclic voltammograms and impedance spectra were used to get theelectrochemical abilities of the three ionic liquids supramolecular gels. The gels hadelectrochemical stability and a wide electrochemical window. The cyclic voltammogramsof the [bmim]PF_6 gels indicate a good electrochemical stability over the range from -2.6 to2.6 V. The impedance spectra of the [bmim]PF_6 gels show good linear relationshipsbetween ion conductivity and temperature, indicating that the temperature dependence ofthe conductivity follows the classical Arrhenius equation. [bmim]PF_6 gels formed byBSDE-8 limited oxidation currents were detected in particular when potentials larger than1.5 V were applied. These oxidation currents can be ascribed to the ether group (-O-) inthe molecular structure of BSDE-8, which is easily oxidated in case of high potentials. Theion conductivities of the [bmim]PF_6 gels were found to be similar to those of the pure[bmim]PF_6, indicating that the supramolecular structures in the [bmim]PF_6 gels haveapparently no effect on the mobility of the ions. The proposed ionic liquid gels possess apotential to provide solid-like materials for the applications of electrolytes.
     4. The macroproperties of the three ionic liquids supramolecular gels with differentconcentrations were characterized by rheological measurements of the scillatory shear. Allthe gel samples showed similar rheological behavior. Over the range from 0.1 to 10 Hz,both the storage modulus (G′) and loss modulus (G″) were nearly frequency-independent,and G′was higher than G″. The complex viscosityη~* were decrease when the frequency increased. These results indicated that the gels were highly viscoelastic. The storagemodulus G′characterized the strength of gels, which estimated the degree of resistanceagainst mechanical stress.The tanδwere less than 1 in the whole sweep rangs, tanδdecreased first and then increased when the frequence increased. The storage modulus (G′)and loss modulus (G″) showed the same changes when the temperature increased. Thecomplex viscosityη~* were increased when the temperature increased. The tanδwere lessthan 1 in the whole temperature rangs, tanδincreased first and then decreased when thetemperature increased. With an increase of the gelators concentrations from lower to higher,the G′increased gradually, implying that three-dimensional networks became much denserwith an increase of the gelator concentrations, so both the stability and strength of the ionicliquid gel networks increased. The structures of gelators had an important effect on therheology abilities.
引文
[1] Hermans P H, Kruyt H R edit. Colloid Science, Volume Ⅱ. Elsevier Publishing Company, Inc., 1949, 483-651.
    [2] Kavanagh G M, Ross-Murphy S B, Rheological characterisation of polymer gels. Prog. Poly. Sci, 1995, 23: 533-562.
    [3] 顾雪蓉,朱育平.凝胶化学,北京:化学工业出版社,2005,1-24.
    [4] Murai S., Mikoshiba S., Hiroyasu S., et al. Quasi-solid dye-sensitized solar cells containing chemically cross-linked gel How to make gels with a small amount of gelator. Langmuir. 2002, 14: 33-39.
    [5] Watanabe Y., Miyasou T., Hayashi M. Diastereomixture and Racemate of myo Inositol Derivatives, Stronger Organogelators than the Corresponding Homochiral Isomers. Org. Lett. 2004, A-D.
    [6] Hanabusa K., Hiratsnka K., Kimura M., et al; Easy Preparation and Useful Character of Organogel Electrolytes Based on Low Molecular Weight Gelator. Chem. Mater, 1999, 11(3): 649-655.
    [7] 何曼君,陈维孝,董西侠.高分子物理.第一版,上海:复旦大学出版社,1990.
    [8] Flory, P. J. Constitution of Three-dimensional Polymers and the Theory of Gelation. J. Phys. Chem. 1942, 46: 132-140.
    [9] Terech P., Weiss R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem. Rev. 1997, 97: 3133-3159.
    [10] Gu W Q, Lu L D, Weiss R G; et al; Polymerized gels and "reverse aerogels" from methyl methacrylate or styrene and tetraoctadecylammonium bromide as gelator. Chem. Commun, 1997, 6: 543-544.
    [11] 杨亚江,崔文瑾.能使有机溶剂凝胶化的凝胶因子研究进展.有机化学,2001,21(9):632-639.
    [12] Li Y, Liu K, Liu J, Fang Y, et al. Amino Acid Derivatives of Cholesterol as "Latent" Organogelators with Hydrogen Chloride as a Protonation Reagent. Langmuir, 2006, 22, 7016-7020.
    [13] Terech P, Friol S. Rheometry of an androstanol steroid derivative paramagnetic organogel. Methodology for a comparison with a fatty acid organogel. Tetrahedron, 2007, 63: 7366-7374.
    [14] Boner, C. J. Manufacture and Application of Lubricating Greases. New York: Reinhold Publishing Corp., 1960.
