用户名: 密码: 验证码:
基于衍射微光学效应的图像生成及光束整形
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于光波的衍射理论发展起来的现代衍射微光学技术,是微电子与微光学相互交叉、渗透而形成的前沿学科。衍射微光学元件具有体积小、重量轻、易复制等特征,在诸如光纤通信、微光机电系统及国防军事等众多领域有着广阔的应用前景。
     本文在研究可见光、红外和THz等频域的衍射微光学元件的设计和制作所需要的基础理论、基本方法的基础上,针对图像仿真、图像隐身、图像加密和多谱光束整形等开展了较为深入的研究。
     主要研究工作可归纳如下:(1)根据光波的基尔霍夫标量衍射理论,阐述多谱衍射微光学元件的算法设计所需要的基础理论;(2)利用{100}晶向的硅在KOH溶液中的各向异性腐蚀特性,通过控制衬底上的掩模开孔大小和位置,KOH腐蚀液的浓度和温度以及腐蚀时间,得到具有预定深度的衍射相台阶结构;(3)针对不同谱段的光波特性和多谱图像目标仿真需求,通过单步光刻以及双步KOH湿法腐蚀方法,制作出了衍射微光学元件,并对实验结果进行了分析和讨论;(4)基于图像目标隐身的要求,设计了用于图像隐身的衍射微光学位相结构,实现了图像目标隐身的模拟计算;(5)基于衍射微光学理论的数据加密和图像信息隐藏技术,设计了衍射微光学相位加密结构,对设计实例进行了分析和讨论;(6)发展基于现代衍射微光学的光束整形方法是现代波前校正领域中的热点研究问题,本文设计出可用于多种波前变换的衍射微光学元件。
Modern diffractive microoptics developed based on the optical wave diffractive theory is a leading discipline formed by the crossing of microoptics and microelectronics. Diffractive microoptics elements have some characters such as small size, light weight, replicating easily, and so on. Diffractive microoptics technology can be used widely in many applications, for instance, micro-opto-electro-mechanical system, optical fiber communication, military field, etc.
     Over the basis of acquiring the fundamental theories and basic methods needed to design and fabricate diffractive microopticas elements in visible, infrared, and THz region, respectively, deep researches in image simulation, image stealth, optical image encryption, and the beam shaping, are performed.
     The main works in this dissertation are as follows:(1) According to the theory of Kirchhoff scalar diffraction, the fundamental theory for the algorithm designing of diffractive microoptics element is set up;(2) According to the anisotropic etching characteristics of {100}-oriented silicon materials in KOH solution, the phase step structures with expected depth can be obtained through controlling the key parameters such as the opening size and position in photomask, the concentration and the temperature of KOH erosion solution, and the etching time;(3) According to the characteristics of light processed in different spectral region, the diffractive microoptics elements have been fabricated using method consisting mainly of a single step photolithography and a dual-step KOH etching;(4) Diffractive microoptics phase structures for image stealth have been designed based on the requirements of image target stealth, and the computer simulations for image target stealth are achieved;(5) Diffractive microoptics phase encryption structures have been designed based on the theory of the diffractive microoptics data encryption and image information hiding technology, and the designing examples have been analyzed and discussed;(6) The researches in developing the method for beam shaping based on modern diffractive microoptics is a hot issue in modern wavefront correction fields. A variety of diffractive microoptics devices have been designed.
引文
[1] Wilfrid B. Veldkamp C. Overview of microoptics: past, present and future. SPIE, 1991, 1544: 287-299
    [2] Veldkamp W. B., McHugh T. J. Binary optics. Scientific American, 1992, 266(5): 92-97
    [3] Lcgcr J., Holz M., Swanson G., et al. Coherent laser beam addition: An application of binary optics technoligy. Lincoln Lab. J., 1988, 1(2): 225-246
    [4] Thomas J. McHugh. Recent advance in binary optics. SPIE, 1989, 1052: 85
    [5] Ludonan J. E. Holographic solar concentrators for space. SPIE, 1993, 2108: 514
    [6] Gerchberg R. W., Saxton W. O. A practical algorithm for the determination of phase from image and diffraction plan pictures, Optik, 1972, 35: 237-246
    [7] Christopher Kopp. Efficient beamshaper homogenizer design combining diffractive optical elements. Microlens array and random phase plate pure Appl Opt. 1999(1): 398-403
    [8] Fienup J. R. Iterative method applied to image reconstruction and to computer generated holograms. Opt. Eng, 1980, 19: 297-306
    [9] Press W. H., Teukolsky S. A., Vetterling W. T., et al. Numerical recipes in C [A]. The Art of scientific computing [M]. (2 Edition), Beijing: Electronics Industry press, 1995: 356-360 (Chinese version)
    [10] Kirkpatrick S., Gelatt P., Vecchi M. P. Optimization by simulated annealing [J]. Science, 1983, 220(4598): 671-680
    [11] Holland J. H. Genetic algorithm[J]. Scientific American, 1992, 4: 44-50
    [12] Blough C. G., Rossi M., Mack S. K., et al. Ingle-point turning and replication of visible and near-infrared diffractive optical elements, Appl. Opt., 1997, 36: 4648-4654
    [13] Ehbets P., Herzig H. P., Kuittinen M., et al. High-carrier- frequency fan-out gratings fabricated by total internal reflection holographic lithography, Opt. Eng., 1995, 34: 2377-2383
