用户名: 密码: 验证码:
重庆市主城区大气PM_(10)来源的混合模型解析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可吸入颗粒物质(PM10)是衡量大气质量的重要指标,也是大气环境中危害人类健康的主要物质。因此,摸清PM10的来源和定量解析出各污染源的贡献比率(分担率),即对PM10进行来源解析研究,对制定切实可行的PM10控制措施具有重要的指导意义。
     为了给重庆市防尘工作提供科学依据和技术支持,本文对重庆市主城大气PM10来源进行解析研究;在解析过程中,采用因子分析法(FA)确定主要污染源,将化学质量平衡(CMB)模型和遗传算法(GA)模型混合成为一种混合算法模型应用于来源解析上,为来源解析技术方法的优化提供一些参考。主要得出如下结论:
     ①重庆市主城PM10的质量浓度有着明显的季节性和区域性变化特征:各采样点冬季PM10的浓度均要高于夏季,PM10的浓度分布遵循工业综合区>商业区>学校和住宅区>旅游风景区的变化规律。
     ②重庆市主城PM10中各组分的质量浓度有着较为明显的季节性和区域性变化特征:冬季PM10中各组分浓度高于夏季,其中无机元素中Si、S和Al,碳组分中的OC以及水溶性离子组分中的SO42-、NO3-和NH4+升幅较为明显;区域性分布上一般工商业发达、人口集中、交通密集的地区的组分浓度较高。
     ③夏冬两季主城区PM10的OC/EC平均值达到了5.53,其中冬季OC/EC的比值要高于夏季,说明重庆市主城的次生有机碳(SOC)的污染较为严重,采用最小比值法对重庆市主城SOC的浓度进行估算,结果表明重庆主城夏冬两季SOC浓度的平均值达到10.56μg/m3,占OC的59.87%。NO3-/SO42-的比值很低,说明重庆市PM10中水溶性离子污染主要来自于固定污染源。NH4+、NO3-和SO42-三者有着较好的正相关性,而且从回归方程得出,重庆市大气颗粒物中小颗粒物中主要的物种可能为NH4HSO4、(NH4)2SO4、NH4NO3等。
     ④采用因子分析法将重庆市主城大气PM10的主要来源归纳为二次粒子、扬尘、建筑材料尘、钢铁尘和交通尘5个污染因子,并初步解析出它们对PM10的相对贡献率分别为46.59%、29.32%、8.02%、11.41%和5.16%。结合实际管理需要最终将重庆市主城大气PM10的主要污染源确定为扬尘(施工扬尘和道路扬尘)、建筑材料尘、燃煤烟尘、机动车尾气尘、钢铁冶炼尘和二次粒子(二次硫酸盐、二次硝酸盐和次生有机碳),进一步完善了PM10污染源的分类体系。
     ⑤通过引入实际数据进行运算,并使用目前广泛使用的CMB模型进行了验证,结果证明,采用的混合模型算法在来源解析的应用上具有良好的精确性,能够解决一定程度的源类共线性问题。
     ⑥采用混合模型对重庆市主城大气PM10的主要来源进行解析,结果显示二次粒子、道路扬尘、建筑材料尘、施工扬尘、燃煤烟尘、机动车尾气尘和钢铁尘对重庆市主城PM10的分担率分别为34.45%,23.41%,10.74%,10.44%,8.45%,7.94%和6.12%。可见重庆市主城PM10主要受二次粒子、扬尘(道路扬尘和施工扬尘)、建筑材料尘的制约,其分担率之和达到79.04%,其中二次粒子中大部分来自于燃煤烟尘和机动车尾气尘排放物在空气中的二次反应,因此重庆市主城PM10防治工作的重点应放在扬尘、建筑尘、燃煤尘和机动车尾气尘的控制上。
Inhalable particulate matter (PM10) is an important index for atmospheric environmental quality; is also harmful for human health. So identifying the sources of PM10 and calculating the contribution rate of PM10, namely conducting the source apportionment of PM10, is of great significance for the establishment of the practical measures to control PM10.