    [15] Van E J, Kellogg R M, Feringa B L. Di-urea Compounds as Gelators for Organic Solvents. Tetradron Lett, 1997, 38: 281-284.
    [16] Brotin T, Utermohlen, R, Fages F, et al. A Novel Small Molecular Luminescent Gelling Agent for Alcohols. Chem Commun, 1991, 6: 416-418.
    [17] Desvergne J P, Fages F, Marsua P. Tunable Photoresponsive Supramolecular Systems. Phys. Chem. Chem. Phys, 1992, 9: 1231-1238.
    [18] Klyne, W. The Chemistry of Steroids. New York: Willey, 1996.
    [19] Abdallah D J, Weiss R G. The Quest for the Simplest Possible Organogelators and Some Properties of their Organogels. J. Bra. Chem. Soc, 2000, 11: 209-218.
    [20] Lin Y C, Weiss R G. A Novel Gelator of Organic Liquids and the Properties of Its Gels. Macromolecules, 1987, 20: 414-417.
    [21] Kuroiwa K, Shibata T, Kimizuka N,et al. Heat-Set Gel-like Networks of Lipophilic Co(Ⅱ) Triazole Complexes in Organic Media and Their Thermochromic Structural Transtions. J. Am. Chem. Soc, 2004, 126: 2016-2021.
    [22] Rango C, Charpin P, Coleman A W. β-Cyclodextrin/Pyridine gel systems. The Crystal Structure of a First β-Cyclodextrin-Pyridine-Water Compound. J. Am. Chem. Soc, 1992, 114: 5475-5476.
    [23] Inoue K, Hanabusa K, Shinkai S. Preparation of New Robust Organic Gels by in situ Cross-link of a Bis(diacetylene) Gelator. Chem Lett, 1999, 329: 429-430.
    [24] 付新建.超分子有机凝胶和水凝胶的制备及其性能研究:博士学位论文.武汉市:华中科技大学图书馆,2007.
    [25] Voet D, Voet J G. Biochemistry. 2nd ed, John Wiley& Sons: New York, 1990.
    [26] Wang G, Hamilton A D. Low molecular weight organogelators for water. Chem Commun, 2003, 5, 310-311.
    [27] Shimizu T, Masuda M. Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles. J. Am. Chem. Soc. 1997, 119: 2812-2818.
    [28] Franceschi S, de Viguerie N, Lattes A. Synthesis and aggregation of two-headed surfactants bearing amino acid moieties. New Journal of Chemistry, 1999, 23: 447-452.
    [29] Menger F M, Keiper J S. Gemini Surfactants. Angew. Chem. Int. Ed, 2000, 39: 1906-1920.
    [30] Kobayashi H, Friggeri A, Reinhoudt D N, et al, Molecular design of super'hydrogelators: Understanding the gelation process of azobenzene-based sugar derivatives in water. Org Lett, 2002, 4: 1423-1426.
    [31] Kiyonaka S, Shinkai S, Hamachi I. Combinatorial library of low-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis. Phys. Chem. Chem. Phys, 2003, 9: 976-983.
    [32] 崔文瑾,凝胶因子的合成及其性能的研究,硕士学位论文,武汉市:华中科技大学图书馆,2001.
    [33] 熊芸,二烷基脲型凝胶剂在力场和受限空间下形成的超分子结构研究,博士学位论文,武汉市:华中科技大学图书馆,2008.
    [34] Sangeetha N. M., Maitra U. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 2005, 34: 821-836.
    [35] Gelbart W. M., Ben-Shaul A. The new science of complex fluids. J. Phys. Chem. 1996, 100: 13169-13189.
    [36] Weiss R. G., Terech P., Eds. Molecular Gels. Materials with Self-Assembled Fibrillar Networks. Dordrecht, The Netherlands: Springer, 2005.
    [37] Jeong Y., Hanabusa K., Sakurai K.; et al; Solvent/Gelator Interactions and Supramolecular Structure of Gel Fibers in Cyclic Bis-Urea/Primary Alcohol Organogels. Langmuir. 2005, 21: 586-594.
    [38] Gronwald O., Snip E., Shinkai S. Gelators for Organic Liquids Based on Self-assembly: A New Fact of Supramolecular and Combinatorial Chemistry. Curr. Opin. Colloid Interface Sci. 2002, 7: 148-156.
    [39] Esch J. H., Feringa B. L. New Functional Materials Based on Self-assembling Organogels: From Serendipity towards Design. Angew. Chem. Int. Ed 2000, 39: 2263-2266.
    [40] 王毓江,唐黎明,王琰.基于氢键作用由低分子量凝胶因子形成的超分子水凝胶.高等学校化学学报,2006,27:1587-1589.