    [14] Zanke A., Gombert A., Erdmann M. Simulation and optimization of holographicallyexposed photoresist gratings, Proc. SPIE, 1999, 3729: 244-249
    [15]金国藩,严瑛白,邹敏贤等.二元光学.北京:国防工业出版社, 1995: 298-335
    [16] Jahns J., Walker S. J. Two-dimensional array of diffractive microlenses fabricated by thin film deposition, Appl. Opt., 1990, 29(7): 931-936
    [17] Cox J. A., Fitz B., Werner T. rocess error limitations on binary performance. Proc. SPIE, 1991, 1555: 80-88
    [18] Michael R. HengSu Wang. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication, Appl. Opt., 1998, 37(10): 7568-7576
    [19] Goodman J. W. Introduction to Fourier Optics Second edition. Lonon: Taylor & Francis Ltd., 1997: 31-85
    [20] Wyrowski F. Design theory of diffractive elements in paraxial domain, J. Opt. Soc. Am. A, 1993, 10(7): 1553-1561
    [21] Yongjun Xie, Zhenwu Lu, Fengyou Li. Lithographic fabrication of large curved hologram by laser writer. Opt. Exp, 2004, 12(9): 1810-1814
    [22] Jin-Seung Sohn, Myung-Bok Lee, Wan-Chin Kim, et. al, Design and fabrication of diffractive optical elements by use of gray-scale photolithography. App. Opt, 2005, 44(4): 506-511
    [23] Ted J., Hubbard Erik K. Antonsson. Emergent faces in crystal etching. J. Microelec. Mech. Syst, 1994, 3(1): 19-28
    [24] Kendall D. L., William P. Ron Manginell. Micromirror arrays using KOH: H2O micromachining of silicon for lens templates, geodesic lenses, and other applications. Opt. Eng, 1994, 33(11): 3578-3588
    [25] Bourouina T., Masuzawa T., Fujita H. The MEMSNAS Process: Microloading Effect for Micromachining 3-D Structures of Nearly All Shapes. Microelectromechanical System, 2004, 13(2): 190-198
    [26] Johnson P. L. Diffractive Optics and Micro-optics. App. Opt, 2006, 45(1): 154-187
    [27] Victor A. Methods for computer Design of Diffractive Optical Elements[M]. New York: A Wiley-Interscience publication, 2002
    [28] Kress P. Meyrueis. Digital Diffractive Optics[M]. New York: John Wiley & Sons Ltd, 2002
    [29]梁炳成,王恒霖,郑燕红.军用仿真技术的发展动向和展望[J].系统仿真学报, 2003, 13(1): 16-20
    [30] Akhzar-Mehr O., Sarro P. M. Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si. Opitcal Express, 2003, 11(18): 2244-2252
    [31] Bourouina T., Masuzawa T., Fujita H. The MEMSNAS Process: Microloading Effect for Micromachining 3-D Structures of Nearly All Shapes. Microelectromechanical System, 2004, 13(2): 190-198
    [32] Victor A. Methods for computer Design of Diffractive Optical Elements[M]. New York: A Wiley-Interscience publication, 2002
    [33] Hu B. B., Nuss M. C. Imaging with terahertz waves[J]. Optics Letters, 1995. 20: 1716-1718
    [34] Mittleman D. M., Gupta M., Neelamani R., et al. Recent advances in terahertz imaging[J]. Applied Physics, 1999, B68: 1085-1094
    [35]钟华,李自力.隐身技术.北京:国防工业出版社, 1999. 4: 156-165
    [36]陈益友,李文信.国外武器装备隐身化的发展趋势和发展情况[J].隐身技术, 2000(1): 2-7
    [37] Nathan R. Hines, Dimitri N. Mavris, A Parametric Design Environment for Including Signatures Analysis in Conceptual Design, AIAA 2000-01-5564
    [38] Rao G. A., Mahulikar S. P. Integrated Review of Stealth Technology and Its Role in Airnower. The Aeronautical Journal, December. 2002
    [39]比尔·斯威特曼.隐身飞机.西安:西工大出版社, 1988
    [40] Javidi B. Securing information with optical technologies. Physics Today, 1997, 50(3): 27-32
    [41] Stephen P., Gajda R., Sznplik T. Distributed kinoforms in optical security applications. Opt. Eng. 1996, 35(9): 2453-2458
    [42] Walker T. G. Holography without phptpgraphy. Am. J. Phys., 1999, 67(9): 783-785
    [43] Javidi B., Homer J. L. Optical pattern recognition for validation and security verification. Opt. Eng., 1994, 33(6): 1752-1756
    [44] Refregier P., Javidi B. Optical image encryption based on input plane and Fourier plane random encoding_Ont. Lett., 1995, 20(17): 767-769
    [45] Neto L. G., Sheng Y. Optical implementation of image encryption using random phase encoding. Opt. Eng. 1996, 35(9): 2459-2463
    [46]黄骏,张少军,李廷廷.激光光束的空间整形理论基础及发展展望[J].北京工业大学学报, 2002(28): 203-206
    [47] Yang G. Z., Gu B. Y. On the amplitude-phase retrieval problem in the optical system. Acta Phys. Sin., 1981, 30: 410-41
    [48] Zhai Honchen, Liu Fumin, Yang Xiaoping, et al. Improving binary images reconstructed from kinoforms by amplitude adjustment[J]. Opt. Comm., 2003, 219: 8I-85
    [49] Jixiong Pu, Nuihua Zhang, Shojiro Nemoto, et al. Annular-aperture diffractive axicons illuminated by Gaussian beams, J. Opt. A: Pure Appl. Opt., 1999, 1: 730-734

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700