     The source apportionment of PM10 was conducted in Chongqing for providing scientific basis and technical support for the preventing dust work of Chongqing. In the process, factor analysis (FA) model was used to identify the sources of PM10, and the hybrid model, which was created with the mix of chemical mass balance (CMB) model and genetic algorithm (GA) model, is used for souce apportionment to provide some references for the technical methods. The main conclusions are as follows:
     (1) The mass concentrations of PM10 in Chongqing were characteristic of seasonal and regional variety. The concentration of PM10 every sampling site in winter was higher than in summer. The order of concentrations from high to low was: Intergrated Industrial Parks, Sowntowns, Residential Areas and Tourist Districts.
     (2) The component mass concentrations of PM10 were characteristic of seasonal and regional variety. The component concentrations of PM10 in winter were higher than summer, especially the increase of Si, S and Al in inorganic elements, organic carbon and SO42-, NO3- and NH4+ in water-solubility ions were more obvious. In the developed areas that have lots of industries, commerces, population and traffics, the component concentrations of PM10 were generally higher than in other areas.
     (3) The average value of OC/EC was 5.53, which in winter was higher than in summer. This showed that the pollution of secondary organic carbon (SOC) was serious. The concentration of SOC was 10.56μg/m3 and 59.87% of OC, which was calculated by the minimum method. The value of NO3-/SO42- was low, and it showed that the water-solubility ions mainly came from stationary pollution source. There was good correlation among NH4+, NO3- and SO42-. According to the linear regression equations, the main components of the atmospheric small particles were NH4HSO4, (NH4)2SO4, NH4NO3, and so on.
     (4) Secondary particles, fugitive dust, cement dust, steel dust and traffic dust the five pollution factors of PM10 in Chongqing were identified by FA model, and their relative contribution rates were 46.59%, 29.32%, 8.02%, 11.41% and 5.16%. At last the main pollution sources of PM10 in Chongqing were identified as fugitive dust (including soil dust and road dust), cement dust, coal smoke dust, mobile exhaust gas dust, steel dust and secondary particles (including secondary sulfate, secondary nitrate and secondary organic carbon) to perfect the pollution sources classification system of PM10.
     (5) According to the practical database operation and the test used by CMB model, the hybrid model had good accuracy, and could solve the problem of excessive source collinearity to a certain extent with its analytical results reliable.
     (6) The contribution rates of secondary particles, road dust, cement dust, soil dust, coal smoke dust, mobile exhaust gas dust and steel dust in Chongqing were 34.45%,23.41%,10.74%,10.44%,8.45%,7.94%和6.12% calculated by the hybrid model. It showed that the pollution of PM10 was mainly affected by secondary particulates, fugitive dust and cement dust with the sum of their contribution rates 79.04%. Most of secondary come from the atmospheric secondary reaction conducted by emissions of coal smoke dust and mobile exhaust gas dust, so the PM10 provention and control work should focus on the control of fugitive dust, construction dust, burning coal dust and mobile mobile exhaust gas dust.
引文
[1]戴树桂.环境化学.高等教育出版社[M],1997.
    [2]唐孝炎.大气环境化学.高等教育出版社[M],1990.
    [3]樊邦常.环境化学.浙江大学出版社[M],1991.
    [4]陈德均等.大气污染化学.机械工业出版社[M],1998.
    [5]谈明光等,上海市大气中可吸入颗粒物PM10对人体外周血淋巴细胞的毒性研究[J],2004,21(1):1-2.
    [6]崔九思,王钦源,王汉平.大气污染监测方法[M].北京.化学工业出版社,1997.
    [7] Office of Air Quality Planning and Standards [J]. US EPA Office of Air and Radiation, 1997.
    [8] Sloss L.L.Smith I.M. PM10 and PM2.5: an international perspective [J]. Fuel Processing Technology 2000, 65-66: 127-141.
    [9]欧盟降低空气质量标准.http://www.dianlihu.com/switch/gwbzcx/56373.html.
    [10]重庆市环境质量报告书[R].重庆市环境保护局.2006.
    [11]何昌华,金文刚.环境空气中大气颗粒物源解析的研究进展[J].重庆环境科学,2002, 4(3): 55~59.
    [12]梁汉昌.痕量物质分析气相色谱法.北京:中国石化出版社[M],2000.
    [13] US EPA Office of Air and Radiation [R], Office of Air Quality Planning and Standards. Fact Sheet-EPA's Recommended Final Ozone and Particulate Matters Standards. 1997.
    [14] Quantifying the Contribution of Important Sources to PM Concentrations [J]. EPA, 2001.