    [41] 燕良,唐黎明,王毓江.氢键结合超分子水凝胶的形成与结构调控.高分子学报,2006,(5):736-739.
    [42] Lescanne M., Colin A., Pozzo J.L., et al. Structural Aspects of the Gelation Process Observed with Low Molecular Mass Organo-gelators. Langmuir 2003, 19: 2013-2020.
    [43] Aoki K., Nakagawa M., Ichimura K. Self-Assembly of Amphoteric Azopyridine Carboxylic Acids: Organized Structures and Macroscopic Organized Morphology Influenced by Heat, pH Change, and Light. J. Am. Chem. Soc. 2000, 122: 10997-11004.
    [44] Trivedi D. R., Ballabh A., Dastidar P. An Easy To Prepare Organic Salt as a Low Molecular Mass Organic Gelator Capable of Selective Gelation of Oil from Oil/Water Mixtures. Chem. Mater. 2003, 15: 3971-3973.
    [45] Bhattacharya S., Pal A. Physical Gelation of Binary Mixtures of Hydrocarbons Mediated by n-Lauroyl-L-Alanine and Characterization of Their Thermal and Mechanical Properties. J. Phys. Chem. B. 2008, 112: 4918-4927.
    [46] 孟亚斌,在溶液场中凝胶因子聚集组装的分子凝胶研究:硕士学位论文.武汉市:华中科技大学图书馆,2004.
    [47] Fu X. J., Wang N. X., Yang Y. J. Formation Mechanism of Supramolecular Hydrgels in the Presence of L-phenylalanine Derivative as a Hydrogelator. J. Colloid Interface Sci. 2007, 315: 376-385.
    [48] Hanabusa K., Hiratsuka K., Shirai H. Chem. Mater. 1999, 11: 649-655.
    [49] Ihara H., Sakurai T., Hachisako H ,.et al. Chirality Control of Self-Assembling Organogels from a Lipophilic Z-Glutamide Derivative with Metal Chlorides. Langmuir. 2002, 18: 7120-7123.
    [50] Ohno H. Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, Inc., New Jersey, 2005.
    [51] Wang P, Wenger B, Baker R.H, et al. Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc., 2005, 127(18): 6850-6856.
    [52] Endres F, Abedin S. Z. E. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys., 2006, 8(18): 2101-2116.
    [53] Ritchie A, Howard W. Recent developments and likely advances in lithiumion batteries. J. Power Sources, 2006, 162(2): 809-812.
    [54] Lewanowski A., Stepniak I. Ionic liquids as electrolytes. Electrochim. Acta, 2006, 51(26). 5567-5580.
    [55] MacFarlane D. R., Pringle J. M., Johansson K. M, et al. Lewis base ionic liquids. Chem. Commun., 2006, 8(18): 1905-1917.
    [56] Fernicola A., Scrosati B., Ohno H. Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices.Ionics,2006, 12(2): 95-102.
    [57] Kuang D., Wang P., Ito S., et al. Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. J. Am. Chem. Soc, 2006, 128(24):7732-7733.
    [58] Anderson J. L., Armstrong D. W., Wei G.T. Ionic liquids in analytical chemistry. Anal Chem.2006,78(9): 2893 -2902.
    [59] Stegemann H., Rhode A., Fiillbier H. Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors.Electrochim.Acta, 1992, 37, 379-383.
    [60] Seddon K. R., Ionic Liquids for Clean Technology. J. Chem. Technol. Biotechnol, 1997,68:351-356.
    [61] Thomas W. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis,Chem. Rev., 1999, 99(8): 2071-2083.
    [62] Carpenter M. K., Mark W. V., Electrochemical Codeposition of Gallium and Arsenic from a Room Temperature Chlorogallate Melt., J. Electrochem.Soc., 1990, 137(1):123-129.
    [63] Christopher J.A., Marty J.G., Seddon K R. Friedel-Crafts reactions in room temperature ionic liquids. Chem. Common., 1998, 19(7): 2097-2098.
    [64] George J., Jong H. J., Mitsutoshi M., et al. Unsaturation Effect on Gelation Behavior of Aryl Glycolipids. Langmuir. 2004,20: 2060-2065.
    [65] Deng Y.Q., Beng J., Qiao K., et al. Ionic liquid as a green catalystic reaction medium for esterifications.,J. Mol. Catal. A, Chem., 2001,165(1-2): 33-36.
    [66] Wheeler C, West K.N., Charles E.A., et al. Ionic liquids as catalytic green solvents for nucleophilic displacement reactions, Chem. Commun, 2001, 10: 887-888.
    [67] Gordon M., Holbrey J., Kennedy R., et al. Ionic Liquid Crystals, hexafluoro hosphate Salts, J. Mater. Chem., 1998, 8(7): 2627-2633.
    [68] Earle M.J., Cormac P. B., Seddon K. R. Diels-Alder reactions in ionic liquids, Green Chem.,1999,2(5): 23-25.
    [69] Stark A., MacLean B. L., Singer R. D. Organometallic synthesis in ambient temperature Chloroalminate (Ⅲ)ionic liquids, Ligand exchanging reactions of ferrocene. J.Chem. Soc. Dalton Trans., 1997, 5: 3465-3469.
    [70] Carth D. L., Duane E.B. Electrochemistry of Carbonium Ions in Acidic Media, Triphenylmethyl Ion in Aluminum Chloride Containing Melts. J. Org. Chem., 1982, 47: 1238-1243.
    [71] Teffkey A., BLevisky J., Eloyd P., et al. Friedel-Crafts reactions in ambient temperature molten salts, J. Org. Chem., 1986, 51(4): 481-485.
    [72] Chauvin Y, Mussmann L., Oliver L. A novel class of versatile solutions for two- phase catalysis, hydrogenation, isomerization and hydroformylation of alkenes, catalyzed by rhodium complexs in liquid 1, 3-ialkylimidazolium salts. Chem. Commun., 1995, 34, 2698-2705.
    [73] Sonja H. S., Nicole K., Peter W., et al. Catalysis in ionic liquids, lipase catalysed kinetic resolution of 1-phenyl-ethanol with improved nantio selecitivity. Chem. Comm., 2001, 4, 425-426.
    [74] 余天祥,郑穹,绿色化学中的离子液体,化学通报,2002,c045024.
    [75] Paul J. D., David J. E., Thomas W. A. temperature-controlled reversible ionic liquids-water two phase-singlephase protocols for catalysis. Can. J. Chem. 2001, 79, 705-708.
    [76] Dupont J., Suarez P. A., Umpierre A. P., et al. Pd (Ⅱ)-dissolved in ionic liquids, A recyclable catalytic system for the selective biphasic hydrogenation of dienes to monoenes. J. Braz. Chem. Soc., 2000, 11,293-297.
    [77] Chen W. P., Xu. L. J., Chatterton C. Palladium catalysed allylation reactions in ionic liquids, Chem. Commun., 1999, 13, 1247-1248.
    [78] Chen W. P., Xu L. J., Jiang L. Ligand Effects in Palladium-Catalyzed.Allylic Alkylation in Ionic Liquids. Organometallics, 2001, 20(1): 138-142.
    [79] 彭家建,邓友全,离子液体系中催化环己酮肟重排制己内酰胺,石油化工,2001,30(2):91-92.
    [80] Wasserscheid R, Waffenschmidt H. Ionic liquids in regioselective platinumcatalyzed hydroformylation. J.Mol. Catal.A, Chem., 2000, 164(1-2): 61-67.
    [81] Virginie L. B. Wittig reactions in the ionic solvent [bmim][BF_4] (1-butyl-3-methyl-1-H-imidazolium tetrafluorobrate):Chem. Commun.,2000, 22:2195-2196.
    [82] Howarth J., Dallad M. Moisture stable ambient temperature ionic liquids solvent for the new millennium. Heck reaction, 2000, 5(6): 851-855.
    [83] Handy S. T., Zhang X. L. Organic Synthesis in Ionic Liquids, The Stille Coupling, Org. Lett., 2001, 3(2): 233-236.
    [84] Rosa J. N., Afonso C. A. M., Santos A. G. Ionic liquids as a recyclable mesium for the Baylis-Hillman reaction, Tetrahedron, 2001, 57(19): 4189-4193.
    [85] 李汝雄,王建基,离子液体研究进展(一):离子液体及其在萃取分离中的应用研究进展.化学通报,2002,c045025.
    [86] Visser A. E., Swattoski R. P., Rofers R. D., et al. Traditional extractants in nontraditional solvent, Group 1 and 2 Extraction by crown ethers in room temperature ionic liquids, Ind.Eng. Chem.Res.,2000, 39(10): 3596-3640.
    [87] Earle M. J., Esperanca J. S., Gilea M. A. The Distillation and Volatility of Ionic Liquids. Nature, 2006,439, 831-834.
    [88] Earle M. J., Mclormzc R. B., Seddon K. R. Diels-Alder reactions in ionic liquids-A safe recyclable lternative to lithium perchlorate-diethyl ether mixtures, Green Chem.,1999,1,: 23-25.
    [89] Koura N., Lizuk K., Idemoto Y, et al. Li and Li-Al negative electrode characteristics for the lithium secondary battery, Denki Kagaku, 1999, 67(6): 706-712.
    [90] Fung Y. S., Zhou R., Spinel LiMn_2O_4 electrode in room temperature molten salt ,Denki Kagaku., 1999, 67(6): 713-716.