    [15] US EPA. Particulate matter (PM2.5) speciation guidance document (Third draft) [J]. Monitoring and Quality Assurance Group, Research Triangle Park, NC 27711, January 21, 1999.
    [16]张丹,张卫东,蒋昌潭.环境中大气颗粒物的源解析方法.重庆工商大学学报,2006,4(23): 124~127.
    [17]何昌华,金文刚.环境空气中大气颗粒物源解析的研究进展[J].重庆环境科学,2002, 24(3): 55~59.
    [18]戴树桂,朱坦,白志鹏.受体模型在大气颗粒物源解析中的应用和发展[J].中国环境科学,1995,15 (4): 252~257.
    [19] Blifford I H, Meeker G O. Receptor model [J]. Atoms, Environ., 1967, 1(1): 147~157.
    [20] PM Data Analysis Workbook [M]. EPA , 2001.
    [21]冯银厂,白志鹏,朱坦.大气颗粒物二重源解析技术原理与应用[J].环境科学,2002,23(增刊):106~108.
    [22]郝明途,侯万国,屈小辉,刘春博.大气颗粒物二重源解析技术的方法改进[J].中国环境科学,2005,25(2): 138~141.
    [23]杨钰,金永民等.用因子分析法解析抚顺市大气颗粒物来源[J].辽宁城乡环境科技,2005(4): 7~9.
    [24]周来东.成都市春季大气飘尘目标变换因子分析(TTFA)[J].四川环境,1995, 14 (3): 12~15.
    [25] Gordon G. E. Receptor models [J], Environ. Sci. Technol., 1980, 14(7): 792~800.
    [26] Gordon G. E. Receptor models [J], Environ. Sci. Technol, 1988, 22(10): 1132~1142.
    [27]王帅杰,朱坦.大气颗粒物物源解析进展[J].环境污染治理技术与设备,2002, 8(3): 8~12.
    [28]李祚泳.用投影寻踪回归进行大气颗粒物的污染源解析[J].中国环境科学,1999, 19(3): 270~272.
    [29]李祚永,王珏,邓新民.大气颗粒物污染源的遗传算法模型[J].重庆环境科学,2000, 10(22): 58~60.
    [30]李祚泳,彭荔红.基于遗传算法的大气颗粒物的源解析[J].环境科学研究,2000, 13(6): 19~21.
    [31]李祚泳,丁恒康,丁晶.大气颗粒物源解析的BP网络权重分析模型[J].四川大学学报(自然科学版),2004,41(5): 1026~1029.
    [32]李祚泳,丁恒康. BP网络应用于大气颗粒物的源解析[J].中国环境监测,2005,21(2): 74~83.
    [33]李祚泳,丁晶,张欣莉.成都市大气颗粒物源解析的PPR法[J].环境科学研究,2000,13(5): 38~40.
    [34]李祚泳,倪长健,丁晶.粗集理论应用于大气颗粒物的源解析[J].四川大学学报(工程科学版),2003,35(4): 112~114.
    [35]夏青,韩应健,葛大陆.大气环境综合整治规划[M].北京:中国环境科学出版社,1990.
    [36]梁金友,王文兴.区域源解析模式的建立[J].环境科学学报,1990,10(1): 17~25.
    [37]王文兴,梁金友,陈延智.华南地区气溶胶区域源解析[J].中国环境科学,1992,12(1): 1~8.
    [38]宋宇,唐孝炎,方晨等.北京市大气细粒子的来源分析[J].环境科学,2002,6: 11~16.
    [39] Huang S, Rahn K A, Arimoto R. Testing and optimizing two factor-analysis techniques on aerosol at Narragansett, Rhode Island [J]. Atmospheric Environment, 1999, 33: 2169~2185.
    [40] Lee E, Chan C K, Paatero P. Application of positive matrix factorization in source apportionment of particle pollutants in Hong Kong [J]. Atmospheric Environment, 1999, 33 : 3201~3212.
    [41] Prendes P, Andrade J M, Lopez2Mahia P, Prada D. Source apportionment of inorganic ions in airborne urban particles from Coruna city (N. W. of Spain) using positive matrix factoriza2tion[J]. Talanta, 1999, 49: 165~178.