    [91] Cuomo J. J., Gambino R. J. The Synthesis and Epitaxial Growth of GaP by Fused Salt Electrolysis, J. Electrochem. Soc, 1968,115(7): 755-759.
    [92] Li Q. F., Hjuler H. A., Bjerrum N. J., et al, Electrochemical Deposition of Aluminum from NaCl-AlCl_3 Melts, J.Electrochem.Soc., 1990,137(2): 593-598.
    [93] Xu X. H., Hussey C. L., Electrodeposition of Silver on Metallic and Nonmetallic Electrodes from Acidic Aluminum Chloride-1-Methyl-3-Ethylimi-dazolium Chloride Molten Salts,J.Electrochem.Soc., 1992,139(5): 1295-1300.
    [94] Xu X. H., Hussey C. L. The Electrochemistry of Tin in the Aluminum Chloride -1- methyl-3-ethylimidazolium Chloride Molten Salt, J. Electrochem. Soc, 1993, 140(3): 618-626.
    [95] Xu X. H., Hussey C. L. The Electrochemistry of Mercury at Glassy Carbon and Tungsten Electrodes in the Aluminum Chloride-1-Methyl-3-Ethyl-imidazolium Chloride Molten Salt, J. Electrochem. Soc., 1993, 140(5): 1226-1233.
    [96] Pitner W. R., Hussey C. L., Stafford G. R. Electrodeposition of Nickel-Aluminum Alloys from the Aluminum Chloride-1-methyl-3-Ethylimidazolium Chloride Room Temperature Molten Salt, J.Electrochem.Soc, 1996, 143(1): 170-175.
    [97] Chen P . Y., Sun W. Electrochemical study of Cd(II)in a basic 1-methyl-3-ethylimi- dazolium chloride/tetrafluoroborate room temperature molten salt, Electrochimica Acta, 2000, 45, 3163-3170.
    [98] Koura N. Electrodeposition of metals and alloys from molten salt Electrolytes. J. Surf. Finish. Soc. Jap, 1995, 46(12): 1088-1095.
    [99] Safford G. R., Jovic V. D., Zhu Q., et al. The electrodeposition of AI-Cu alloys from room-temperature chloroaluminata electrolytes, Extended Abstracts of the 196~(th) Meeting of The Electrochemical Society, Inc. Hawaii, U.S.A., Oct. 17-2,1999. No.2 293.
    [100] Lin M. C, Chen P. Y., Sun W. Electrodeposition of Cu-Zn alloys from a lewis acidic Zinc-MEIC molten salt, Extended Abstracts of the 196~(th) Meeting of The Electro chemical Society, Inc. Hawaii, U.S.A., Oct. 17-2,1999. No.2 290.
    [101] Koura N., Umebayashi T., Idemoto Y., et al. Electrodeposition of Nb-Sn alloy from SnCI_2-NbCI_5-MEIC molten salts, Denki Kagaku, 1999, 67(6):684-689.
    [102] Haarerg G. M., Stafford G. Electrochenical behavior of dissolved niobium, molybdenum and tantalum species in molten chloroaluminates, Extended Abstracts of The 196~(th) Meeting of The Electrochemical Society, Inc. Hawaii, U.S.A.,Oct.l7-22,1999.No.2 295.
    [103] Stewart G., Hussey C. L. Electrodeposition of transition metal-aluminum alloys from molten AICl_3-NaCl. Extended Abstracts of The 193th Meeting of The Electrochemical Society, Inc. San Diego, U.S.A. May 3-8,1998, No.2 285.
    [104]Nakagawa H., Izuchi S., Kuvana K., et al. Liquid and polymer gel electrolytes for lithium batteries composed of room temperature molten salt doped by lithium salts. J Electrochem Soc, 2003, 150(6): A 695-A 700.
    [105] Lewandouski A., Swiderska A. New composite solid electrolytes based on a polymer and ionic liquids. J. Solid State Ionics, 2004, 169: 21-24.
    [106]Washiro S., Yoshizawa M., Nakajima H. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids, J. Polymer,2004,45: 1577-1582.
    [107]Mizumo T., Ohno H. Molten lithium sulfonimide salt having poly(propylene-oxide) tail. J. Polymer, 2004, 45: 861-864.
    [108]Forsyth M., Sun J., MacFarlane D. R. Novel high salt content Polymer electrolytes based on high Tg Polymers. Electrochim. Acta. 2000(45): 1249-1254.
    [109] Shin J. H., Henderson W. A., Passerini S. Ionic liquids to the reseue? Overeoming the ionie Conduetivity limitations of Polymer eleetrolytes. Electrochem. Commun. 2003, 5: 1016-1020.
    [110] Ohno H. Molten salt type Polymer electrolytes. Electrochim.Acta. 2001, 46: 1407-1411.
    [111] Yoshizawa M., Ohno H. Synthesis of molten salt type Polymer brush and effect of brush structure on the ionic conductivity. Electrochim Acta. 2001, 46:1723-1728.
    [112] Susan M. H., Kaneko T., Noda A., et al. Ion Gels Prepared by inSitu Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes, J. Am. Chem. Soc, 2005,127: 4976-4983.
    [113] Kimizuka N., Nakashima T. Spontaneous Self-Assembly of Glycolipid Bilayer Membranes in Sugar-philic Ionic Liquids and Formation of Ionogels, Langmuir, 2001, 17, 6759-6765.
    [114] Kubo W., Kambe S., Yanagida S., et al. Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes, J. Phys. Chem. B. 2003, 107, 4374-4379.
    [115] Hanabusa K., Fukui H., Shirai H., et al. Specialist Gelator for Ionic Liquids, Langmuir, 2005, 21, 10383-10390.
    [116] Yang Y G., Nakazawa M., Hanabusa K., et al. Formation of helical hybrid silica bundles. Chem. Mater, 2001, 13: 3791-3793.
    [117] 孟亚斌,杨亚江.碳酸丙烯酯分子凝胶电解质的电化学行为.分析化学,2004,32:998-1001.
    [118] 孟亚斌,杨亚江.分子凝胶电解质的电导率研究.化学学报,2004,62:1509-1513.
    [119] Guan L., Zhao Y., Self-assembly of a liquid crystalline anisotropic gel.Chem. Mater, 2000, 12: 3667-3673.
    [120] 林丽华,杨亚江,徐辉碧等.十四酸异丙酯分子凝胶及其促进透皮性能研究.药学学报,2005,40:470-475.
    [121] Motulsky A., Lafleur M., Franck B., et al. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implant. Biomaterials, 2005,26: 6242-6252.
    [122] Yamaguchi S., Yoshimura I., Hamachi I., et al. Cooperation between artifical receptors and supramolecular hydrogels for sensing and discriminting phosphate derivative.J.Am.Chem. Soc,2005,127: 11835-11841.
    [123] Jung J H., Ono Y, Shinkai S. Sol-gel polycondensation in a cyclohexane based organogel creation of both right-and left-handed silica structures by helical organogel fibers. Chem. Eur. J, 2000, 6: 4552-4557.
    [124] Kimura M., Kobayashi S., Hamabusa K., et al. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv. Mater, 2004, 16: 335-339.
    [125] Maji S. K., Malik S., Drew G. B., et al. Synthetic tripeptide as a novel organo-gelator: A structural investigation. Tetrahedron Lett, 2003, 44: 4103-4107.
    [126] Jung J. H., Lee S. H., Shin J. Creation of Double silica Nanotubes by using crown-appended cholesterol Nanotubes. Chem. Eur. J, 2003, 9: 5307-5331.
    [127] Koumura N., Kudo M., Tamaoki N. Photocontrolled gel to sol-gel phase transitioning of metal-substituted azobenze bisurethanes through the breaking and reforming of hydrogen bonds. Langmuir, 2004, 20: 9897-9900.
    [128] Gronwald O., Shinkai S. Sugar-integrated gelators of organic solvents. Chem. Eur. J, 2001, 7: 4328-4334.
    [129] Bhuniya S., Park S. M, Kim B. H. Biotin-amino acid conjugates: An approach toward self-assembled hydrogelation. Org. Lett, 2005, 7: 1741- 1744.
    [130] Leo F., Milan J., Mladen Z., et al. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: The photoinduced gelation system. J. Am. Chem. Soc, 2002, 124: 9716-9717.
    [131] Koga T., Taguchi K., Higuchi M. Structural regulation of a peptide-conjugated graft copolymer: A simple model for amyloid formation. Chem. Eur. J, 2003, 9: 1146-1156.
    [132] Carre A., Le Grel P., Baudy-Floch M. Hydrazinoazadipeptides as aromatic solvent gelators. Tetrahedron Lett., 2001, 42: 1887-1889.
    [133] Clavier G., Mistry M., Pozzo J. L. Remarkably Simple Small Organogelators: Di-n-alkoxy-benzene Derivatives. Tetrahedron Lett. 1999,40: 9021-9024.
    [134] Schmidt R., Adam F. B., Mesini P. J. New Bisamides Gelators: Relationship between Chemical Structure and Fiber Morphology. Tetrahedron Lett. 2003,44: 3171- 3174.
    [135] Atkins P. W. Physical Chemistry. 6th ed. Oxford: Oxford University Press, 1998.
    [136] Murata K., Aoki M., Shinkai S., et al. Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation. J. Am. Chem. Soc., 1994,116(15): 6664-6676.