    [42] Xie Y-L, Hopke P K, Paatero P, Barrie L A, Li S-M. Identification of Source Nature and Seasonal Variations of Arctic Aerosol by Positive Matrix Factorization [J]. Journal of Atmospheric Sciences, 1999, 56 :249~260.
    [43] Chueinta W, Hopke P K, Paatero P. Investigation of source of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization [J]. Atmospheric Environment, 2000, 34: 3319~3329.
    [44] Fitz D R, Bumiller K. Determination of PM10 emissions from street sweepers [J]. Journal of the Air&Waste Management Association, 2000, 50: 181-187.
    [45] Venkatram A, Fitz D R, Bumiller K, et al. Using a dispersion model to estimate emission rates of particulate matter from paved roads [J]. Atmospheric Environment, 1999, 33: 1093-1102.
    [46] Haobo Wang, David Shooter. Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources [J]. Atmospheric Environment, 2001, 35: 6031-6040.
    [47] Chan Y. C. et al. Atmospheric Environment [M], 1996, 30(6): 843-1011.
    [48] US.EPA. EPA-CMB8.2 Users Manual [P]. US. Environmental Protection Agency&Air Quality Modeling Group, NC27711, EPA-452/R-04-011, 2004, 12
    [49] Source Apportionment of Airborne Particulate Matter in the United Kingdom [J]. Atmospheric Environment, 1999, 25(6): 434~500.
    [50] Mike Lepage and J. Wayne Boulton. Source Apportionment of Particulate Matter in Canada [J], Atmospheric Environment, 1999, 25(6): 744~835.
    [51] Y. C. Chan, R. W. Simpson. Source apportionment of PM2.5 and PM10 aerosolsin Brisbane (Australia) by receptor modeling [J]. Atmospheric Environment 33 (1999): 3251~3268.
    [52] GEORGE D. THURSTON. Source Apportionment of Fine Particles in New York City. Environmental Monitoring, Evaluation, and Protection Program [J]. Atmospheric Environment, 2001, 28(6):613~758.
    [53]魏复盛,胡伟.空气细粒子污染的某些特性及环境效应[R].香山科学会议主题“可吸入颗粒物的形成机理和防治对策”,北京, 2002年5月:1~9.
    [54]冯银厂,白志鹏等.化学质量平衡法解析济南市大气颗粒物来源研究[J].上海环境科学(网络版),2003,22(11): 853.
    [55]吴淑岱,丁枚.大气固定源的采样分析[J].中国环境科学出版社,1993: 56~80.
    [56]王玮,陈宗良.大气气溶胶中无机碳和有机碳[J].环境科学丛刊,12(2), 27~33.
    [57] Johnson R. L. Development and evaluation of a thermal/optical method for the analysis of carbonaceous aerosol, M. S. thesis [J], 1981, Oregon Graduate Center. Beaverton, OR.
    [58] Chan Y. C. et al. Atmospheric Environment [M], 1996, 30(6): 843~1011.
    [59] Blifford I. H., Meeker G. O. A factor analysis model of large scale pollution [J]. Atmospheric Environment, 1967, 1: 147~l58.
    [60] Hlophe P. K. Gladney, E. S., Gordon G. E. The use of multivariate analysis to identify sources of selected elements in the Boston urban aerosol [J]. Atmospheric Environment, 1976, 10: 1015~1025.
    [61] Gaarenstroom, P. D., Perone, S. P., Moyers, J. L. Application of pattern recognition and factor analysis for characterization of atmospheric particulate composition in the Southwest Desert atmosphere [J]. Environ. Sci. Technol, 1977, 11: 79~800.
    [62] Sharma V. K., Patil R. S. Size distribution of atmospheric aerosols and their source identification using factor analysis in Bombay, India [J]. Atmospheric environment, 1992, 26B(1): 13~140.
    [63]赖森潮,叶计朋.广州夏季大气中碳气溶胶浓度水平及污染特征[J].中山大学学报(自然科学版)2004.9(43):61~65.
    [64] Menon, S., Hansen, J., Nazarenko, L., Luo, Y.F., 2002.Climate effects of black carbon aerosols in China and India [J]. Science 297, 2250–2253.
    [65]叶兆贤,祁士华,简颖涛.广州近郊主干道(广佛公路)机动车排放有机污染监测与研究[J].中国环境监测, 2002, 11(1):65-68.