    [137] John G., Jung J. H., Shimizu T., et al. Unsaturation Effect on Gelation Behavior of Aryl Glycolipids. Langmuir, 2004, 20(6): 2060-2065.
    [138]Estroff L. A., Hamilton A. D. Water Gelation by Small Organic Molecules. Chem Rev,2004,104(3): 1201-1217.
    [139] Carlin, R. T.; Fuller, J. An attractive force between two rodlike polyions mediated by the sharing of condensed counterions .Chem.Commun. 1997, 5,1345-1350.
    [140] Fuller,J.; Breda, A. C.; Carlin, R. T. Ion-Specific Swelling and Deswelling Behaviors of Ampholytic Polymer Gels. J. Electroanal. Chem. 1998, 459,29-35.
    [141] Wang, P., Zakeeruddin S. M., Exnar I., et al. Phase behavior of gel-type polymer electrolytes and its influence on electrochemical properties Chem. Commun. 2002,2972-2977.
    [142] Liu Y., Zou X. Q., Dong S. J., Electrochemical characteristics of facile prepared carbon nanotubes-ionic liquid gel modified microelectrode and application in bioelectrochemistry. Electrochem. Commun, 2006, 8:1429-1434.
    [143] Dong S. J., Shao Y., Wang L., et al. Conducting polymer polypyrrole supported bilayer lipid membranes. Biosens. Bioelectro, 2005,20:1373-1379.
    [144] Xu J. J., Ye H., Huang J., Novel zinc ion conducting polymer gel electrolytes based on ionic liquids, Electrochem. Commun. 2005. 7.:1309-1317.
    [145] Li J. H, Chen D., Zhang Q., et al. A novel composite polymer electrolyte containing room-emperature ionic liquids and heteropolyacids for dye-ensitized solar cells,Electrochem. Commun. 2007.9.:2755-2759.
    [146] Swatloski R P., Spear S. K., Rogers R. D. Organic polymer gel electrolyte for Li-ion batteries. J. Am. Chem. Soc. 2002,124, 4974-4979.
    [147] Klingshirn M. A., Huddleston J. G., Rogers R. D. Influence of macromolecular additives on transport properties of lithium organic electrolytes. Chem. Mater. 2004,16, 3091-3096.
    [148] Stathatos E., Lianos P., Orel B., et al. Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries Adv. Mater. 2002,14, 354-360.
    [149] Wang, P., Zakeeruddin S. M., Comte, P., et al. Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer battery. J. Am. Chem. Soc. 2003,725,1166-1171.
    [150] Snedden, P., Cooper A. I., Scott K., et al. Discharge process of Li/PVdF/S cells at room temperature Macromolecules 2003, 36, 4549-4555.
    [151] Fukushima, T.; Ishii, N.; Aida T, et al., Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Macromolecules. 2003, 300, 2072-2077.
    [152]Kimizuka N., Nakashima T. Spontaneous Self-Assembly of Glycolipid Bilayer Membranes in Sugar-philic Ionic Liquids and Formation of Ionogels, Langmuir. 2001, 77,6759-6765.
    [153]Ikeda A., Tamaru S., Shinkai S., et al. Gelation of ionic liquids with a low molecular-weight gelator showing T-gel above 100 degrees C. Chem. Lett. 2001, 1154-1159.
    [154] Amaike, M.; Kobayashi, H.; Shinkai, S. New organogelators bearing both sugar and cholesterol units: an approach toward molecular design of universal gelators. Bull. Chem. Soc. 2000, 73, 2553-2559.
    [155]Maaike C., Kroon a., Witkamp J., et al. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids, Thermochimica Acta. 2007. 465. 40-47.
    [156] Fredlake C. P., Crosthwaite J. M., Brenneck J. F., et al. Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data. 2004. 49. 954-964.
    [157] Kang G. M., Ryu K. S., Park N. G., et al. A new ionic liquid for a redox electrolyte of dye-sensitized solar cells. ETRI Journal. 2004, 26(6): 647-652.
    [158] Seki S., Kobayashi Y., Terada N., et al. Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J. Phys. Chem. B, 2006, 110(21): 10228-10230.
    [159] Rika H., Toshiyuki N., Yuko Y., et al. A fluorohydrogenate ionic liquid fuel operating without humidification.Electrochem. Solid-State Lett., 2005, 8(4): 231-233
    [160] Mikoshiba S., Murai S., Sumino H., et al. Ionic liquid type dye-sensitized solar Cells: increase in photovoltaic performances by adding a small amount of water. Curr. Appl. Phys., 2005, 5(2): 152-158.
    [161] Balducci A., Henderson W. A., Mastragostino M., et al. Cycling stability of a hybrid activated carbon/poly(3-methylthiophene)supercapacitor with N-butyl-N-methylpyrr-olidiniumbis(trifluromethanesulfonyl) imide ionicliquid as electrolyte. Electrochim. Acta, 2005, 50(11): 2233-2237.
    [162] Sato T., Maruo T., Marukane S., et al. Ionic liquids containing carbonate solven as electrolytes for lithium ion cells. J. Power Sources, 2004, 138(1-2): 253-261.
    [163] Wang R., Okajima T., Ohsaka T., et al. A novel amperometric O2 gas sensor based on supported room-temperature ionic liquid porous polyethylene membrane-coated electrodes. Electroanalysis, 2004, 16(1-2): 66-72.
    [164] Goubaidoulline I., Vidrich G., Johannsmann D., et al. Organic vapor sensing with ionic liquids entrapped in alumina nanopores on quartz crystal resonators. Anal, Chem., 2005, 77(2): 615-619.
    [165] Seyama M., Iwasaki Y., Sugimoto I., et al. Room-temperature ionic-liquid-incorporated plasma-deposited thin films for discriminative alcohol-vapor sensing. Chem. Mater., 2006, 18(11): 2656-2662.
    [166] 蔡琪,鲜跃仲,金利通等.采用离子液体的二氧化硫电化学传感器的研究.华东师范大学学报(自然科学版),2001,3(3):57-60.
    [167] Buzzeo M. C., Hardacre C., Compton R. G., et al. Use of room temperature ionic liquids in gas sensor design. Anal. Chem., 2004, 76(15): 4583-4588.
    [168] Jiang W. Q., Hao J; C., Anisotropic Ionogels of Sodium Laurate in a Room Temperature Ionic Liquid, Langmuir. 2008, 24, 3150-3156.
    [169] 蒋晶,高德淑,王承位等,凝胶型离子液体/聚合物电解质的电化学性能,电源技术,2006.30(3):219-223.
    [170] Nagy L., Gyetvai G., Nagy G., et al, Electrochemical behavior of ferrocene in ionic liquid media, J. Biochem. Biophys. Methods, 2006, 69: 121-132.
    [171] Yue Z., McEwen I. J., Cowie J M G. Novel gel polymer electrolytes based on a celiulose ester with PEO side chains. Solid State Ionics, 2003, 156: 155-162.
    [172] 巴勒斯H A,赫顿J H,瓦尔特斯K著.吴大诚,古大治等译,流变学导引,中国石油化工出版社,北京,1992.
    [173] 吴其晔,巫静安,高分子材料流变学,高等教育出版社,北京,2002.
    [174] 徐佩弦,高聚物流变学及其应用,化学工业出版社,北京,2003.
    [175] Li Y. T, Lewis A. L., Armes S. P., et al, Biomimetic Stimulus-Responsive Star Diblock Gelators. Langmuir, 2005, 21, 9946-9954.
    [176] Kelaraki A., Vira K., Hamley I. W., et al, Interactions of Bovine Serum Albumin with Ethylene Oxide/Butylene Oxide Copolymers in Aqueous Solution. Biomacro molecules, 2008, 9, 1366-1371.
    [177] Yoshida M., Kazaoui S., Minami N., et al, Oligomeric Electrolyte as a Multifunc tional Gelator, J. Am. Chem. Soc., 2007, 129(36): 11039-11041.
    [178] Kundu S. K., Matsunaga T., Yoshida M., Rheological Study on Rapid Recovery of Hydrogel Based on Oligomeric Electrolyte. J. Phys. Chem. B. 2008, 112 (37): 11537-11541.
    [179] Wang Q., Xu H. B., Yang Y. J., Rheological Study of Aqueous Dispersions of In Situ Gelable Thermosensitive Polymer Nanogel, Poly. Eng. Sci., 2009, 49:177-181.
    [180] Page M. G., Warr G. G., Structure and Dynamics of Self-Assembling Aluminum Didodecyl Phosphate Organogels. J. Phys. Chem. B., 2004, 108, 16983-16989.
    [181] Terech P., Dourdai S., Bha S., et al, Structure and Rheology of Cationic Molecular Hydrogels of Quinuclidine Grafted Bile Salts. Influence of the Ionic Strength and Counter-Ion type, J. Phys. Chem. B., 2009, 113, 4619-4630.
    [182] Bieser A. M., Tiller J. C, Structure and Properties of an Exceptional Low Molecular Weight Hydrogelator, J. Phys. Chem. B., 2007, 111, 13180-13187.
    [183] Menger F. M., Peresypkin A. V., Strings of Vesicles: Flow Behavior in an Unusual Type of Aqueous Gel, J. Am. Chem. Soc., 2003,125 (18), 5340-5345.
    [184] Fukushima T., Kosaka A., Aidal T., et al, Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes, Science, 2003, 300, 2072-2074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700