    [66]黄辉军,刘红年等.南京市主城大气颗粒物来源的探讨[J].气象科学. 2007.27(2):162~168.
    [67]吴雷,王慧.城市颗粒物污染来源与特性分析[J].干旱环境监测,2003,17(3):157~159.
    [68] Gray H A, Cass G R, Huntzicker J J, et al. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles [J]. Environment Science and technology, 1986, 20(6):580~589.
    [69]唐小玲,毕新慧等.不同粒径大气颗粒物中有机碳(OC)和元素碳( EC)的分布[J].环境科学研究. 2006.19(1):104~108.
    [70]于建华,虞统,杨晓光等.北京冬季PM2.5中元素碳、有机碳的污染特征[J].环境科学研究,2004,17(1):48~50.
    [71]刘新民,邵敏,曾立民,等.珠江三角洲地区气溶胶中含碳物质的研究[J].环境科学,2002,23(增刊):54~59.
    [72] Cao J, Lee S C, Ho K, et al. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China [J]. Atmos Environ, 2004, 38:4447~4456.
    [73] Offenberg J H, Baker J E. Aerosol size distributions of elemental and organic carbon in urban and over2water atmospheres [J]. Atmos Environ,2000, 34:1509~1517.
    [74] Yu J, Tung W T, Wu W, et al. Abundance and seasonal characteristics of elemental and organic carbon in Hong Kong PM10 [J]. Atmos Environ, 2004,38:1511~1521.
    [75]牛彧文,何凌燕等.深圳冬、夏季大气细粒子及其二次组分的污染特征[J].中国科学B辑化学. 2006,36(2):173~180
    [76]胡敏,赵云良,,何凌燕等.北京夏、冬季颗粒物及其离子成分质量浓度谱分布[J].环境科学, 2005, 26(4):1~6.
    [77] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York [J]. Wiley Interscience, 1998:700~703.
    [78]李龙凤,王新民,赵丽容等.广州市街道环境PM10和PM2.5质量浓度变化特征[J].地球与环境, 2005,33(2):57~60.
    [79] Arimoto, R., Duce. Relationships among aerosol constituents from Asia and the North Pacific during Pem-West A [J]. Journal of Geophysical Research, 1996, 101, 2011~2023.
    [80] Duan F K, Liu X D, Yu T, et al. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing [J]. Atmospheric Environment, 2004, 38: 1275~1282.
    [81] Haobo Wang, David Shooter. Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources [J]. Atmospheric Environment, 2001, 35, 6031~6040.
    [82] Sachio Ohta, Masahiro Hori.Chemical characterization of atmospheric fine particles in Sapporo with determination of water content [J]. Atmospheric Environment, 1998, 32, 1021~1025.
    [83]林杰斌. SPSS11.0统计分析实务设计宝典[M],北京:中国铁道出版社, 2002, 230~244.
    [84]张远航,唐孝炎,毕木天.兰州西固地区气溶胶污染源的鉴别[J].环境科学学报. 1987 (3): 269~277.
    [85]孙文爽,陈兰祥.多元统计分析[M].第I版.北京:高等教育出版社,1994.
    [86]罗积玉.微机用多元统计分析软件[M].第I版.成都:四川科学技术出版社,1986.
    [87]张明立,于秀林.多元统计分析方法与程序[M].第I版.北京:北京体育出版社,1991.
    [88]蒋耀淞.多元统计分析方法[M].第I版北京.中国地质大学出版社.
    [89]张尧庭,方开泰.多元统计分析引论[M].第I版.北京:科学出版社,1982.
    [90] Watson, J.G., Copper, J.A., The effective variance weighting for least squares calculations applied to the mass balance receptor model [J]. Atmospheric Environment, 1984,18, 1347~1355.
    [91] Watson, J.G., Robinson, N.F., The USEP/DRI chemical mass balance receptor model [P], CMB7.0. Environment Software, 1990, 5, 38~49.
    [92] Hidy, G.M., Venkataraman, C. The chemical mass balance method for estimating atmospheric particle sources in Southern California [J].Chem.Eng.Comm.1996, 151,187~209.
    [93]雷英杰,张善文,李续武等.遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [94] Holland J H. Genetic algorithms [J]. Scientific American, 1992, (4) : 44~50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700